GO Axonogenesis Children **Axonal Fasciculation** Peripheral Neuron Axonogenesis Axon Guidance Pathway Characteristics Size (Mb) 2.89 0.13 57.51 922 15 699 # Genes 15 2 362 Pharmacogenomics J. Author manuscript; available in PMC 2015 February 01. ⁴P-value from permutation analysis. | , | | | | | |---|--|--|--|--| ³P-value corrected for ten observations. $V(G)/V(p)^{I}$ 0.000 0.005 0.000 Padj 3 1 1 Empirical P4 0.999 0.203 0.999 Heritability Estimates P^2 0.5 0.3 0.5 SE 0.025 0.010 0.019 $^{^2\}mbox{P-value}$ from GCTA. Software upper limit for p-value is 0.5; maximal values are noted as 1. $^{^{}I}$ Heritability was estimated for sets of SNPs within ± 10 kb of genes in children (subsets) of the GO Axonogenesis set. Axonogenesis in Innervation 0.011 0.015 0.2 1 0.146 3 0.15 19 Axon Regeneration 0.000 0.013 0.5 1 0.999 29 3.31 314 CNS Neuron Axonogenesis 0.051 0.031 0.020 0.2 0.028 26 6.32 935 0.003 70 8.88 Axon Extension 0.097 0.020 0.2 1,862 0.050 Regulation of Axonogenesis 0.130 0.059 0.009 0.09 0.001 104 20.85 3,239 Collateral Sprouting 0.012 0.26 13 0.019 0.3 3.10 396 Axon Target Recognition 0.0000.010 0.5 1 0.999 4 0.27 34 ARTICLES nature publishing group ## Open # CYP2D6 Genotype and Adjuvant Tamoxifen: Meta-Analysis of Heterogeneous Study Populations MA Province¹, MP Goetz², H Brauch³, DA Flockhart⁴, JM Hebert⁵, R Whaley⁵, VJ Suman⁶, W Schroth³, S Winter³, H Zembutsu⁷, T Mushiroda⁸, WG Newman⁹, M-TM Lee¹⁰, CB Ambrosone¹¹, MW Beckmann¹², J-Y Choi¹³, A-S Dieudonné¹⁴, PA Fasching^{12,15}, R Ferraldeschi⁹, L Gong⁵, E Haschke-Becher¹⁶, A Howell¹⁷, LB Jordan¹⁸, U Hamann¹⁹, K Kiyotani⁸, P Krippl²⁰, D Lambrechts²¹, A Latif⁹, U Langsenlehner²⁰, W Lorizio²², P Neven²³, AT Nguyen⁴, B-W Park²⁴, CA Purdie¹⁸, P Quinlan²⁵, W Renner²⁰, M Schmidt^{3,26}, M Schwab²⁷, J-G Shin^{28,29}, JC Stingl³⁰, P Wegman³¹, S Wingren³¹, AHB Wu³², E Ziv²², G Zirpoli¹¹, AM Thompson²⁵, VC Jordan³³, Y Nakamura⁷, RB Altman^{5,34}, MM Ames³⁵, RM Weinshilboum³⁵, M Eichelbaum³, JN Ingle³⁶ and TE Klein⁵; on behalf of the International Tamoxifen Pharmacogenomics Consortium The International Tamoxifen Pharmacogenomics Consortium was established to address the controversy regarding cytochrome P450 2D6 (CYP2D6) status and clinical outcomes in tamoxifen therapy. We performed a meta-analysis on data from 4,973 tamoxifen-treated patients (12 globally distributed sites). Using strict eligibility requirements (postmenopausal women with estrogen receptor–positive breast cancer, receiving 20 mg/day tamoxifen for 5 years, criterion 1), CYP2D6 poor metabolizer status was associated with poorer invasive disease–free survival (IDFS: hazard ratio = 1.25; 95% confidence interval = 1.06, 1.47; P = 0.009). However, CYP2D6 status was not statistically significant when tamoxifen duration, menopausal status, and annual follow-up were not specified (criterion 2, n = 2,443; P = 0.25) or when no exclusions were applied (criterion 3, n = 4,935; P = 0.38). Although CYP2D6 is a strong predictor of IDFS using strict inclusion criteria, because the results are not robust to inclusion criteria (these were not defined a priori), prospective studies are necessary to fully establish the value of CYP2D6 genotyping in tamoxifen therapy. The first two authors contributed equally to this work. Received 3 June 2013; accepted 9 September 2013; advance online publication 18 December 2013, doi:10.1038/clpt.2013.186 ¹Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA; ²Department of Oncology and Pharmacology, Mayo Clinic, Rochester, Minnesota, USA; ³Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology and University Tuebingen, Germany; ⁴Division of Clinical Pharmacology, School of Medicine, Indiana University, Bloomington, Indiana, USA: 5 Department of Genetics, School of Medicine, Stanford University, Stanford, California, USA; ⁶Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA; ⁷Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; ⁸Laboratory for Pharmacogenetics, RIKEN Center for Genomic Medicine, Yokohama, Japan; ⁹Centre for Genetic Medicine, Manchester A cademic Health Science Centre, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK; and Central Manchester University Hospitals (NHS) and Central Manchester Ce10 Laboratory for International Alliance, RIKEN Center for Genomic Medicine, Yokohama, Japan; 11 Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA; 12 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; ¹³Department of Biomedical Science, Graduate School, Seoul National University, Seoul, Korea; ¹⁴Department of Oncology, Catholic University Leuven, Leuven, Belgium; 15 Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA; 16 University Institute of Medical and Chemical Laboratory Diagnostics, Paracelsus Private Medical University, Salzburg, Austria; 17 The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; 18 Department of Pathology, Ninewells Hospital and Medical School, Dundee, UK; 19 Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany; 20 Medical University Graz, Graz, Austria; 21 Vesalius Research Center, VIB and Laboratory of Translational Genetics, Department of Oncology, Catholic University Leuven, Leuven, Belgium; 22 Division of General Internal Medicine, Department of Medicine and Clinical Pharmacology and Experimental Therapeutics, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA; ²³Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium; ²⁴Department of Surgery, Yonsei University Health System, Seoul, Korea; ²⁵Dundee Cancer Centre, Dundee, UK; ²⁶Department of Gynecology and Obstetrics, University of Mainz, Mainz, Germany; ²⁷Department of $Clinical Pharmacology and Toxicology, University Hospital Tuebingen, Tuebingen, Germany; {}^{28} Department of Pharmacology and Pharmacogenomics Research Center, and the properties of pr$ Inje University College of Medicine, Busan, Korea; ²⁹Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, Korea; ³⁰Division of Research, Federal Institute for Drugs and Medical Devices, University of Bonn Medical Faculty, Bonn, Germany; 31 Department of Clinical Medicine, Örebro University, Örebro, Sweden; ³²Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA; ³³Department of Oncology, Georgetown University, Washington, DC, USA; 34 Department of Bioengineering, Stanford University, Stanford, California, USA; 35 Department of Pharmacology, Mayo