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Fig. 3. Expression status of miR-200b and Kaplan-Meier survival curves

in gastric cancer patients. (A) The mean expression levels of miR-200b in
cancerous tissue specimens were significantly lower than those in non-
cancerous tissues (P < 0.01). (B) The mean expression levels of miR-200b in
the cancerous tissue specimens of patients with peritoneal metastasis (n = 32)
were significantly lower than those without peritoneal metastasis (n = 141)
(P < 0.01). (C) The overall survival curves are presented according to the
expression level of miR-200b in gastric cancer patients. Patients with low
miR-200b expression (n = 86) had a poorer prognosis than those with high
expression (1 = 87) (log-rank test; P = 0.015).

expression in the stroma of gastric cancer, and the patients with
high a-SMA expression showed methylation of the miR-200b pro-
moter. These findings suggest that CAFs stimulate cancer invasion
and migration via epigenetic changes of miR-200b in gastric can-
cer. Moreover, model mice with peritoneal dissemination showed
methylated miR-200b and low miR-200b expression. Similarly,
we found that patients with low miR-200b expression had a sig-
nificantly poorer prognosis than those with high miR-200b expres-
sion, and low miR-200b expression was associated with peritoneal
dissemination.

This is the first study to directly analyze the role of CAFs to
regulate the expression of miRNA via epigenetic changes to the
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best of our knowledge. The CAFs populations in tumor-associated
stroma are known to include both fibroblasts and myofibroblasts.
Mpyotibroblasts are endowed with the ability to promote tumor
growth and are associated with higher grade malignancy and poorer
prognosis in patients with several cancers (26,33.34). Indeed, the
CAFs prepared and examined in our study contained a subpopula-
tion of a-SMA-expressing fibroblasts, as indicated by immuno-
histochemistry (Figure 4 and Supplementary Figure 2, available at
Carcinogenesis Online). CAFs can promote cancer progression,
invasion and metastasis by modulating multiple components in the
cancer niche to build a permissive and supportive microenvironment
for tumor growth and invasion through the secretion of growth fac-
tors including hepatocyte growth factor, stromal cell-derived fac-
tor-1, several chemokine factors, platelet-derived growth factor,
fibroblast growth factor and transforming growth factor (TGF)-
(35-38). In particular, TGF-f from tumor-associated stroma is an
important factor for the induction and functional activation of EMT-
related pathways (39-41). Interestingly, TGF-5 was shown to induce
the expression of DNA methyltransferases, which function in DNA
methylation, in several cancers (42-44). Moreover, TGF-f§ also
mediates these effects through the action of epigenetic switches such
as CD133 and tristetrapolin, as well as miR-200 CpG island methyla-
tion events (18.42.45). Thus, in this study. some signals from CAFs,
such as TGF-$, might be related to the corresponding methylation
changes observed in miR-200b. This aspect remains to be investi-
gated in future research.

Members of the miR-200 family are being increasingly recog-
nized as important players for regulating epithelial characteristics of
cells through direct targeting of ZEBI and ZEB2, which are EMT-
inducing transcription factors, via transcriptional repression of
E-cadherin expression (13,46); our present results in gastric cancer
cell lines confirm this role of miR-200 (Supplementary Figure 2A-E,
available at Carcinogenesis Online). Based on the EMT hypothesis of
cancer metastasis, low expression of the miR-200 family would lead
to increased metastasis through the targeted induction of ZEB/ and
ZEB?2 expression, resulting in repressed E-cadherin expression and
the adoption of mesenchymal characteristics. This EMT process has
been shown to occur in several types of cancer cells, whereby lower
levels of the miR-200 family have been associated with a higher
frequency of invasive and metastatic tumors and a poorer prognosis
(16,46-48). However, several studies have also shown the opposite
effect of high expression of miR-200 family members enhancing
distant metastases through promoting secondary cancer colonization
(30.49.50) in the mesenchymal-epithelial transition process. This
has been interpreted as a potential requirement for EMT to accom-
plish the first steps of metastasis, and a reversion (mesenchymal—epi-
thelial transition) to accomplish the final step of colonization. EMT
is first acquired in the onset of transmigration and then reversed mes-
enchymal—epithelial transition occurs in the new colony: this process
is described as epithelial-mesenchymal plasticity. However, because
peritoneal dissemination is the most common cause of death in gas-
tric cancer, a better understanding of the EMT mechanism is criti-
cal for developing new treatments that can improve the survival of
gastric cancer patients with peritoneal dissemination. During EMT,
methylation-induced downregulation of miR-200b allows upregula-
tion of several of its direct target genes, including ZEB! and ZEB2. as
they increase invasive and metastatic potential, involving the simul-
taneous loss of E-cadherin and enhancement of Vimentin expression
at peritoneal dissemination sites. Our results demonstrated that res-
toration of miR-200b expression is a potential candidate approach
for miRNA-based therapy against peritoneal dissemination of gastric
cancer.

