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Data are expressed as means + S.D. P<0.05 was considered
statistically significant.

Results

BCTS Stimulates Breast Cancer Cell Growth
in Both Estrogen-Dependent and -Independent Manners

In the tumor microenvironment, many growth factors, cyto-
kines and chemokines directly and indirectly control growth.
To study their comprehensive influence on breast cancer ag-
gressiveness, we first analyzed effects of BCTS on MCF-7-
E10 cell growth (Fig. 1), which allowed us to examine the
total effect of breast cancer-derived factors secreted from
tumor and stromal cells, as they exist in vivo, on growth and
estrogen-related signals of breast cancer cells. BCTS dose-
dependently stimulated MCF-7-E10 cell growth (Fig. 1a).
Although activities varied among specimens, more than
60 % showed higher growth-stimulating activity than with
estrogen (Fig. 1b).

To examine the specificity of target cells, we studied the
effect of BCTS on growth of other tumor cell lines, including
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Fig. 1 BCTS effectively stimulated growth of MCF-7-E10 cells. After
3 days of culture in estrogen-deprived medium, MCF-7-E10 cells were
cultured with breast cancer tissue supernatant at the indicated
protein concentrations (a) or at 25 pg (b) in total 150 pl medium
per well in 96-well plate for 4 days. The viable cells were
examined using a Cell Counting Kit-8 assay. Values relative to
control are shown. Data are presented as mean = SD of triplicate
determinations. *, P<0.05; **, P<0.01
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a breast cancer cell line, T47D, a lung adenocarcinoma cell
line, PC9, and a cervical cancer cell line, HeLa (Fig. 2a). The
growth of T47D, another ER + human breast cancer cell line,
was stimulated by BCTS while growth of PC9 was not in-
creased. HeLa cell growth was rather inhibited by BCTS. The
growth of MDA-MB-231 cells, an ER— human breast cancer
cell line, was also stimulated by the extracts (data not shown).
These results suggest that BCTS specifically stimulated breast
cancer cell growth regardless of ER expression.

Next, to see whether growth-stimulating activity in the
tissue supernatant affected only the tumoral region, we ana-
lyzed extracts of tumoral regions and non-tumoral regions
2 cm distal to the tumor. The tumoral regions had more
growth-stimulating activity than the non-tumoral regions
(Fig. 2b), suggesting that the tumoral regions have an abun-
dance of growth-stimulating activities for breast cancer cells.

To see if ER activation was required for BCTS-induced
growth stimulation, we analyzed GFP expression in MCF-7-
E10 cells, and found growth stimulation was not necessarily
accompanied by ER activation (Fig. 3a). We next examined
effects of anti-estrogen agents such as tamoxifen and
fulvestrant on BCTS-induced growth stimulation, and found
that high growth-stimulating activities were resistant to
fulvestrant (Fig. 3b) and tamoxifen (Fig. 3c). These results
indicate that, in addition to an ER-dependent pathway, BCTS
stimulates breast cancer growth via an ER-independent
pathway.

Growth-Stimulating Activity Correlated
with Clinicopathological Characteristics

We analyzed the relationships between ER-independent
growth-stimulating activity detected in BCTS and clinicopath-
ologic characteristics of the specimens’ donors (Fig. 4). Al-
though BCTS growth-stimulating activity did not correlate
with expression of ERx or PgR, stage, menopausal status,
grade or nodal status (data not shown), specimens from tu-
mors larger than 10 mm showed higher growth-stimulating
activity than those smaller than 10 mm (Fig. 4a). Breast
cancers are categorized into four intrinsic subtypes according
to gene-expression profile: luminal A (ER + and/or PgR+,
HER2-), luminal B (ER + and/or PgR+, HER2+), HER2
(ER—, PgR—, HER2+) and basal-type (ER—, PgR—, HER2-)
[24, 25]. BCST derived from HER2 subtype showed slightly
or significantly higher growth-stimulating activity than that
from luminal B or basal types, respectively (Fig. 4b), suggest-
ing that the tumor extracts of HER2 subtype have an abun-
dance of growth factors stimulating their own receptors, in-
cluding those of the ERBB family.