Clinic, Rochester, Minnesota, USA; ³⁶Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA. Correspondence: TE Klein (teri.klein@stanford.edu) Tamoxifen, the pioneering antiestrogenic medicine targeted to the tumor estrogen receptor (ER), is used successfully for long-term adjuvant therapy in breast cancer. Extensive analyses of clinical trials demonstrate a major increase in patient survivorship in ER-positive patients. In this age of personalized medicine, any opportunity to improve response rates with tamoxifen should be rigorously investigated. Tamoxifen is considered a prodrug, given that hepatic cytochrome P450 2D6 (CYP2D6) metabolizes tamoxifen to metabolites (4-hydroxy tamoxifen and 4-hydroxy-*N*-desmethyl tamoxifen (endoxifen)) that exhibit significantly greater potency in terms of ER-binding affinity³ and suppression of estradiol-stimulated cell proliferation. CYP2D6-mediated metabolism is the rate-limiting enzymatic step for the formation of endoxifen, the most abundant active metabolite. There has been great inconsistency among studies that have reported the association of known genetic and drug factors influencing CYP2D6 enzyme activity with tamoxifen efficacy. Therefore, the International Tamoxifen Pharmacogenomics Consortium (ITPC) was conceived, and researchers were invited to submit their data—both published and unpublished data sets regarding CYP2D6 genetic variants and clinical outcomes in women treated with tamoxifen in the adjuvant breast cancer setting—to allow a meta-analysis of the potential associations between CYP2D6 and clinical outcomes. #### **RESULTS** The ITPC comprises 12 research projects from nine countries and three continents that contributed clinical and genetic data for a total of 4,973 breast cancer patients treated with tamoxifen. In Table 1, we show the sample size by site and criteria. Further details for each site are shown in S3c and S5 online. We reported preliminary analyses of these collected cohorts before complete curation by pooling the data from each site.⁵ For our meta-analyses, three detailed criteria, which ranged from the most restrictive (criterion 1) to the most inclusive (criterion 3), were defined before final curation (see S4 online). In brief, criterion 1, derived from the NCCTG 89-30-52 clinical trial, consisted of postmenopausal women with surgically resected nonmetastatic invasive ER-positive breast cancers who received adjuvant tamoxifen monotherapy at a dose of 20 mg/day for an intended duration of 5 years, and were followed at least annually for recurrence. In addition, analysis of at least CYP2D6*4 was required (detailed in **S4a** online). Criterion 2 included criterion 1 but allowed both pre- and postmenopausal patients who had received any duration of tamoxifen; moreover, annual follow-up was not required. Criterion 3 included all samples not excluded by any
exclusion test for missing data or data inconsistencies (least restrictive). Patient characteristics according to each criterion are provided in Table 2. The meta-analysis results combining the hazard ratio (HR) estimates (and the corresponding standard errors (SEs)) from each site are shown for all three criteria groups and both clinical outcomes in Table 3. For each of the six clinical outcome/ criteria groups, we give the combined meta-analysis estimate across all 12 sites, its SE, and the results of two statistical tests: a test of the significance that the meta-HR differs from 1 and a test of "homogeneity of the estimates" across sites (a significant value for the latter test indicates that there is more variability than the derSimonian and Laird random-effects model can reasonably accommodate, suggesting that the meta-estimate and its associated P value are suspect). As can be seen for invasive disease-free survival (IDFS), the meta-analyses for criteria 2 and 3 are nearly significantly heterogeneous, whereas there was no indication of heterogeneity for criterion 1 (P = 0.899). For patients meeting criterion 1, the meta-HR for IDFS was 1.25 (95% confidence interval = 1.06, 1.47), and for breast cancerfree interval, it was 1.27 (95% confidence interval = 1.01, 1.61). These are both statistically significant, at P = 0.009 and P = 0.04, respectively. However, for the criterion 2 (P = 0.25) and criterion 3 (P = 0.38) subsets, the CYP2D6 HR was not significant for either outcome. In Figure 1, we show the individual HRs for each site for subjects meeting criterion 1, assuming an additive genetic model for CYP2D6 (coded 0 = extensive metabolizer (EM), 1 = intermediate metabolizer (IM), and 2 = poor metabolizer (PM)) as estimated from a Cox proportional-hazards model using additional risk covariates to predict clinical outcome. Corresponding figures for criteria 2 and 3 are provided in S6 online. (Note that the list of covariates used in the Cox models included age at primary diagnosis, menopause status at diagnosis, metastatic disease at primary diagnosis, maximum tumor dimension, number of positive nodes, grade, smoking status, ER and progesterone receptor status, intended tamoxifen dose and duration, systemic therapy before surgery, chemotherapy, radiation treatment, adjuvant aromatase inhibitor therapy, and additional hormone therapy. The specific set of covariates used for each site was chosen from this list so as to retain at least 70% of the patients from that site; hence, the exact set of covariates used differs in each site's Cox model. Moreover, several of these covariates were used as inclusion/exclusion items in the basic definitions of the three basic criteria subset groups and thus became irrelevant for those analyses.) Table 1 Sample size by site and criteria | Criterion | Site (N) | | | | | | | | | | | | | |-----------|----------|-----|-----|-----|-----|-----|-----|-------|-----|-----|-----|-----|-------| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Total | | 1 | 0 | 70 | 124 | 60 | 212 | 243 | 0 | 847 | 5 | 222 | 179 | 34 | 1,996 | | 2 | 0 | 127 | 208 | 98 | 212 | 304 | 0 | 898 | 10 | 289 | 228 | 69 | 2,443 | | 3 | 174 | 320 | 282 | 265 | 214 | 391 | 801 | 1,140 | 165 | 516 | 397 | 270 | 4,935 | | Total | 174 | 320 | 282 | 267 | 214 | 423 | 801 | 1,140 | 165 | 519 | 398 | 279 | 4,973 | Table 2 Baseline patient and tumor characteristics | Characteristic Criterion 1 (1,996 patients) | | | Criterion 2 (2 | ,443 patients) | Criterion 3 (4,935 