In conclusion, this study provides important insight supporting the
roles of miR-200b during peritoneal dissemination in gastric cancer.
Our discovery of the pivotal role that miR-200b plays in the meta-
static behavior of gastric cancer indicates that this miRNA has poten-
tial value as a diagnostic and prognostic biomarker. These results may
also have implications for the clinical management of patients with
peritoneal dissemination.
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Table I1. miR-200b expression and clincopathological features

Features Total (n = 173) miR-200b P-value
High expression, Low expression,
n=287 (%) n =286 (%)

Age (years) 0.764
Mean + SD 65.9+11.2 67.0+11.8 65.5+11.1

Gender 0.955
Male 111 56 64.4 55 63.9
Female 62 31 35.6 31 36.1

Differentiation 0.002*
Well/moderate 79 50 57.5 29 33:7
Poor/other 94 37 42.5 57 66.3

Depth of tumor invasion 0.010*
T1-2 54 35 40.3 19 22.1
T34 119 52 59.7 67 77.9

Lymph node metastasis 0.119
Absent 58 34 39.1 24 27.9
Present 115 53 60.9 62 72.1

Lymphatic invasion 0.670
Absent 59 31 35.6 28 32.6
Present 114 56 64.4 58 67.4

Venous invasion 0.017*
Absent 121 68 78.2 53 61.6
Present 52 19 21.8 33 38.4

Peritoneal metastasis <0.001*
Absent 141 80 92.0 61 70.9
Present 32 7 8.0 25 29.1

Distant metastasis 0.002%
Absent 127 78 83.9 54 62.8
Present 46 14 16.1 32 37.2

Stage 0.005%
I-11 91 55 63.2 36
1I-1v 82 32 36.8 50

Staging was classified by Union for International Cancer Control, seventh edition.
*P-value < 0.05.
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Fig. 4. Relationship of methylation status of miR-200b and CAFs expression in gastric cancer specimens. (A) There was a significant inverse correlation between
miR-200b expression and the a-SMA score. (B) Patients with high a-SMA expression had significantly lower miR-200b expression than low a-SMA patients.
(C) We chose three low miR-200b/high a-SMA score patients and three high miR-200b/low 0-SMA score patients for methylation analysis. The CpG islands
were more significantly methylated in the low miR-200b/high 0-SMA group than the high miR-200b/low a-SMA group.
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Supplementary Tables 1-3 and Figures 1-4 can be found at http://
carcin.oxfordjournals.org/
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Pyruvate kinase M2 (PKM2) is an alternatively spliced variant of
the pyruvate kinase gene that is preferentially expressed during
embryonic development and in cancer cells. PKM2 alters the final
rate-limiting step of glycolysis, resulting in the cancer-specific
Warburg effect (also referred to as aerobic glycolysis). Although
previous reports suggest that PKM2 functions in nonmetabolic
transcriptional regulation, its significance in cancer biology
remains elusive. Here we report that stimulation of epithelial-mes-
enchymal transition (EMT) results in the nuclear translocation of
PKM2 in colon cancer cells, which is pivotal in promoting EMT.
Immunoprecipitation and LC-electrospray ionized TOF MS analyses
revealed that EMT stimulation causes direct interaction of PKM2 in
the nucleus with TGF-g-induced factor homeobox 2 (TGIF2), a tran-
scriptional cofactor repressor of TGF-f signaling. The binding of
PKM2 with TGIF2 recruits histone deacetylase 3 to the E-cadherin
promoter sequence, with subsequent deacetylation of histone
H3 and suppression of E-cadherin transcription. This previously
unidentified finding of the molecular interaction of PKM2 in the
nucleus sheds light on the significance of PKM2 expression in
cancer cells.