We next analyzed relationships between HER2 expression
and growth-stimulating activity in ER— breast cancers, and
found that the cases with high growth-stimulating activity
differed significantly from those with low activity in terms
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Fig.4 Correlations between growth-stimulating activity and clinicopath-
ological characteristics, intrinsic subtypes and histological subtypes.
MCF7-E10 cells were cultured with BCTS at 25 pg protein concentration
in 150 pl medium per well in 96-well plate for 4 days. Cell growth was
examined as described in Materials and Methods for triplicate experi-
ments, and the growth-stimulating activities are shown as the ratios

scirrhous carcinoma—which are related to prognosis. We
previously reported their relative overall survival rates as
papillotubular carcinoma > solid-tubular carcinoma > scir-
rhous carcinoma [26]. The more aggressive scirrhous carcino-
ma and solid-tubular carcinoma show higher growth-
stimulating activity than do papillotubular carcinoma and
mucinous types (Fig. 4d), suggesting that growth-stimulating
activity is related to aggressiveness in breast cancer.

Growth Factors in BCTS Promote MCF-7-E10 Cell Growth

Growth-stimulating activity was heat labile and detectable in
the fraction with an MW greater than 5 kDa (data not shown),
suggesting that it could be derived from proteinous factors.
Among various factors in the tumor microenvironment, HGF
derived from stromal fibroblasts has been reported to stimu-
late growth of mouse mammary tumor cells in primary culture
[27]; EGF and IGF-1 are known to activate ER via phosphor-
ylation [18, 19]. To analyze the participation of these growth
factors in tumor growth-stimulating activities found in BCTS,
we first examined the effect of anti-HGF antibody on them. As
shown in Fig. 5a, anti-HGF antibody, but not control IgG,
effectively inhibited extract-stimulated growth of MCF-7-E10
cells. MCF-7 cells reportedly express c-Met, a receptor for
HGF.
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calculated relative to the control. Data are presented as mean + SD of
triplicate experiments. High growth-stimulating activity in specimens was
associated with tamor size (a), intrinsic subtype (b), HER2 expression in
ER-negative breast cancer (c¢) or histological classifications (d). Differ-
ences between groups were determined by two-sample #-test. P<0.05
was considered statistically significant

We next analyzed the roles of EGF and IGF-1, using the
inhibitors specific for their receptors. IGF-R inhibitor dose-
dependently inhibited the growth of MCF-7-E10 cells while
EGF-R inhibitor, in contrast, stimulated their growth (Fig. 5b, c).

Finally, we analyzed growth factors present in BCTS using
the enzyme immunoassay. HGF was detected in more than
70 % of the tested samples, whereas EGF was detected only in
3 out of 25 samples (Fig. 5d). Although the analysis using
IGF-1R inhibitor suggested involvement of IGF-1 in the
growth-stimulating effect of BCTS as described above, IGF-
1 could not be detected in the enzyme immunoassay. This
might be because of the immunoassay’s sensitivity, or because
other ligands for IGF-1R (such as IGF-II, insulin or unknown
factors) might have been present in the tumor extracts. These
results suggest that signal pathways via HGF or IGF-1R play a
significant role in promoting the growth of breast cancer cells.

Discussion

The tumor microenvironment is apparently associated with
important aspects of epithelial solid tumor progression, in-
cluding tumor growth, angiogenesis and metastasis. In the
tumor microenvironment, growth factors such as EGF, IGF-
1, transforming growth factor-«, transforming growth factor
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and stromal-derived factor-I reportedly affect breast cancer
growth, directly or indirectly [1, 3, 4]; however, the combined
effects of these factors and their signal interactions in vivo are
unclear. In this study, using the supernatant of breast cancer
tissues, we analyzed the comprehensive effects of breast
cancer-derived factors and found that BCTS effectively and
specifically stimulated breast cancer cell growth. In addition
to estrogen, which is locally produced in the microenviron-
ment in breast cancers of postmenopausal patients [6, 8], our
results suggest that the tumor extracts also stimulated breast
cancer cell growth in an estrogen-independent manner, as anti-
estrogen agents such as tamoxifen and fulvestrant did not
inhibit the effect of BCTS. Furthermore, clinicopathological
data and BCTS-associated growth-stimulation correlated with
tumor size and HER2 expression, indicating the physiological
significance of growth-stimulating activity in BCTS. Thus,
BCTS offers an appropriate means to analyze the combined
effect of the breast cancer-derived factors on tumor cell
behavior.