patients) | | | |---|-------------------------|-----------------------|----------------------------|----------------|------------------------------|---------------|--| | Age at diagnosis, years: data | a reported in binned ag | es | | | | | | | Median [65–69] | | | [60- | -64] | [60-64] | | | | Range | 55 (ages | 41–95) | 75 (age | s 21–95) | 76 (ages 21–96) | | | | Menopausal status —no. (%) | Menopausal status | By age | Menopausal status | By age | Menopausal status | By age | | | Premenopausal (age ≤ 50) | 0 (0.0%) | 54 (2.7%) | 241 (9.9%) | 414 (16.9%) | 607 (12.3%) | 1,207 (24.5%) | | | Postmenopausal (>50) | 1,688 (84.6%) | 1,922 (96.3%) | 1,714 (70.2%) | 1,997 (81.7%) | 3,267 (66.2%) | 3,642 (73.8%) | | | Not available | 308 (15.4%) | 20 (1.0%) | 488 (20.0%) | 32 (1.3%) | 1,061 (21.5%) | 86 (1.7%) | | | Tumor size—no. (%); maxim | num dimension of tumo | or reported (if multi | ple tumors, largest one is | s≤2 cm) | | | | | ≤2 cm | 1,071 (5 | 3.7%) | 1,327 | (54.3%) | 2,303 (46 | 5.7%) | | | >2 cm | 752 (3 | 7.7%) | 882 | (36.1%) | 2,182 (44 | 1.2%) | | | Unknown | 173 (8 | .7%) | 234 | (9.6%) | 450 (9. | 1%) | | | Nodal status—no. (%): num | ber of positive nodes | | | | | | | | Zero nodes | 1,243 (6 | 2.3%) | 1,531 | (62.7%) | 2,423 (49 | 9.1%) | | | 1–3 nodes | 407 (2 | 0.4%) | 461 | (18.9%) | 1,281 (26 | 5.0%) | | | 4–9 nodes | 103 (5 | .2%) | 111 | (4.5%) | 438 (8. | 9%) | | | > 9 nodes | 43 (2 | .2%) | 45 | (1.8%) | 185 (3.7%) | | | | Not available | 200 (1 | 0.0%) | 295 | (12.1%) | 608 (12.3%) | | | | Grading—no. (%): 0.5 to 1.4 | 9 considered G1, 1.5 to | 2.49 G2, etc. | | | | | | | G1 | 249 (1 | 2.5%) | 317 | (13%) | 456 (9.2%) | | | | G2 | 1,148 (5 | 7.5%) | 1,324 | (54.2%) | 1,965 (39.8%) | | | | G3 | 330 (1 | 6.5%) | 398 | (16.3%) | 838 (17.0%) | | | | Unknown | 269 (1 | 3.5%) | 295 | (12.1%) | 1,676 (34.0%) | | | | ER status—no. (%) | | | | | | | | | ER-positive | 1,996 (1 | 00.0%) | 2,443 | (100.0%) | 4,675 (94 | 1.7%) | | | ER-negative | 0 (0. | .0%) | 0 | (0.0%) | 158 (3. | 2%) | | | Unknown | 0 (0. | .0%) | 0 | (0.0%) | 102 (2. | 1%) | | | PgR status—no. (%) | | | | | | | | | PgR-positive | 1,479 (7 | 4.1%) | 1,847 | (75.6%) | 3,634 (73 | 3.6%) | | | PgR-negative | 273 (1 | 3.7%) | 302 | (12.4%) | 665 (13.5%) | | | | Unknown | 244 (1 | 2.2%) | 294 | (12.0%) | 102 (2.1%) | | | | Radiotherapy—no. (%): radi | iation therapy | | | | | | | | Yes | 1,138 (5 | 7.0%) | 1,412 | (57.8%) | 2,868 (58 | 3.1%) | | | No | 720 (3 | 6.1%) | 842 | (34.5%) | 1,507 (30.5%) | | | | Unknown | 244 (1 | 2.2%) | 189 | (7.7%) | 560 (1 | 1.3%) | | | CYP2D6 metabolizer status | | | | | | | | | Extensive | 893 (4 | 4.7%) | 1,077 | (44.1%) | 2,286 (46.3%) | | | | Intermediate | 985 (49.3%) | | 1,230 | (50.3%) | 2,311 (46.8%) | | | | Poor | 118 (5.9%) | | 136 | (5.6%) | 244 (4.9%) | | | | Unknown | 0 (0 | .0%) | 0 | (0.0%) | 94 (1.9%) | | | | CYP2D6 metabolizer types | | | | | | | | | EM/UM | 17 (0. | .9%) | 23 | (0.9%) | 49 (1.0%) | | | | IM/UM | 2 (0 | .1%) | 2 | (0.1%) | 4 (0.1%) | | | | EM/EM | 874 (4 | 3.8%) | 1,052 | (43.1%) | 2,233 (45.2%) | | | | PM/UM | 7 (0 | .4%) | 7 | (0.3%) | 12 (0.2%) | | | Table 2 Continued on next page Table 2 Continued | Characteristic | Criterion 1 (1,996 patients) | Criterion 2 (2,443 patients) | Criterion 3 (4,935 patients) | | |------------------------|------------------------------|------------------------------|------------------------------|--| | EM/IM | 327 (16.4%) | 407 (16.7%) | 693 (14.0%) | | | EM/PM | 496 (24.8%) | 616 (25.2%) | 1,230 (25.1%) | | | IM/IM | 64 (3.2%) | 94 (3.8%) | 174 (3.5%) | | | IM/PM | 91 (4.6%) | 106 (4.3%) | 192 (3.9%) | | | PM/PM | 118 (5.9%) | 136 (5.6%) | 244 (4.9%) | | | Unknown | 0 (0.0%) | 0 (0.0%) | 94 (1.9%) | | | ONA source | | | | | | Blood | 996 (49.9%) | 1,344 (55.0%) | 2,513 (50.9%) | | | Tumor—Frozen | 431 (21.6%) | 500 (20.5%) | 1,575 (31.9%) | | | Tumor—FFPE 569 (28.5%) | | 598 (24.5%) | 659 (13.4%) | | | Normal—FFPE | 0 (0.0%) | 0 (0.0%) | 174 (3.5%) | | | Unknown | 0 (0.0%) | 1 (0.0%) | 14 (0.3%) | | CYP2D6, cytochrome P450 2D6; EM, extensive metabolizer; ER, estrogen receptor; FFPE, formalin-fixed-paraffin-embedded; IM, intermediate metabolizer; PgR, progesterone receptor; PM, poor metabolizer; UM, unknown metabolizer. Table 3 Meta-analyses of CYP2D6 HRs on clinical outcome in inclusion/exclusion criteria subsets | | | | IDFS | | BCFI | | | | | |-------------|----------------|-------------|----------------|--------------------------|----------------|--------------|--------------------|--------------|--| | | Meta-estimates | | <i>P</i> value | | Meta-estimates | | <i>P</i> value | | | | | HR | 95% CI | Homoga | Association ^b | HR | 95% CI | Homog ^a | Associationa | | | Criterion 1 | 1.25 | (1.06,1.47) | 0.899 | 0.009 | 1.27 | (1.01,1.61) | 0.858 | 0.041 | | | Criterion 2 | 1.17 | (0.90,1.52) | 0.055 | 0.249 | 1.21 | (0.889,1.65) | 0.130 | 0.224 | | | Criterion 3 | 1.07 | (0.92,1.26) | 0.099 | 0.382 | 1.10 | (0.868,1.35) | 0.114 | 0.352 | | BCFI, breast cancer-free interval; Homog, homogeneity; HR, hazard ratio; IDFS, invasive disease-free survival; ITPC, International Tamoxifen Pharmacogenomics Consortium. Site-specific product-limit estimates of the three CYP2D6 metabolizer status genotype groups (EM, IM, and PM) are shown in Figures 2 and 3 for criterion 1 patients. Sites 1 and 7 had no subjects who met inclusion/exclusion for criterion 1. The corresponding figures for patients meeting criteria 2 and 3 are shown in S6 online. As seen in Figure 2, for IDFS sites, 3, 5, and 8 show a strong significant effect in the direction expected by the known pharmacokinetic effects of CYP2D6 on endoxifen exposure, namely, a poorer clinical response for the IM and/or PM genotype groups. Other sites show a trend in the expected direction between the IM and EM groups, but the much smaller PM group is often inconsistent with the expectation, and the separation in the three survival curves is not strong enough to reach statistical significance (e.g., sites 6 and 12). For some sites, there is no hint of any significant difference (e.g., sites 2, 4, 10, and 11), and for one of these, site 2, the direction of effect is exactly opposite than expected. There is a danger in overinterpreting such "trends" (either in favor or against expectation) when there is no statistically significant difference, because some level of site-to-site variation is to