pyruvate kinase M2 | epithelial-mesenchymal transition |
colorectal cancer | invasion | transforming growth factor-g-induced
factor homeobox 2

Colorectal cancer (CRC) is the second most common cancer
in the world, with more than 1.2 million new cases and about
600,000 deaths annually (1). Cancerous cells exploit a cancer-
specific glycolytic system known as the Warburg effect (also re-
ferred to as aerobic glycolysis), which involves rapid glucose up-
take and preferential conversion to lactate, despite an abundance
of oxygen (2, 3). The precise mechanism underpinning aerobic
glycolysis was unclear for a long time. However, in 2008, pyruvate
kinase M2 (PKM2) gained attention when its expression was
shown to be required for the maintenance of aerobic glycolysis (4).
PKM?2 is an alternatively spliced variant of the PKM gene that
regulates the final rate-limiting step of glycolysis. PKM2 is
expressed during embryonic development, but it is generally not
expressed in most adult tissues. However, its counterpart, PKM1,
is exclusively expressed in adult tissues. PKIM2 has been shown to
be reactivated in tumor development (5, 6). In cancer cells,
PKM2 expression allows the diversion of glycolytic flux into the
pentose phosphate pathway associated with attenuated pyruvate
kinase activity, thereby meeting the biosynthetic demands for
rapid proliferation (3).

Investigations about the nuclear function of PKM2 arose after
elucidation of the PKM2 metabolic function. It was identified that
in cancer cells, PKM?2 can translocate into the nucleus and func-
tion as a transcriptional cofactor in response to several extracel-
lular signals, including EGF and hypoxia, subsequently activating
CYCLIN D1, C-MYC, or hypoxia-inducible factor loe (HIF-1c)

15526-15531 | PNAS | October 28,2014 | vol. 111 | no. 43

(7, 8). Particularly in the hypoxic condition, PKM2 interacts with
HIF-1a and participates in a positive feedback loop, thereby en-
hancing HIF-la transactivation and reprogramming glucose
metabolism by regulating the expression of glycolysis-associated
enzymes (8). This finding suggested that the PKM2 nuclear
function may operate upstream of metabolic regulation and that
the resultant metabolic reprogramming and oncogene activation
by PKM2 work cooperatively to promote cancer cell pro-
liferation and tumor growth.

In addition to proliferation maintenance and growth sup-
pression prevention, invasion and metastasis have also been
targeted as hallmarks of cancer (9). In the invasion process,
cancer cells acquire the ability to dissociate from the bulk of the
tumor and to migrate into the surrounding stroma, which is
regulated by epithelial-mesenchymal transition (EMT) (9, 10).
During EMT, cancer cells lose their cell-to-cell contacts by

Significance

Our study shows that pyruvate kinase M2 (PKM2), an alterna-
tively spliced variant of the pyruvate kinase gene, mediates
epithelial-mesenchymal transition (EMT), which is critical for
cancer cells to acquire invasive potential. Our study demon-
strates that EMT stimulates nuclear translocation of PKM2
and decreases epithelial cadherin transcription (a requirement
for EMT induction). Our results also demonstrate that PKM2
interacts with the transcriptional factor TGF-p-induced factor
homeobox 2, which induces the deacetylation of histone H3,
resulting in repressed E-cadherin expression. The precise un-
derstanding of nuclear PKM2 function suggests the potential
for a model preventing cancer metastasis.
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inhibiting epithelial cadherin (E-cadherin; encoded by CDHI)
expression and acquiring mesenchymal markers. This process is
physiologically important during embryogenesis and is required
for in utero development. Given that PKM2 expression and
EMT are common to both tumorigenesis and development, PKM2
may affect EMT within cancer cells. However, the significance of
PKM?2 during EMT or invasion is yet to be investigated.