Although many growth factors might be present in BCTS,
we found HGF and IGF-1R-related signals to affect the
growth-stimulating activity of BCTS, because it was sup-
pressed by anti-HGF antibody and IGF-1R inhibitor. HGF
was detected in tissue extracts of more than 70 % of breast
cancer specimens whereas EGF was detected in only 12 %
(Fig. 5d). The growth-stimulating activities did not always
correlate with HGF concentrations (data not shown), but this
is expected, as growth-stimulating activities in the supernatant

are derived from the signal cross-talks of several factors. HGF,
which acts through its receptor MET, is a multifunctional
cytokine that induces cell survival, growth, differentiation
and motility in most solid human cancers including colorectal,
renal and breast cancers [28]. In normal epithelial cells, HGF,
in combination with other growth factors, promotes mammary
ductal morphogenesis [29]. Overexpression of both HGF and
MET have been frequently reported in breast cancers, and are
associated with poor prognosis [30]. HGF reportedly stimu-
lates breast cancer growth in a paracrine fashion, in that HGF
is produced primarily by stromal fibroblasts and acts on
epithelial cells through its receptor MET [27, 31]. Stromal
fibroblasts from breast cancer tissue produce large amounts of
HGF compared with normal fibroblasts [30]. A c-Met-
targeted therapy, ARQ197—which selectively targets c-Met
tyrosine kinase—is currently in a phase II clinical trial [32];
SGX523—a novel ATP-competitive inhibitor, that is exqui-
sitely selective for inhibition of MET-mediated signaling—is
also being developed [33].

We found that IGF-1R signaling mediated the growth-
stimulating activity of BCTS, because IGF-1R-specific inhib-
itor decreased the growth-stimulating effect of BCTS. IGF-
1R-related signals are widely shown to induce cell prolifera-
tion and survival in breast cancer [34-36]; IGF-R1 activation
protects breast cancer cells from apoptosis induced by various
anticancer drugs [37]. While BCTS stimulated growth of
MCF-7-E10 cells in an estrogen-independent manner, func-
tional interactions between estrogen and IGF-1R signaling

@_ Springer



30

Y. Yamaguchi et al.

pathways, including Ras/MAPK and PI3K/Akt have been
reported [38] Estrogen also up-regulates IGF-1R expression
in breast cancer [36]. However, we could not detect IGF-1 and
stromal cell-derived growth factor-lalpha in BCTS (data not
shown), possibly because of the limit of sensitivity by the
immunoassay used in our study; or that other ligands may be
present in the breast cancer microenvironment that activate
IGF-1R—including IGF-II, insulin and unknown factors [39].
Indeed, overexpression of IGF-1R in MCF-7 cells has been
shown to induce IGF-1R tyrosine kinase activation in the
absence of exogenous IGF-1 [40].

These results suggest that signaling pathways via HGF/c-
Met or IGF-1R significantly affect breast cancer cell growth.
However, growth-stimulating activity found in BCTS might
be derived from orchestrated signal crosstalks of several fac-
tors, because recombinant growth factors, including HGF and
IGF-1, could not induce MCF-7-E10 cell growth when used
alone. Further investigations of these activities and the identi-
fication of the cellular sources of the growth factors are needed
to identify the mechanisms of the growth-stimulating effect of
breast cancer tissue supernatant, which may help design more
effective targeted therapies for breast cancer.

