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Binding of BRCA2 to the N-terminal region of NMHC-IIC

To determine which region of NMHC-IIC interacts with
BRCA2, we introduced plasmids encoding HA-tagged
NMHC-IIC deletion mutants (Fig. 4A) and BRCA2-FLAG into
COS-7 cells, and performed coimmunoprecipitation analyses.
BRCA2 bound to the IIC (A)-HA fusion, containing a.a. 1-1,000
of NMHC-IIC (Supplementary Fig. S5A). We further divided
this fragment into three partially overlapping regions and
found that only the IIC (Al)-HA fusion bound strongly to
BRCA2-FLAG (Supplementary Fig. $5B). When IIC (A1)-HA
was coexpressed with BRCA2-FLAG and NMHC-IIC-HA, the
interaction between BRCA2-FLAG and NMHC-IIC-HA was
abolished (Fig. 4B). The same dominant-negative effect was
seen between the endogenous BRCA2 and NM-IIC at the
midbody (Fig. 4C). Both the localization of endogenous BRCA2
and IIC-ring formation at the Flemming body were disrupted in
A549 cells expressing IIC (A1)-HA (Fig. 4D and Supplementary
Fig. S5C).

Abnormalities in cytokinesis induced by expression of
NMHC-IIC (A1) or BRCA2 (R1)

‘We hypothesized that the interaction between BRCA2 and
NM-IIC at the midbody might play a role in the regulation of
cytokinesis. To explore this possibility, we analyzed A549 cells
exposed to anti-¢-tubulin antibody 48 hours after IIC (A1)-HA
transfection. The midbodies of the 1IC (Al)-HA-expressing
cells varied in length compared with those of the HA-expres-

sing control cells (Supplementary Fig. S5D; P < 0.01 by Mann-
Whitney Utest). The IIC (A1)-HA-expressing cells were unable
to divide and accumulated at G; phase (76.09%-48.89% for the
cells transfected with the empty vector; Supplementary Fig.
S5E). These results indicated that the binding of BRCA2 to NM-
HC could have a function in cytokinesis promotion.

Because the endogenous BRCA2 did not localize to the
Flemming body in A549 cells expressing the Rl region of
BRCAZ2 (Supplementary Fig. S1K), we supposed that the abun-
dant expression of the R1 domain would also inhibit IIC-ring
formation. As expected, the IIC ring was not observed in A549
cells expressing a high level of HA-BRCA2 (R1), as was the case
in cells expressing 1IC (A1)-HA (Fig. 4D and Supplementary Fig.
S5C and S5F). A greater number of binucleated cells was
observed in BRCA2 (R1)-FLAG-expressing cells (185 =+
3.4%) than in FLAG-expressing control cells (8.3 £ 2.7%;
Supplementary Fig. S5G).

Enhancement of the ATPase activity of NM-IIC by BRCA2

NM-II plays a fundamental role in cell adhesion, migration,
and division mediated by inherent actin cross-linking and
contractile functions. This activity requires energy, which is
provided by the hydrolysis of ATP and the active site of NM-II
exhibits ATPase activity. Treatment of A549 cells with bleb-
bistatin, an inhibitor of myosin II ATPase activity, caused decay
of the 1IC-ring surrounding oi-tubulin and imperfections in ring
formation (Supplementary Fig. S6A). MgcRacGAP was
observed in the decay of the IIC-ring (Supplementary Fig.
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Figure 5. ATPase activity is required for lIC-ring formation. A, the actin-dependent ATPase activity of NM-IIC following incubation of the immunoprecipitated

NMHC-IIC-HA with and without BRCA2-FLAG. B, NMHC-lIC-GFP was expressed in COS-7 cells and the reaction mixtures were mounted on a glass slide and
observed by fluorescence microscopy. The lIC-rings were not seen following blebbistatin treatment or lacking either ATP or Mg2+- in the reaction. Magnified
images of NMHC-IIC-GFP are also shown (a-f). C, NMHC-IIC-GFP was expressed in COS-7 cells treated with siRNA-BRCA2 or siRNA-control or no-

transfection, and the reaction mixtures were mounted on a glass slide and observed by fluorescence microscopy. The samples were fixed and stained for GFP
(green). Scale bar, 1 um. D, the plasmids indicated in figure were expressed in COS-7 cells and the cell lysates were mounted on a glass slide. The samples

were fixed and stained for GFP (green) and BRCA2 (red). Scale bar, 1 um.