In the present study, we demonstrate that PKM2 translocates
into the nucleus during EMT and acts as a transcription cofactor
that inhibits CDHI expression. PKM2 interacts with TGF-
B-induced factor homeobox 2 (TGIFZ2), which recruits histone
deacetylase 3 (HDAC3) to the promoter sequence of E-cadherin,
thereby promoting histone H3 lysine 9 (H3K9) deacetylation and
CDH] expression down-regulation.

Results

EMT Induction Elicits Nuclear Translocation of PKM2. For the in-
duction of EMT, we cultured colon cancer cells in a medium with
TGF-1 and EGF, as described previously (Fig. 14) (11-14). The
SW480 cells changed morphology from epithelial to fibroblastic-
like and spindle-shaped in a time-dependent manner (Fig. 1B).
Consistent with this observation, CDHI transcript expression
was suppressed, whereas the expression levels of the vimentin
(VIM), zinc finger e-box binding homeobox 1 (ZEBI), and snail
family zinc finger 2 (SNAI2) genes were increased (Fig. 1C). PK
gene expression was induced in the EMT condition, with pref-
erential expression of PKM2 compared with PKM1 (Fig. 1D).
Western blot analysis indicated that the induction of EMT
resulted in decreased CDH]I expression, increased VIM expres-
sion, and up-regulated PKM2 (Fig. 1E). We confirmed that the
expression and secretion of endogenous TGF-p1 was minimal in
SW480 (Fig. S1 A and B).

To determine the intracellular localization of proteins, cyto-
plasmic and nuclear fractions were separated from the EMT-
induced cells and Western blot analysis was performed. The data
indicated that, although the EMT condition stimulated an in-
crease in cytoplasmic PKM2, nuclear PKM2 was augmented
compared with levels in the pre-EMT state (Fig. 1F). Immu-
nocytochemistry and immunofluorescence intensity quantifica-
tion confirmed the increase in nuclear PKM2 (Fig. S2 4-D). In
addition, we confirmed that nuclear PKM2 was also increased in
HCT116 cells under the same EMT condition (Fig. S2E) and
that the expression of EMT markers was increased in murine
Pkm?2 knock-in, compared with Pkm/ knock-in, mesencymal
cells, as well as other human cancer cells (Fig. S1 C and D).

Previous studies showed that EGF stimulation increased nu-
clear PKM2 (7) and indicated that cytoplasmic PKM2 functions
with tetramer formation, whereas nuclear PKM2 functions with
dimer formation. Given that the large hydrophobic hole at the
nucleotide binding site is buried in tetrameric PKM2 structure,
which becomes accessible in dimer form (15), the dimer forma-
tion may provide a protein binding ability. We studied the status
of PKM2 during EMT and found that simultaneous stimulation
by TGF-p1 and EGF, in comparison with either alone, resulted
in increased expression of an ~120-kDa complex, corresponding
to dimeric PKM2 (Fig. 1G and Fig. S3). The present study demon-
strated that PKM2 nuclear translocation was stimulated in the EMT
condition, suggesting a unique function of PKM2 in the nucleus.