Conclusions

The breast cancer microenvironment provides estrogen and
growth factors that affect tumor behavior, but the comprehen-
sive effects of these factors, including signal crosstalk, on
progression of breast cancer remain unclear. Using an
estrogen-signal reporter cell line, MCF-7-E10, stably
transfected with the ERE-GFP gene, we analyzed the effect
of factors present in breast cancer tissues to reflect the in vivo
status of individual cases. We found that they stimulated
growth of MCF-7-E10 cells in an estrogen-independent man-
ner, and that growth-promoting activity is related to aggres-
siveness in breast cancer. Moreover, signal pathways via HGF
and IGF-1 receptor were involved in these activities. Our
study strongly suggests that the evaluation of comprehensive
tumor-promoting activity for individual breast cancers is im-
portant in determining appropriate therapy.
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Article history: Aromatase inhibitors (Al) are commonly used to treat postmenopausal estrogen-receptor (ER)-positive
Received 21 May 2014 breast carcinoma. However, resistance to Al is sometimes acquired, and the molecular mechanisms
Received in revised form 26 August 2014 underlying such resistance are largely unclear. Recent studies suggest that Al treatment increases
Acc?pted 28 .Augus{ 2014 androgen activity during estrogen deprivation in breast carcinoma, but the role of the androgen receptor
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(AR) in breast carcinoma is still a matter of controversy. The purpose of this study is to examine the
potential correlation between the AR- and Al-resistant breast carcinoma. To this end, we performed
immunohistochemical analysis of 21 pairs of primary breast carcinoma and corresponding Al-resistant
Atomatase inhibitorresistatice recu.rrent tissug samples and established two stable variant cell lines from ER-positive T-47D breast
Breast cancer carcinoma cell line as Al-resistance models and used them in in vitro experiments. Immunohistochemical
PSA analysis demonstrated that the expression of prostate-specific antigen (PSA) and Ki-67 were significantly
DDC higher and ER and progesterone receptor (PR) were lower in recurrent lesions compared to the
corresponding primary lesions. Variant cell lines overexpressed AR and PSA and exhibited neither growth
response to estrogen nor expression of ER. Androgen markedly induced the proliferation of these cell
lines. In addition, the expression profile of androgen-induced genes was markedly different between
variant and parental cell lines as determined by microarray analysis.
These results suggest that in some cases of ER-positive breast carcinoma, tumor cells possibly change
from ER-dependent to AR-dependent, rendering them resistant to Al. AR inhibitors may thus be effective
in a selected group of patients.
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1. Introduction approximately two-thirds of breast carcinomas, and a great
majority of ER-positive cases respond well to endocrine therapy.

Breast cancer is one of the most common malignancies in Aromatase inhibitors (Al), such as anastrozole, exemestane, and
women worldwide. The estrogen receptor (ER) is expressed in letrozole, potently block estrogen biosynthesis from androgens;

Abbreviations: Al, aromatase inhibitor; AR, androgen receptor; ARE, androgen-response element; DDC, .-DOPA decarboxylase; DHT, dihydrotestosterone; ER, estrogen
receptor a; ERE, estrogen-response element; E, estradiol; GFP, green fluorescent protein; LI, labeling index; PR, progesterone receptor; PSA, prostate-specific antigen; TS,
testosterone.
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these agents have shown better clinical outcomes than
anti-estrogen tamoxifen in several clinical trials [1-3]. Never-
theless, in some cases, acquired resistance has been reported after
initial successful Al treatment [4]. The molecular mechanisms
underlying Al resistance have been examined by several groups
[5-9] but still remain largely unclear.

In contrast, androgens are considered to predominantly exert
antiproliferative effects in breast carcinoma [10]. Recent
meta-analysis showed that androgen receptor (AR) status was
associated with better clinical outcomes in breast carcinoma
patients [11]. However, the involvement of AR in promoting
proliferation, especially in ER-negative cases [12,13], has been
reported. Hickey et al. [14] have suggested that the AR rather than
the ER plays an oncogenic role due to AR activation when estrogen
activity is reduced.

Biologically active androgen, dihydrotestosterone (DHT), is
produced locally in breast carcinoma. Aromatase acts as a negative
regulator of in situ DHT production by decreasing its precursor [ 15].
Intratumoral DHT concentration was significantly higher in breast
carcinoma treated with Al compared to untreated controls [16]. Al
therapy is suggested to increase local androgen actions besides
inducing estrogen deprivation [15,16]. Therefore, it is possible that
intratumoral androgen activity may increase in recurrent breast
carcinoma under estrogen deprivation caused by Al treatment,
thus playing an important role in Al resistance. However, androgen
activity has not been examined in recurrent breast carcinoma
following Al therapy. In this study, we first examined the
immunohistochemical features of recurrent breast carcinoma
lesions during Al treatment and showed an increment of AR
activity compared to the corresponding primary lesions. Moreover,
we established Al-resistant model cell lines from ER-positive
breast carcinoma cell line, T-47D, and further characterized
biological roles of AR in the Al-resistant cell lines.