be expected. The key question is not whether such variation exists but whether it centers over the null hypothesis or over the alternative; this is the question that the meta-analysis is designed to answer. However, these simple product-limit survival curves show great study-tostudy heterogeneity, which complicates both the analyses and the interpretation. We have similar heterogeneous results for the breast cancer–free interval outcome, shown in Figure 3. The corresponding figures in S6 online show a similar pattern for the subsets of patients meeting criteria 2 and 3, although the heterogeneity seems to be even more pronounced as the exclusion criteria are loosened. This is not a surprising result, considering that the criteria themselves impose a certain level of homogeneity. #### DISCUSSION Prospective pharmacology studies consistently demonstrate that *CYP2D6* genetic variants are associated with variable plasma concentrations of endoxifen. ^{4,6} Endoxifen exposure is related to duration of tamoxifen use and dose, wherein an increase in the tamoxifen dose (from 20 to 40 mg daily) significantly increases endoxifen exposure in patients with reduced or null CYP2D6 metabolism but not in CYP2D6 EMs. ⁷ However, coadministration of CYP2D6-inhibiting drugs ⁴ reduces CYP2D6 enzyme activity, and nonadherence to tamoxifen is more commonly observed in patients with normal or increased CYP2D6 metabolism. ⁸ ^aThe homogeneity *P* value tests the hypothesis that the individual ITPC site estimates meet the statistical random-effects modeling assumptions of the meta-analysis. A significant value indicates that there is significant heterogeneity among the sites, which casts doubt on the "combinability" of the studies for that parameter and on the validity of the corresponding association test. ^bThe association *P* value tests the hypothesis that the combined meta-analysis estimate of the HR is significantly different from the null hypothesis value of HR = 1. **Figure 1** Individual site estimates of hazard ratios of *CYP2D6* genotype on clinical outcome, along with the meta-analyses for the criterion 1 subset. (a) Invasive disease–free survival (IDFS) outcome. (b) Breast cancer–free interval (BCFI) outcome. Despite the consistent pharmacogenetic effects of *CYP2D6* on endoxifen exposure, there is considerable controversy regarding the validity of *CYP2D6* as a predictor of tamoxifen outcome. ^{9,10} Although recent secondary analyses from the Arimidex, Tamoxifen, Alone or in Combination (ATAC) trial and the Breast International Group (BIG) 1-98 study^{11,12} did not demonstrate an association between *CYP2D6* and tamoxifen outcome, these studies provoked criticism due to concerns regarding genotyping error and the analysis of small subsets of the main trials. ^{13–16} By contrast, a secondary analysis from another large prospective adjuvant tamoxifen trial, the Austrian Breast and Colorectal Cancer Study Group 8 (ABCSG 8), demonstrated that for women treated with 5 years of adjuvant tamoxifen at a dose of 20 mg/day, CYP2D6 PMs had a statistically significant higher odds of recurrence or death as compared with CYP2D6 EMs, and CYP2D6 PMs/IMs and PMs/EMs tended to exhibit a higher odds of recurrence as compared with patients without the PM alleles. However, this effect was not observed for patients who had switched to anastrozole, a drug not metabolized by CYP2D6. These data suggest that the effects of *CYP2D6* genotype may be masked if patients receive a shorter duration of tamoxifen or other active drugs besides tamoxifen, which alter the hazard for recurrence.¹⁷ We approached the tamoxifen controversy by performing a global meta-analysis of available clinical and CYP2D6 genetic data of tamoxifen-treated breast cancer patients. All groups from across the world with both published and unpublished CYP2D6 data were invited to participate. We initially presented a pooled analysis of these data,⁵ in which we found no association between CYP2D6 and IDFS. Following this presentation, we developed a new analysis plan (not defined before the initial negative presentation), which included the following: (i) articulation of three criteria to analyze the data according to the quality of the genetic and clinical data, (ii) additional curation to obtain missing clinical and genetic data, and (iii) a new statistical analysis plan, which applied a random-effects meta-analysis strategy instead of a pooled analysis strategy. Notably, Criterion 1 is most stringent, requiring strict control for as many pharmacologic factors as possible known to affect endoxifen exposure, which include use of tamoxifen monotherapy, genotyping of multiple CYP2D6 alleles for accurate CYP2D6 phenotype assignment, use of one tamoxifen dose (20 mg), and intended duration of tamoxifen use for 5 years. In addition, eligibility for this cohort was restricted to women with invasive ER-positive status, postmenopausal breast cancer, and the requirement for annual follow-up, parameters required in any prospective clinical trial and that were requirements of criterion 1 (patients who were knowingly not followed were excluded from criterion 1), but not from criteria 2 and 3. These factors may have contributed to the substantial increase in heterogeneity comparing criterion 1 with criteria 2 and 3. However, it should be noted that these criteria impose a certain bias because the majority of negative studies submitted to the ITPC were observed in criteria 2 and 3. In general, a substantial number of subjects comprising criterion 3 had misclassification of the predicted drug metabolism phenotype due to the lack of a comprehensive coverage of loss-of-function alleles. 