PKM2 Expression Is Required to Induce EMT. To investigate the
causative role of PKM2 in EMT induction, we cultured cells with
endogenous PKM?2 inhibition by small interfering RNA (siRNA)
knockdown (KD) under EMT conditions. We used the siRNA
targeting system, which reportedly inhibits PKM2 without any off-
target effects on other genes (16), and the results indicate that the
most effective siRNA sequence could inhibit transcriptional and
translational levels of PKM2, whereas those of PKM1 were in-
creased (Fig. S4 4 and B). PKM2 KD failed to induce spindle-
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Fig. 1. PKM2 translocates into the nucleus during EMT. (A) Schematic repre-
sentation of the procedure for EMT induction. The cells incubated for 48 h after
seeding are defined as pre-EMT, and the cells cultured with 2.5 ng/mL TGF-B1
and 10 ng/mL EGF are defined as post-EMT. (B) Photomicrographs of the
morphological change in SW480 cells. The cells were stained using the Diff-Quik
Kit (Sysmex Corp.). The number of hours indicates the period since EMT in-
duction was initiated. (Scale bar, 100 pm.) (C) Relative transcript (MRNA) levels
of CDH1, VIM, ZEB1, and SNAI2 after induction of EMT for 0, 48, and 96 h. The
values at 0 h (pre-EMT) have been normalized to 1, and the data are expressed
as fold. (D) Relative mRNA levels of PKM1, PKM2, and pyruvate kinase (total PK)
after induction of EMT for 0, 48, and 96 h. (E) Western blot assays of E-cadherin,
vimentin, and PKM2 expression in pre-EMT and post-EMT cells. Post-EMT cells
were harvested at 72 h. (F) Western blot assays of PKM1, PKM2, a-tubulin, and
histone H3 in nuclear and cytoplasmic lysates prepared from SW480 cells. With
normalization to cytoplasmic tubulin or nuclear histone H3 blots, the relative
intensities of PKM2 blots are shown in comparison with those in the pre-EMT
condition. (G) SW480 cells were treated with dimethyl suberimidate for 30-60
min, immediately followed by whole cell lysis. The monomer and dimer states
of PKM2 were analyzed by Western blot assay. Columns represent the average
of at least three independent experiments; error bars represent the SD of the
mean from triplicate results. *P < 0.05.

shaped morphological changes under EMT conditions (Fig. 24).
Expression analysis indicated that PKM2 KD prevented CDH1
down-regulation, although VIM expression persisted (Fig. 2B),
suggesting a role for PKM2 in CDH] transcription. Fifty percent
reductions in glucose or glutamine in the medium did not have
significant effects on EMT marker expression (Fig. S54), sug-
gesting distinct effects on EMT and metabolism.

Western blot analysis indicated that PKM2 KD hindered
CDH] loss and VIM gain compared with the control (Fig. 2C).
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Inhibition of EMT by PKM2 KD resulted in a significant re-
duction in in vitro cellular invasiveness (Fig. 2D). The assessment
of mothers against decapentaplegic homolog 2 (SMAD2) and
ERK, which are downstream effectors of TGF-p1 and EGF
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signaling, indicated that PKM2 KD disturbed the phosphoryla-
tion process (Fig. S5B).

To minimize the effect of an alternative exon and to focus on
the function of PKM2 in the nucleus, we established PKM1- and
PKM2-overexpressing (OE) cell lines (PKM1 and PKM2 OE in
Fig. 2F). In brief, we transfected the cells with a small hairpin
RNA (shRNA) vector targeting the common region in PK and
then introduced an overexpression vector of PKM1 or PKM2
c¢DNA without a complementary sequence to the ShRNA (Fig.
2F). We cultured the established cells in EMT-inducing con-
ditions. The results demonstrated a greater decrease in CDHI
expression and greater increase in VIM and ZEBI expression in
PKM2 OE cells compared with that in PKM1 OE cells (Fig. 2G
and Fig. S4C). Consistent results were obtained by Western blot
analysis (Fig. 2H). These results indicate that PKM2 expression
is necessary for EMT induction.

Nuclear PKM2 Binds to TGIF2 and Represses CHD1 Expression. Nu-
clear PKM2 reportedly binds to and phosphorylates STAT3
through its function as a protein kinase (15). The observation
that nuclear PKM2 increased during EMT led us to consider the
possibility that PKM2 may interact with other transcription fac-
tors. To validate this hypothesis, fractions pulled-down with the
PKM?2 antibody were subjected to LC-electrospray ionized TOF
MS analyses. The result showed that nuclear PKM2 was coim-
munoprecipitated with TGIF2 and that this binding was detect-
able when both EGF and TGFp1 were added to the culture (Fig.
3A4). These findings were confirmed by immunoprecipitation,
followed by Western blot analysis (Fig. 3B). The EMT stimula-
tion resulted in the significant increase of TGIF2 expression
(Fig. S6A4). TGIF2 KD did not show significant alterations of
PKM2 expression regardless of EMT induction (Fig. 3E and Fig.
S6B). We could not detect an association of PKM1 with TGIF2
in the nucleus (Fig. S74), which further supports the cytoplasmic
localization of PKM1 (Fig. 1F).