S6B). To explore the function of BRCA2 in IIC-ring formation,
we analyzed the effect of BRCA2 on the actin-dependent
ATPase activity of NM-IIC. The actin-dependent ATPase activ-
ity of NM-IIC was measured following incubation of the
immunoprecipitated NMHC-IIC-HA in the presence or
absence of BRCA2-FLAG. We confirmed that introduction of
the plasmid encoding NMHC-IIC into cells leads to binding of
the exogenous NMHC-IIC to the 12A and 12B isoforms of
endogenous light chain (Supplementary Fig. S6C). The ATPase
was activated (1.0 x 107% unit/minute) when both proteins

were present (0.5 ug BRCA2-FLAG and 0.63 g NMHC-IIC-
HA; Fig. 5A, lane 1). ATPase activation following incubation of
NMHC-IIC and BRCA2 occurred in a dose-dependent manner
(Fig. 5A, lanes 1 and 2). The light chain was phosphorylated
following the addition of BRCA2-FLAG to the immunopreci-
pitated NMHC-IIC (Supplementary Fig. S6D). Furthermore, in
the presence of 1IC (A1)-HA, which inhibits the binding of
BRCA2 to NM-IIC, ATPase activation was inhibited (Fig. 5A,
lane 4). The absence of F-actin from the reaction mixture
reduced ATPase activity significantly (Fig. 5A, lane 5). The
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localization of F-actin at the Flemming body was observed by
immunofluorescence microscopy (Supplementary Fig. S6E). A
mutant NMHC-IIC (AA)-HA in which Lys204 and Thr205 in the
ATP-binding site (GESGAGKT; 198-205) were substituted with
alanine did not exhibit ATPase activity in response to incu-
bation with BRCA2 (Fig. 5A, lane 9). IIC (A1)-HA also did not
exhibit ATPase activity (Fig. 5A, lane 8). A mutant BRCA2
(S193A)-FLAG also supported activation of NM-IIC ATPase
activity to a level similar to that observed by the wild-type
BRCA2-FLAG (Supplementary Fig. S6F). These results sug-
gested that the ATPase activity is increased by NM-IIC-BRCA2
association. Furthermore, the phosphorylation of BRCA2-
Ser193 is not essential for the activation of the ATPase activity
of NM-IIC but is required for the localization of BRCA2 to the
Flemming body.

To test this further, we attempted an in vitro reconstitution
of the [IC-ring using recombinant NMHC-1IC. NMHC-IIC-GFP
was expressed in COS-7 cells and examined using the cell
lysates. It was observed that NMHC-IIC-GFP formed part of a
unigue ring-like structure (14-2.0 jum) in the presence of both
ATP and Mg2+ (Fig. 5B, 1). However, NMHC-IIC-GFP failed to
organize into aring-like structure when blebbistatin was added
to the reaction (Fig. 5B, 2). The ring-like structure was also not
observed in the absence of either ATP or Mg*™ (Fig.5B,3and 4).
To see an effect of BRCA2 on IIC-ring formation, we over-
expressed NMHC-IIC-GFP following siRNA-mediated knock-
down of BRCA2 in COS-7 cells. NMHC-IIC-GFP failed to
organize into a ring-like structure in siRNA-BRCA2-treated
cells (Fig. 5C). Next, we coexpressed recombinant NMHC-1IC-
GFP and BRCA2-FLAG in COS-7 cells and investigated local-

ization of BRCA2 in the lysates. We showed that BRCA2
localized to the IIC ring-like structure (Fig. 5D). These results
suggest that the ring-like structure is composed of NMHC-1IC-
GFP and BRCA2.