18,19 More than 20 loss-of-function alleles out of 100 known CYP2D6 genetic variants contributed to a frequency of ~8% of PMs in a population of European descent. Limiting the analysis to the most common such allele, CYP2D6*4, as was frequently done in the older published literature, will result in misclassification of 35% of PMs, thereby falsely assigning the undetected PMs to the EM or IM groups. Notably, 871/1,996 patients comprising criterion 1 had optimal CYP2D6 phenotype assessment obtained by AmpliChip genotyping, and this may have contributed to the robustness of criterion 1 results, which demonstrated an association between CYP2D6 and tamoxifen treatment outcome (breast cancer-free interval: HR = 1.27,95% confidence interval = 1.01-1.61). The ITPC intended to perform a global study including several thousand patient samples; however, the majority of the subjects were not comprehensively genotyped because DNA was not of sufficient quality. We performed a subgroup analysis using patient samples for which full coverage of alleles by the AmpliChip genotyping platform was available using criterion 1 (871/1,635 AmpliChip-genotyped subjects met criterion 1). When confined to the Amplichip subjects, the estimates of the pharmacodynamic HRs for *CYP2D6* were similar to what they were for the entire set of subjects meeting criterion 1. A major source of potential genotyping errors may be related to DNA source. *CYP2D6* is one of the most difficult genes to genotype because of the numerous polymorphisms and adjacent pseudogenes. Some platforms cannot detect the presence of the *5 deletion, particularly in DNA derived from Figure 2 Site-specific effects of CYP2D6 metabolizer status on clinical outcomes for subjects meeting inclusion criterion 1 (outcome = invasive disease–free survival (IDFS)). formalin-fixed-paraffin-embedded (FFPE) tissue. However, several sites used multiple platforms to validate their genotyping data, reducing potential genotyping errors across the entire data set. Importantly, *CYP2D6* genotypes obtained from blood-derived DNA reflect the patients' germ-line genotypes, known to influence endoxifen plasma concentrations. By contrast, *CYP2D6* genotypes from tumor-derived DNA may be subject to error due to somatic mutation by loss of heterozygosity, known to affect the *CYP2D6* locus at 22q13 in up to 30% of breast tumors. ^{20–22} Thus, when *CYP2D6* genotype is derived from tumor samples, an excess number of homozygotes may result as a consequence of loss of heterozygosity. This form of genotyping error is revealed by Hardy–Weinberg Equilibrium (HWE) testing, as was observed in the Breast Figure 2 Continued International Group 1-98 study, in which strong departures from HWE (to a magnitude of 10^{-92}) were observed, leading to a call for retraction of this article. ^{3,12,16} For criterion 1, 49.9% of our patient DNA samples originated from blood, 21.6% from fresh-frozen tissues, and 28.5% from FFPE tissues. For criterion 2, 55.0% samples originated from blood, 20.5% were fresh-frozen tissues, and 24.5% from FFPE tissues. For criterion 3, 50.9% of DNA samples originated from blood, 31.9% from fresh-frozen tumor, 13.4% from FFPE tumor tissues, and 3.5% from FFPE normal tissue. Although we cannot exclude the presence of somatic events leading to misclassification of *CYP2D6* genotype, as evident from HWE deviation identified in data from Figure 3 Site-specific effects of CYP2D6 metabolizer status on clinical outcomes for subjects meeting inclusion criterion 1 (outcome = breast cancer–free interval (BCFI)). some sites, comprehensive testing for HWE did not reveal significant violations across most sites. Moreover, the extent of deviation from HWE in the *4 allele was not associated with sites that evinced less clinical benefit from tamoxifen in patients who were assessed to be PMs in terms of their *CYP2D6* status. This suggests that genotyping errors are unlikely to be a major issue in our analyses. Our findings are subject to the shortcomings commonly encountered when performing retrospective "biomarker" studies. In our study, most sites were unable to collect or control for the factors known to alter endoxifen exposure, including dose and duration of tamoxifen administration and patients'
adherence to the regimen. Although tamoxifen adherence is increasingly recognized as a critical factor for drug efficacy, ²³ most studies evaluating tamoxifen biomarkers have not controlled for adherence. Other confounders include limited *CYP2D6* allele coverage and lack of information Figure 3 Continued regarding the coadministration of CYP2D6 inhibitors, leading to potential misclassification of the CYP2D6 drug metabolism phenotype. Therefore, our meta-analysis results depend heavily on which subgroup of patients we include. If we accept that utmost precautions must be applied to avoid the distortion of results from influences derived from the aforementioned shortcomings, it follows that merely increasing the numbers of subjects without controlling the quality of input data, as done in our preliminary overview analysis,⁵ may result in heterogeneity that masks the effect of a pharmacokinetic biomarker such as CYP2D6. From this, we conclude that until results from prospective adjuvant studies are available, women who meet criterion 1 as established in this and other independent cohorts (ABCSG 8) should be counseled regarding the potential impact of CYP2D6 on the effectiveness of adjuvant tamoxifen, and potent CYP2D6 inhibitors should be avoided in these patients. Prospective adjuvant studies are needed to determine whether genotype-guided selection of hormonal therapy will improve the outcomes of women with early-stage ER-positive breast cancer, and results from ongoing prospective studies in the metastatic setting are eagerly awaited. A similarly motivated study on warfarin is currently being conducted in the Clarification of Optimal Anticoagulation through Genetics trial.²⁴ By strict clinical and genotype criteria, reduced CYP2D6 metabolism is associated with a higher risk of recurrence (as measured by IDFS) in tamoxifen-treated women. However, the heterogeneity observed across sites contributing data to the ITPC points to the likely influence of critical confounding factors unlikely to be controllable in global retrospective studies. This study demonstrates the complexity of performing a retrospective biomarker study that focuses on the genetic factors that affect exposure to an active metabolite, endoxifen, for a drug, tamoxifen, administered for 5 years. Our observation that <50% of the patients in this study met the basic eligibility criteria—in terms of similar disease, treatment, and control for critical pharmacological factors such as dose and duration of tamoxifen—provides insight into possible reasons for the discrepancies in the literature on CYP2D6 and tamoxifen. Although CYP2D6 is a predictor of IDFS in a subset of patients treated with tamoxifen, the lack of an effect in the entire