Melhuish et al. (17) revealed that TGIF2 is a transcriptional
repressor that suppresses TGF-p-responsive gene expression by
binding to TGF-p-activated SMADs. First, we performed TGIF2
KD, followed by EMT induction (Fig. 3C and Fig. S6B). TGIF2
KD enhanced the decrease in both the transcriptional and the
translational levels of CDHI expression (Fig. 3 D and E). To
analyze the difference in the effect of TGIF2 KD in cells
expressing either PKM1 or PKM2, we performed TGIF2 KD on
PKM1 OE and PKM2 OE cells, followed by EMT induction.
Interestingly, the decrease in CDHI expression and increase in
VIM expression were similar at the transcriptional and trans-
lational levels after EMT induction in both cell lines (Fig. 3 F
and G). These results indicate that the augmented sensitivity to
EMT induction in PKM2 OE cells is abrogated under TGIF2
suppression. These data further suggest that nuclear PKM2
responds to EMT stimulation and interacts with TGIF2 to me-
diate EMT induction downstream of PKM?2.

PKM2 and TGIF2 Recruit HDAC3 to the CDHT Promoter to Repress
Transcription. TGIF2 is a transcriptional factor that regulates
TGF-p signal transduction (17). Based on the above findings, we
hypothesized that TGIF2 could bind to the CDHI promoter and
activate CDH1 expression in the epithelial state. To examine this
hypothesis, we performed a ChIP quantitative PCR (qPCR)
assay using two sets of primers located in the CDHI promoter
sequence region (Fig. 44). We found depressed binding of
TGIF2 to the CDHI promoter region during EMT (Fig. 4B).
TGIF2 can control transcription by recruiting HDAC in re-
sponse to TGF-p signaling (17) and PKM2 can associate with
HDACS3 in the nucleus (7). To investigate whether TGIF2 can
bind to HDAC3 during EMT, we performed immunoprecipitation
followed by Western blot analysis and found an association be-
tween TGIF2 and HDAC3 under EMT induction (Fig. 4C and
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duction. (A) Polyacrylamide gel electrophoresis of proteins immunopreci-
pitated with anti-PKM2 antibody in the nucleic lysate of cells cultured
under normal conditions, with EGF alone, or with TGF-$1 and EGF. The
band detected in samples of cells stimulated with TGF-p1 and EGF was
excised and analyzed by MS. (B) Western blot assays of immunoprecipi-
tated samples of nucleic lysates with anti-PKM2 or anti-TGIF2 antibody.
Samples were harvested after the cells were treated as indicated for 72 h.
(C) Western blot assays of TGIF2 and p-actin expression in cells transfected
with siControl or siTGIF2. (D) Relative transcript (mRNA) levels of CDHT,
VIM, and ZEB1 after induction of EMT in cells transfected with siControl or
siTGIF2 for 72 h. (E) Western blot analysis of TGIF2, E-cadherin, PKM2, and
p-actin expression in pre-EMT and post-EMT cells transfected with siCon-
trol or siTGIF2. Post-EMT samples were harvested at 72 h, when siRNA
inhibition was profound. (F) Relative mRNA levels of CDH7 and VIM after
EMT induction in PKM1 OE and PKM2 OE cells. Post-EMT samples were
harvested at 72 h. (G) Western blot analysis of E-cadherin and p-actin after
EMT induction in PKM1 OE and PKM2 OE cells transfected with siTGIF2.
Post-EMT samples were harvested at 72 h. Column values = average of at
least three independent experiments; error bars represent SD from the
mean of triplicate experiments. *P < 0.05.

Figs. S7B and S8). To examine the acetylation status of histone
H3 in the CDH1 promoter region, we performed ChIP gPCR and
found that binding of acetylated H3K9 to the CDHI pro-
moter was decreased under EMT conditions (Fig. 4D). Fur-
thermore, to understand how the PKM2-TGIF2-HDAC3
complex can bind to the CDH! promoter, additional ChIP gPCR
analysis was performed. The data indicated that similar to the
binding of TGIF2, the binding of PKM2 and HDAC3 to the
CDHI promoter was reduced during EMT (Fig. S9 4 and B).
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Given that the TGIF2 protein bound to PKM2 and HDAC3
during EMT (Figs. 3B and 4C and Fig. S7B), the present study
demonstrates that nuclear PKM2 plays a role in the TGIF2-
dependent control of CHD1 expression and that EGF induces
formation of the PKM2-TGIF2-HDAC3 complex, followed by
histone deacetylation, thus resulting in suppressed CDHI ex-
pression. TGF-B1 may modulate the association of this complex,
although H3K9 was deacetylated (Fig. 5D).