2. Materials and methods
2.1. Patients and tissues

ER-positive breast carcinoma specimens (n=21) were obtained
from postmenopausal women who underwent surgical treatment
between 2002 and 2009 at: Tohoku University Hospital, Sendai,
Japan (n=7); Tohoku Kosai Hospital, Sendai, Japan (n=5); Miyagi
Cancer Center Hospital, Natori, Japan (n=5); and Iwate Prefectural
Central Hospital, Morioka, Japan (n=4). The patient characteristics
are summarized in Table 1. All patients received oral aromatase
inhibitors after surgery and had asynchronous recurrence during
this treatment. The median duration of treatment with Al was 34
months. 3 of the 17 patients who received anastrozol initially
switched their treatment from anastrozol to exemestane because
of an incidence of recurrence or side effect of anastrozol. The
corresponding recurrent breast carcinoma lesions were available
for examination in all cases. All specimens were fixed in 10%
formalin and embedded in paraffin wax.

Our research protocol was approved by the Ethics Committee at
Tohoku University School of Medicine and other institutional
review boards.

2.2. Immunohistochemistry

Mouse monoclonal antibodies for AR (AR441) and Ki-67 (MIB1),
and rabbit polyclonal antibody for prostate-specific antigen (PSA;
IR514/1S514) were purchased from DAKO (Carpinteria, CA, USA).
Amplification was performed using the Histofine Kit (Nichirei
Biosciences, Tokyo, Japan), which employs the streptavidin-biotin
amplification method. The antigen-antibody complex was visual-
ized with 3,3’-diaminobenzidine (DAB) solution (1 mM DAB,

Table 1
Clinicopathological characteristics of 21 patients in the present study.

Number of Median (min-
patients max)
Patient age at the surgery” 63 (48-72)
Stage
I 5
1l 9
m 7
Histological type
Invasive ductal carcinoma 19
Invasive lobular carcinoma 2
Intrinsic subtype®
Luminal A 16
Lumbinal B
Histological grade
1 3
2 15
< 3
Chemotherapy received
Neoadjuvant Chemotherapy 3
Adjuvant chemotherapy 7
Not received 12
Type of Al received after the surgery
Anastrozole 17
Exemestane
Letrozole 1
Time from the surgery to recurrence” 53 (7-76)
(months)
Duration of Al-treatment’ (months) 34 (7-70)
Recurrent lesions examined
Lymph node 1
Chest wall S
Lung 4
Bone 1

* Data represent the median (min-max), and all other values are presented as the
number of cases.’Intrinsic subtype was defined according to 2011 St. Gallen
surrogate definition [45].

50 mM Tris-HCl buffer (pH 76), and 0.006% H,0,) and counter-
stained with hematoxylin.

Immunohistochemistry to detect expression of the ER (CONFIRM
anti-ER (SP1), Roche Diagnostics Japan, Tokyo, Japan) and proges-
terone receptor (PR; CONFIRM anti-PgR (1E2), Roche Diagnostics,
Japan) was performed using the Ventana Benchmark XT instrument
(Roche Diagnostics, Japan). Immunohistochemical analysis of
HER2 expression was performed using HercepTest™ (DAKO).

2.3. Scoring of immunoreactivity

ER, PR, AR, and Ki-67 immunoreactivity was detected in
the nuclei of breast carcinoma cells, and the percentage of
immunoreactive cells, i.e., labeling index (LI), was determined. PSA
immunoreactivity was considered positive if any cytoplasmic
staining was observed in the carcinoma cells [17].
HER2 immunoreactivity was evaluated according to a grading
system proposed in HercepTest™, and specimens with a score of
3+ were considered positive. Moreover, HER2 gene amplification
was investigated by fluorescence in situ hybridization (FISH) in
score 2+ cases.

2.4. Cells and reagents

T-47D breast carcinoma cells were stably transfected with the
estrogen response element (ERE)-green fluorescent protein (GFP)
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reporter plasmid as reported previously [18] (Supplementary Estradiol, testosterone, DHT, bicalutamide, fulvestrant, and
Fig. S1A). T-47D cells were cultured in RPMI-1640 medium NSD-1015 (3-hydroxybenzylhydrazine dihydrochloride) were
(Sigma-Aldrich, St. Louis, MO, USA) supplemented with 5% or purchased from Sigma-Aldrich.