heterogeneous study population suggests that prospective studies are necessary to finally establish whether genotype-guided selection of hormonal therapy improves clinical outcomes of women with ER-positive breast cancer. #### **METHODS** Data collection and study cohorts. The ITPC invited any research group from across the world that had published or unpublished CYP2D6 data to participate in this meta-analysis. The ITPC comprises 12 research projects for a total of 4,973 breast cancer patients treated with tamoxifen. This retrospective study does not include a control group not treated with tamoxifen. These data were curated at the PharmGKB (Pharmacogenomics Knowledge Base, http://www.pharmgkb.org). Consent for participation in the ITPC and DNA collection, CYP2D6 genetic testing, and submission of data was obtained under local ethical review board permissions. We collected information on clinical factors previously shown to be associated with breast cancer therapy and prognosis that were available from the information received from the sites. These data included demographic characteristics, cancer history, cancer recurrence, use of other therapies, use of concomitant medications known to affect CYP2D6 phenotype, ER status, and classic prognostic factors such as tumor size and number of affected lymph nodes. Information was also collected regarding the presence of CYP2D6 genetic variants (*2, *3, *4, *5, *6, *10, *17, and *41, categorized by their DNA sources), for which coverage of these alleles varied by site. For 1,635 subjects, CYP2D6 variants assessable from blood DNA using the AmpliChip CYP450 test (Roche) were collected. A complete list of the information collected is detailed in S1-S3 online, including the project-specific CYP2D6 genotype assays used and the DNA source. Independent confirmation of CYP2D6 genotypes was not performed owing to lack of access to subjects' samples. The clinical outcome variable was either breast cancer-free interval or IDFS, as previously defined.²⁵ The complete data set of genotypes and clinical variables is available at http://www.pharmgkb.org. Statistical analysis. Because the ITPC was not a prospectively defined multicenter study with a common protocol, there is potential for considerable study-to-study heterogeneity. Therefore, we did not analyze the combined data as a single series even though we had access to individual-level data from all studies. Rather, we applied a random-effects meta-analysis strategy. This provided estimates of the effect of CYP2D6 in each study's data separately, allowing us to examine the consistency of the results across sites. The meta-analysis is a two-stage procedure. In the first stage, we fit proportional-hazards models to the data from each of the ITPC sites separately, predicting clinical outcome after surgery from CYP2D6 genotype and other relevant covariates. These analyses produced a set of 12 parameter estimates of the HRs of CYP2D6 genotypes on outcome, along with their corresponding SEs (one for each site). In the second stage, we used a random-effects metaanalysis procedure²⁶ to test for study heterogeneity (i.e., whether the 12 studies met the assumptions of the meta-analysis sufficiently so as to be combinable using that method). When the heterogeneity was not significant, we combined the log-HRs into a single, metaanalysis estimate of the effect of CYP2D6 on tamoxifen-treated recurrence and/or survival outcomes. The DerSimonian and Laird method also provides a penalty in its test of overall association for moderate levels of study-to-study heterogeneity (i.e., for heterogeneity that is not so severe as to be statistically significant). This method is therefore conservative in its conclusions when heterogeneity is a potential issue. **SUPPLEMENTARY MATERIAL** is linked to the online version of the paper at http://www.nature.com/cpt #### **ACKNOWLEDGMENTS** The authors acknowledge useful conversations with Donald A. Berry (The University of Texas MD Anderson Cancer Center). The complete data set of genotypes and clinical variables, analysis codes, and full analyses is available to registered PharmGKB users at http://www.pharmgkb.org. We are grateful to all breast cancer patients for their participation. We thank the physicians and other hospital staff, scientists, research assistants, and study staff who contributed to the patient recruitment, data collection, and sample preparation. This work was supported by grants from the National Institutes of Health (National Institute of General Medical Sciences, the National Cancer Institute, and the National Institute of Child Health and Human Development R24 GM61374, CA-25224, CA-37404, CA-15083, CA-35113, CA-35269, CA-63849, CA35103, CA-35195, CA-35272, CA-35101, CA-37417, CA-35415, CA-52352, CA-35448, CA-60274, 1R01CA133049-01, U19 GM61388, CA-116201, CA-58207, CA-51008, T32 GM007546, and CA051008; Breast Cancer Research (Scotland); Tayside Tissue Bank; California Breast Cancer Research Program grant 14OB-0166; Cancer Research UK; Deutsches Krebsforschungszentrum, Heidelberg, Germany; Robert Bosch Foundation, Stuttgart, Germany; 7FP EU Marie Curie Initial Training Network "Fighting Drug Failure" (GA 238132); Grant Stichting Emmanuel van der Schueren (scientific partner of the Vlaamse Liga tegen Kanker); and the National Project for Personalized Genomic Medicine, Ministry for Health & Welfare, Republic of Korea (A111218-PG02). W.S. is supported by grant Deutsche Forschungsgemeinschaft SCHR 1323/2-1, Germany. The institutions in the International Tamoxifen Pharmacogenomics Consortium are listed below.: #### Writing committee: Michael A. Province, Matthew P. Goetz, David A. Flockhart, Hiltrud Brauch, and Teri F. Klein #### Data contributors: Deutsches Krebsforschungszentrum, Heidelberg, Germany: Ute Hamann, Julia Boländer, and Hans-Ulrich Ulmer, Frauenklinik Städtisches Klinikum Karlsruhe, Germany Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology Stuttgart and University of Tuebingen, Tuebingen, Germany: Hiltrud Brauch, Werner Schroth, Matthias Schwab, Stefan Winter, Michel Eichelbaum, Peter Fritz, and Wolfgang Simon Division of Research, Federal Institute for Drugs and Medical Devices, and University of Bonn Medical Faculty, Bonn, Germany: Julia C. Stingl Indiana University and University of Michigan, USA: David A. Flockhart and Anne T. Nguyen Inje University College of Medicine and Department of Clinical Pharmacology, Busan Paik Hospital, Busan, Korea: Jae-Gook Shin and Ji-Yeob Choi Mayo Clinic in Rochester, Minnesota, USA: Matthew P. Goetz, James N. Ingle, Vera J. Suman, and Richard M. Weinshilboum Ninewells Hospital and Medical School, Dundee, UK: Colin A. Purdie and Lee B. Jordan Örebro University, Sweden: Pia Wegman RIKEN Center for Genomic Medicine and University of Tokyo, Japan: Hitoshi Zembutsu, Taisei Mushiroda, and Kazuma Kiyotani Roswell Park Cancer Institute, USA: Christine B. Ambrosone University Breast Center Franconia, University Hospital Erlangen, Erlangen, Germany: Peter A Fasching, Reiner Strick, and Matthias W Beckmann University Hospitals Leuven, Belgium: Patrick Neven and Anne-Sophie Dieudonné University Institute of Medical and Chemical Laboratory