PKM2 Expression in the Deepest Tumor Regions Correlated with CRC
Metastasis. To investigate the clinical significance of PKM2 ex-
pression in cancer metastasis, we immunohistochemically ana-
lyzed clinical CRC samples. Staining was assessed in the deepest
tumor regions where the CRC invasion begins (18, 19). The
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Fig. 4. TGIF2 binds to the CDH promoter and recruits HDAC3 during EMT.
(A) Schematic diagram showing the positions of two sets of primers designed
to cover the promoter region of the CDH7 gene. (B) ChIP assays were per-
formed with IgG and anti-TGIF2 antibody, followed by qPCR (mean +SD, n =
3). ChiP samples were harvested from the nucleic lysate of SW480 cells
treated as indicated for 72 h. (C) Western blot assays of immunoprecipitated
samples of nucleic lysate with anti-TGIF2 antibody. Each sample was har-
vested after the cells were treated as indicated for 72 h. (D) ChIP assays were
performed with IgG and anti-acetylated H3K9 antibody, followed by gPCR
(mean + SD, n = 3). ChIP samples were harvested from the nucleic lysate of
SW480 cells treated as indicated for 72 h. Column values = average of at
least three independent experiments; error bars represent SD from the mean
of triplicate experiments. *P < 0.05.
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Fig. 5. The immunohistochemistry. (4) Staining at the invasive front, showing
an inverse correlation between PKM2, E-cadherin, and TGIF2 expression. (Scale
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TGIF2, and E-cadherin. Invasive fronts of tumors were stained by anti-PKM2,
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designated as positive, whereas the others were negative. (C) The 10 positive
and 10 negative cases for cellular PKM2 were examined for nuclear TGIF2 and
membranous E-cadherin. (D) Theoretical model illustrating the functional roles
of PKM2 and TGIF2 in regulating CDHT transcription during EMT.

PKM?2 staining intensities were assigned to positive and negative
groups (Fig. 5 A-C). The correlations between PKM2 expression
and clinicopathological factors are summarized in Table S1.
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PKM2-positive staining was significantly correlated with metastasis
to lymph nodes and distant organs. To further understand the
clinical significance of PKM2 in CRC, we analyzed the GSE17536
database of the gene expression array and patient prognosis. To
study the specific effect of PKM2 in the array database, we analyzed
expression of both PK and its splicing factor hnRNPA2, because
hnRNPA2 stimulates the splicing to PKIM2 (20, 21). As expected,
cases with high PK and high hnRNPA2 expression showed a poorer
prognosis than other groups; the difference in prognosis was ap-
parent in stages IIT and IV with metastasis (Fig. S10 4 and B). The
data confirmed that PKM2 can enhance the ability of cancer cells to
metastasize in primary cancer tissues.

Discussion

In the present study, we demonstrated that nuclear PKM2
interacts with TGIF2 during EMT, which is pivotal in promoting
the transition into the mesenchymal cancer cell phenotype.
Consequently, we propose a model for the nuclear PKM2
function in response to EMT stimulation (Fig. 5D). Under epi-
thelial conditions, histone H3 is acetylated on the CDHI pro-
moter region and CDHI is transcribed where TGIF2 should
serve as an active transcription factor. Once the EMT signal
stimulates transformation of the cancer cell, a PKM2 fraction
enters the nucleus and associates with TGIF2. We assume that
this association will alter the conformation of TGIF2 or its as-
sociated complexes, effectively loosening the binding between
TGIF2 and the CDHI promoter sequence to allow the re-
cruitment of HDAC3 and subsequent histone H3 deacetylation.
CDH] expression is suppressed as a consequence of the down-
regulated promoter activity. In this context, nuclear PKM?2 serves
as a transcriptional cofactor regulating TGIF2 behavior.