The requirement of the ATPase activity of NM-IIC for
HC-ring formation

To demonstrate the significance of the ATPase activity of NM-
1IC for 1IC ring formation, we examined whether the IIC-ring
could be restored by recombinant NMHC-IIC-HA or NMHC-IIC
(AA)-HA expression following endogenous NMHC-IIC knock-
down (Supplementary Fig. $6G and S6H). Both were copreci-
pitated with BRCA2-FLAG (Supplementary Fig. S6I). Although
cells expressing wild-type NMHC-IIC-HA exhibited 1IC-ring
within the midbody, in cells expressing NMHC-IIC (AA)-HA,
the IIC-ring-like structure seemed to degenerate within the
midbody area (Supplementary Fig. S6]). These results indicate
that the ATPase activity of NM-IIC is required for IIC-ring
formation.

Discussion

BRCAZ2, the product of breast cancer susceptibility gene
BRCAZ2, plays important roles in the maintenance of genome
stability throughout the cell cycle. Several studies have sug-
gested a role for BRCA2 in regulation of cytokinesis at the late
M phase. BRCA2 deficiency impairs completion of cell division.
Inhibition of cell separation is accompanied by abnormalities
in NM-II organization during the late stages of cytokinesis (6).
We identified the subcellular localization of each isoform

Cancer Res; 74(5) March 1, 2014

Cancer Research



BRCA2 Regulates Cytokinesis by Myosin-llC ATPase Activation

during cytokinesis and found that only the NM-IIC isoform
colocalizes and interacts with BRCA2 at the Flemming body
(Fig. 2 and Supplementary Fig, $2). The interaction of NM-11C
with BRCAZ2 at the Flemming body allows the activation of NM-
1IC ATPase activity followed by IIC-ring formation (Fig, 6).

Cytokinesis, the final step of cell division in all animal cells,
partitions the cytoplasm between two daughter cells. This
process depends upon the activity of NM-II, which participates
in the formation of the cleavage furrow. Attachment of a
contractile ring, consisting of a network of actin filaments
(actomyosin) and NM-II, to the cytoplasmic membrane
induces the formation of a cleavage furrow. Mammalian cells
use not IIC but 11A or lIB during this process (10). NM-IIA
exhibited a diffuse distribution throughout the entire midbody
as observed by immunofluorescence microscopy (Fig. 2A) and
glycerol gradient analyses (Fig. 2B), indicating that it might
interact with various proteins. Although NM-IIB localizes to an
area from the basal portion of the midbody to the cytosol of
dividing cells, glycerol gradient analysis revealed that it is
absent from the fraction containing phosphorylated BRCA2,
In addition, a coimmunoprecipitation assay did not detect
interaction between BRCA2 and NM-IIB (Fig. 2D). In contrast,
NM-IIC was detected at the Flemming body and it colocalized
with phosphorylated BRCA2 during cytokinesis just before
abscission. Depletion of BRCA2 or NM-IIC by siRNA disrupted
the HC-ring and led to abnormal midbody formation followed
by failure of abscission and cytokinesis (Fig. 3 and Supplemen-
tary Fig. §3). Cells expressing NM-IIC (A1), which exhibited a
dominant-negative effect upon the interaction of endogenous
BRCA2 and NM-IIC, also failed to progress through cytokinesis
(Fig. 4 and Supplementary Fig. S5C-S5E). Taken together, the
interaction between BRCA2 and NM-IIC seems essential for
abscission or the induction thereof. Some cells, including HeLa
$3, have been reported not to express NM-1IC; however, we
have performed some experiments to confirm NM-IIC-expres-
sion in HeLa S3 cells. These include Western blot data using
anti-NMHC-IIC-N antibody and the mass spectrometric anal-
ysis of HeLa $3-cell lysates (data not shown). These data
indicated the existence of the short type of NM-IIC in Hela
83 cells.

In this study, the interaction of BRCA2 with NM-IIC was
shown to be required for the activation of NM-1IC ATPase
activity (Fig. 5A and Supplementary Fig. S6F). Furthermore, the
endogenous light chain bound to NMHC-IIC-HA was phos-
phorylated following the addition of BRCA2-FLAG (Supple-
mentary Fig, S6C and S6D). We speculate that a kinase present
in the BRCA2 immunoprecipitate might phosphorylate the
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