Diagnostics, Paracelsus Private Medical University, Salzburg, Austria: Elisabeth Haschke-Becher University of California, San Francisco, San Francisco, USA: Alan H.B. Wu, Wendy Lorizio. and Elad Ziv University of Dundee, UK: Philip Quinlan, Lee B. Jordan, and Colin A. Purdie Department of Gynecology and Obstetrics, University of Mainz, Mainz, Germany: Marcus Schmidt and Heinz Koelbl *University of Manchester, Manchester, UK*: William G. Newman, Roberta Ferraldeschi, Anthony Howell, and Ayse Latif Vesalius Research Center, Catholic University of Leuven, Leuven, Belgium: Diether Lambrechts Yonsei University Health System, Korea: Byeong-Woo Park #### **Statistical Analysis:** Mayo Clinic in Rochester, MN, USA: Vera J. Suman Stanford University, Stanford, CA, USA: Teri E. Klein and Ryan Whaley Washington University in St. Louis, MO, USA: Michael A. Province #### **Data Curation:** Stanford University, Stanford, CA, USA: Teri E. Klein, Ryan Whaley, Joan M. Hebert. and Li Gong #### Site Principal Investigators: Russ B. Altman and Teri E. Klein (Stanford University), Christine A. Ambrosone (Roswell Park Cancer Institute), Hiltrud Brauch (IKP Stuttgart), Jae-Gook Shin (Inje University), Matthew P. Goetz (Mayo Clinic), William G. Newman (University of Manchester), Patrick Neven (Belgium), Alastair M. Thompson (University of Dundee), Sten Wingren (Örebro University), Hitoshi Zembutsu (University of Tokyo), and Elad Ziv (University of California, San Francisco) #### Steering Committee: Russ B. Altman, Hiltrud Brauch, Michel Eichelbaum, David A. Flockhart, Matthew P. Goetz, James N. Ingle, V. Craig Jordan, Teri E. Klein, Kent Osborne, Yusuke Nakamura, and Richard M. Weinshilboum #### Participating sites: The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA Department of Clinical Medicine, Örebro University, Örebro, Sweden Department of Genetics, Stanford University, Stanford, CA, USA Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany Department of Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium Department of Oncology, Catholic University Leuven, Leuven, Belgium Department of Medicine/GIM and Clinical Pharmacology and Experimental Therapeutics, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA. LISA Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA Department of Oncology, Georgetown University, Washington, DC, USA Department of Oncology, Mayo Clinic, Rochester, MN, USA Department of Oncology and Pharmacology, Mayo Clinic, Rochester, MN $\label{lem:proposed_proposed$ Department of Pharmacology; Mayo Clinic, Rochester, MN, USA Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine and Department of Clinical Pharmacology, Inje University, Busan Paik Hospital, Busan, Korea Department of Surgery, Yonsei University Health System, Seoul, Korea Deutsches Krebsforschungszentrum, Heidelberg, Germany Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN USA Division of Clinical Pharmacology, School of Medicine, Indiana University, IN, USA $\label{lem:continuous} Dr.\,Margarete\,Fischer-Bosch\,Institute\,of\,Clinical\,Pharmacology\,Stuttgart,\,and\,University\,of\,Tuebingen,\,Germany$ Dundee Cancer Centre, Dundee, UK Genetic Medicine, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK Laboratory for Pharmacogenetics, RIKEN Center for Genomic Medicine, Yokohama, Japan Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany Ninewells Hospital and Medical School, Dundee, UK #### **CONFLICT OF INTEREST** A.M.T. and W.G.N. report Roche funding for genotyping H.B. and M. Schwab report that they have initiated scientific collaborations in 2009 with Roche Molecular Diagnostics and Siemens Healthcare Diagnostics Products, respectively P.A.F. and M.W.B. report Novartis research funding. M.-T.M.L. is a paid consultant of YongLin Health Foundation. R.B.A. is a founder, equity holder, and consultant for Personalis. The other authors declared no conflict of interest. ### Study Highlights #### WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? There has been extensive controversy with regard to the association between CYP2D6 genetic variants and the clinical outcomes of tamoxifen use. #### WHAT QUESTION DID THIS STUDY ADDRESS? The ITPC was established to address this controversy and to determine the association of CYP2D6 status with IDFS in tamoxifen-treated early-stage, ER-positive breast cancer. #### WHAT THIS STUDY ADDS TO OUR KNOWLEDGE We found that CYP2D6 genotype was associated with a higher risk of recurrence in patients meeting the strict criterion. However, the observation of substantial heterogeneity in cohorts 2 and 3 suggests that study design factors that cannot be controlled retrospectively may obscure the predictive utility of CYP2D6 genotype. This study demonstrates the complexity of performing a retrospective biomarker study #### **HOW THIS MIGHT CHANGE CLINICAL PHARMACOLOGY** AND THERAPEUTICS Although CYP2D6 is a predictor of IDFS in a subset of patients treated with tamoxifen monotherapy, the lack of an effect in the entire heterogeneous study population suggests that prospective studies are necessary to fully establish the value of CYP2D6 genotyping in tamoxifen therapy. © 2014 American Society for Clinical Pharmacology and Therapeutics - Jordan, V.C. Tamoxifen: a most unlikely pioneering medicine. Nat. Rev. Drug Discov. 2, 205-213 (2003). - Davies, C. et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378, 771-784 (2011). - Johnson, M.D. et al. Pharmacological characterization of 4-hydroxy-Ndesmethyl tamoxifen, a novel active metabolite of tamoxifen. Breast Cancer Res. Treat. 