Few reports have investigated the significance of TGIF2 in
cancer. In ovarian cancer, TGIF2 is reportedly amplified and
overexpressed (22), whereas a comparison between colorectal ad-
enoma and colorectal carcinoma revealed that TGIF2 expression is
increased only in the latter (23). Further, TGIF2 has been shown to
interact with TGF-p-activated SMADs and be able to repress the
activation of TGF-f-responsive transcription (17). The present
study demonstrated that TGIF2 affects CDHI expression through
the regulation of promoter activity in which TGIF2 is supposed to
function as an activating transcription factor.

TGF-p1 is a multifunctional cytokine that has dual and op-
posing roles in controlling cell fate. In the early stages of cancer,
TGF-p1 induces growth arrest and apoptosis, exerting tumor-
suppressive effects, whereas in later stages, TGF-B1 enhances tu-
mor progression by provoking a variety of malignancy-related
responses, including EMT (24-26). This paradox remains un-
solved despite numerous studies addressing the issue. However,
based on the results in the present study, we propose that the
interaction between PKM2 and TGIF2 may offer a plausible ex-
planation. In normal cells, PK expression is exclusively shifted to
PKM1, but on TGF-p signaling, TGIF2 can suppress transcription
downstream of the SMAD signal. Conversely, in cancer cells
abundantly expressing PKM2, PKM2 translocates and is bound to
TGIF2 in the nucleus, thereby reversing TGF-p signal trans-
duction. Further investigation is necessary to determine the
significance of TGIF2 expression and the precise mechanism
underlying this interaction.

Nuclear PKM2 forms a dimer and functions as a protein ki-
nase, whereas cytoplasmic PKM2 forms a tetramer and func-
tions as a pyruvate kinase (15). In the present study, the dimeric
form of PKM2 was increased, suggesting that the protein kinase
activity of PKM2 is enhanced during EMT. PKM?2 translo-
cates into the nucleus in response to variable signals, of which,
the EGF-ERK pathway is the most investigated (7, 27). In-
terestingly, TGIF2 is phosphorylated in response to EGF sig-
naling (17). Given that EGF induces nuclear translocation of
PKM2, PKM2 may function as a dimeric protein kinase in the
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nucleus, phosphorylating TGIF2. However, the phosphorylation
status of TGIF2 was not addressed in our study. Gao et al. (15)
demonstrated that PKM2 interacts with STAT3 to control
downstream gene expression in SW480 cells. Thus, it is con-
ceivable that the molecular interaction of PKM2 is highly con-
text dependent, with cell fate determined by how nuclear PKM2
regulates gene expression.

PKM2 has both metabolic and nonmetabolic functions, which
are essential in the cytoplasm and nucleus, respectively. In-
creasing evidence has suggested that nuclear PKM2 binds to
numerous transcriptional factors, thereby conferring cells with
advanced malignant potential. The present study determined
that PKM2 significantly influences EMT induction by modulat-
ing CDH1 expression, thus providing a molecular basis for EMT
acquisition. Future cancer treatments may be able to target the
inhibition of nuclear PKM2.
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Methods

Cell Lines and Culture, The human colorectal cancer cell lines, SW480 and HCT116,
were obtained from ATCC, and CaR-1 was obtained from JCRB. These cell lines
were grown in DMEM (Sigma-Aldrich) supplemented with 10% (volivol) FBS
(Thermo Fisher Scientific), 100 U/mL penicillin, and 100 U/mL streptomycin (Life
Technologies) and grown at 37 °C in a humidified incubator with 5% CO,.

EMT Induction. Cells were seeded at a concentration of 5.0 x 10* cells/mL and
incubated in a humidified atmosphere (37 °C and 5% CO,) in standard me-
dium for 48 h, after which they were treated with TGF-p1 (2.5 ng/mL; Sigma-
Aldrich). Next, they were incubated with MEM supplemented with 10 ng/mL
FBS-free EGF (Sigma-Aldrich), 100x insulin-transferring selenium (ITS; Life
Technologies), and 50 nmol/L hydrocortisone (Tokyo Kasei) for 48-96 h.
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