10% fetal calf serum (FCS; Tissue Culture Biogicals, Turale, CA, USA). Supplementary material related to this article found, in the
Phenol red-free RPMI (PRF-RPMI; Gibco BRL, Grand Island, NY, online version, at http://dx.doi.org/10.1016/j.jsbmb.2014.08.019.
USA) supplemented with 5% or 10% dextran-coated charcoal-

treated FCS (DCC-FCS) was used as the steroid-depleted medium in 2.5. Real-time PCR

each experiment. T-47D cells were obtained from the American

Type Culture Collection (Manassas, VA, USA), and authenticated Total RNA was extracted using ISOGEN (Nippon Gene, Toyama,
using a PowerPlex® 16 STR system on January 25, 2013. Japan), and the extracted RNA was converted to cDNA using a
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Fig.1. Immunohistochemical analysis in Al-resistant breast carcinoma. Left panels show immunoreactivity of ER (A), PR (B), AR (C), PSA (D), and Ki-67 (E) in primary lesions,
and middle panels show the same in corresponding recurrent lesions from the same patients during Al treatment. Left and middle panels of A and B show the same area.
Bar =100 pm. Right panels summarize changes in immunoreactivity in 21 paired breast carcinoma tissues obtained from primary and recurrent lesions. Each value is
indicated by a slid circle, with lines connecting paired values from the same patient. The grouped data are represented as box-and-whisker plots. In A-C and E, the median
value is shown by a horizontal line in the box plot, and the gray box denotes the 75th (upper margin) and 25th percentiles of the values (lower margin). The upper and lower
bars indicate the 90th and 10th percentiles, respectively. Statistical analyses were performed using a Wilcoxon signed-rank test, and P < 0.05 (bold) was considered
significant.
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Fig. 1. (Continued)

QuantiTect reverse transcription kit (QIAGEN, Mississauga,
Ontario, Canada). A 2-pl aliquot was used as a template
for real-time PCR, which was performed according to the
manufacturer’s protocol using the Applied Biosystems Step One
Real-time PCR System (Life Technologies Corporation, Carlsbad,
CA, USA). The expression of the target gene relative to the RPLI3A
internal control was calculated. The primer data are summarized in
Supplementary Table S1.

Supplementary material related to this article found, in the
online version, at http://dx.doi.org/10.1016/j.jsbmb.2014.08.019.

2.6. Immunoblotting

Proteins were extracted using Complete Lysis-M (Roche,
Indianapolis, IN, USA). Protein extracts (10 jg) were subjected
to SDS-PAGE (Super Sep Ace 10%, Wako Pure Chemical Industries,
Osaka, Japan) and transferred onto a membrane (Amersham
Hybond-P PVDF Membrane, GE Healthcare, Buckinghamshire, UK).
The primary antibodies were anti-AR (#3202), anti-PSA (#5365),
and anti-B-tubulin (#2146) (Cell Signaling Technology, Tokyo,
Japan) and anti- ER antibody (sc-7207; Santa Cruz Biotechnology,
Santa Cruz, CA, USA). The secondary antibody, alkaline phospha-
tase-conjugated goat anti-rabbit, was obtained from Bio-Rad
Laboratories (Hercules, CA, USA). Antibody-protein complexes
were detected using Immun-Star™ AP substrate (Bio-Rad Labora-
tories), and the protein bands were visualized using the
ImageQuant™ LAS 4000 image analyzer (GE Healthcare
Bio-Sciences AB, Uppsala, Sweden).

2.7. Luciferase reporter assay

The estrogen response element reporter plasmid, ERE-tk-Luci,
was used as described previously [19]. The androgen response
element (ARE) reporter plasmid, pGLPSAp5.8 [20] , containing the
PSA-ARE was kindly provided by Dr. Mizokami (Kanazawa
University, Kanazawa, Japan). The control vector pRL-TK (Promega,
Madison, WI, USA) was used as an internal control for transfection
efficiency. The luciferase assay was performed according to a
previous report [19] with some modifications. Cells were cultured
in a steroid-depleted medium for 3 days before the transfection
using TransIT LT-1 reagent (Mirus, Madison, WI, USA), and
luciferase activity was measured using the Dual-Luciferase
Reporter Assay System (Promega).

2.8. Cell proliferation assay

After 3 days in steroid-depleted medium, cells were seeded in
24-well culture plates at a density of 20,000 cells/well with drugs
and hormones for 4 days. Cells were then harvested and counted
using a Sysmex CDA-500 automated cell counter (Sysmex, Kobe,
Japan).

2.9. Microarray analysis

Whole Human Genome DNA Microarray 4 x 44K ver. 2.0
(Agilent Technologies, Santa Clara, CA, USA) was used in this
study. Cells were cultured in steroid-depleted medium for 3 days,
followed by a treatment with 1nM DHT with or without 10 uM