85, 151-159 (2004). - Stearns, V. et al. Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J. Natl. Cancer Inst. 95, 1758-1764 (2003). - Goetz, M.P., Berry, D.A. & Klein, T.E. 31136 Findings from the International Tamoxifen Pharmacogenomics Consortium. Proceedings of the San Antonio Breast Cancer Symposium, San Antonio, Texas, 9–13 December 2009. Abstract - Mürdter, T.E. et al.; German Tamoxifen and Al Clinicians Group. Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma. Clin. Pharmacol. Ther. 89, 708-717 - Irvin, W.J. Jr et al. Genotype-guided tamoxifen dosing increases active metabolite exposure in women with reduced CYP2D6 metabolism: a multicenter study. J. Clin. Oncol. 29, 3232-3239 (2011). - Rae, J.M. et al.; COBRA investigators. Cytochrome P450 2D6 activity predicts discontinuation of tamoxifen therapy in breast cancer patients. Pharmacoaenomics J. 9, 258-264 (2009). - Schroth, W. et al. Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA 302, 1429-1436 (2009). - Goetz, M.P. et al. Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J. Clin. Oncol. 23, 9312-9318 (2005). - Rae, J.M. et al.; ATAC trialists. CYP2D6 and UGT2B7 genotype and risk of recurrence in tamoxifen-treated breast cancer patients. J. Natl.
Cancer Inst. 104, 452-460 (2012). - 12. Regan, M.M. et al.: Breast International Group (BIG) 1-98 Collaborative Group. CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the breast international group 1-98 trial. J. Natl. Cancer Inst. 104, 441–451 (2012). - 13. Brauch, H. et al. Tamoxifen use in postmenopausal breast cancer: CYP2D6 matters. J. Clin. Oncol. 31, 176-180 (2013). - Nakamura, Y., Ratain, M.J., Cox, N.J., McLeod, H.L., Kroetz, D.L. & Flockhart, D.A. Re: CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer; the Breast International Group 1-98 trial. J. Natl. Cancer Inst. 104, 1264; author reply 1266-1268 (2012). - 15. Stanton, V. Jr. Re: CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the Breast International Group 1-98 trial. J. Natl. Cancer Inst. 104, 1265–6; author reply 1266-8 (2012). - 16. Goldberg, P. Experts claim errors in breast cancer study, demand retraction of practice-changing paper. The Cancer Letter 38, 1-11 (2012). - 17. Goetz, M.P. et al. CYP2D6 metabolism and patient outcome in the Austrian Breast and Colorectal Cancer Study Group trial (ABCSG) 8. Clin. Cancer Res. 19, - Schroth, W. et al. CYP2D6 polymorphisms as predictors of outcome in breast cancer patients treated with tamoxifen; expanded polymorphism coverage improves risk stratification. Clin. Cancer Res. 16, 4468-4477 (2010). - Zanger, U.M., Turpeinen, M., Klein, K. & Schwab, M. Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Anal. Bioanal. Chem. 392, 1093-1108 (2008). - Castells, A., Gusella, J.F., Ramesh, V. & Rustgi, A.K. A region of deletion on chromosome 22q13 is common to human breast and colorectal cancers. Cancer Res. 60, 2836-2839 (2000). - Hirano, A. et al. Allelic losses of loci at 3p25.1, 8p22, 13q12, 17p13.3, and 22q13 correlate with postoperative recurrence in breast cancer. Clin. Cancer Res. 7, 876-882 (2001). - 22. Loo, L.W. et al. Differential patterns of allelic loss in estrogen receptor-positive infiltrating lobular and ductal breast cancer. Genes, Chromosomes Cancer 47. 1049-1066 (2008). - 23. Thompson, A.M. et al. Comprehensive CYP2D6 genotype and adherence affect outcome in breast cancer patients treated with tamoxifen monotherapy. Breast Cancer Res. Treat. 125, 279-287 (2011). - French, B. et al.; COAG (Clarification of Optimal Anticoagulation through Genetics) Investigators. Statistical design of personalized medicine interventions: the Clarification of Optimal Anticoagulation through Genetics (COAG) trial. Trials 11, 108 (2010). - Hudis, C.A. et al. Proposal for standardized definitions for efficacy end points in adjuvant breast cancer trials: the STEEP system. J. Clin. Oncol. 25, 2127-2132 - 26. Der Simonian, R. & Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 7, 177-188 (1986). This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ #### RESEARCH ARTICLE # The effect of IGF-I receptor blockade for human esophageal squamous cell carcinoma and adenocarcinoma Yasushi Adachi · Hirokazu Ohashi · Arisa Imsumran · Hiroyuki Yamamoto · Yasutaka Matsunaga · Hiroaki Taniguchi · Katsuhiko Nosho · Hiromu Suzuki · Yasushi Sasaki · Yoshiaki Arimura · David P Carbone · Kohzoh Imai · Yasuhisa Shinomura Abstract Insulin-like growth factor-I receptor (IGF-IR) signaling is required for carcinogenicity and tumor development, and this pathway has not been well studied in human esophageal carcinomas. Esophageal cancer is one of the human cancers with the worst prognosis and has two main histologies: squamous cell carcinomas (ESCC) and adenocarcinoma (EAC). Previously, we have reported that detection of the IGF axis may be useful for the prediction of recurrence and poor prognosis of ESCC. We have also shown the successful therapy for several gastrointestinal cancers using recombinant adenoviruses expressing dominant negative IGF-IR (ad-IGF-IR/dn). The aim of this study is to develop potential targeted therapeutics to IGF-IR and to assess the effect of IGF-IR blockade in both of these types of esophageal cancer. We determined immunohistochemical expression of IGF-IR in a tissue microarray. We then assessed the effect of IGF-IR blockade on signal transduction, proliferation, apoptosis, and motility. Ad-IGF-IR/dn, a tyrosine kinase inhibitor, BMS-536924, and adenovirus expressing shRNA for IGF-IR were used. IGF-IR expression was common in both tumor types but not in normal tissues. IGF-IR was detected in metastatic sites at similar levels compared to the primary site. IGF-IR inhibition suppressed proliferation and colony formation in both cancers. IGF-IR blockades up-regulated both stress- and chemotherapy-induced apoptosis and reduced migration. Although IGF-IR/dn blocked ligand-induced activation of Akt-1 mainly, BMS-536924 effectively blocked both activation of Akt and MAPK. The IGF axis might play a key role in tumor progression of esophageal carcinomas. The IGF-IR targeting strategies might thus be useful anticancer therapeutics for human esophageal malignancies. Keywords Dominant negative · EAC · ESCC · IGF-IR · TKI Yasushi Adachi, Hirokazu Ohashi, and Arisa Imsumran contributed equally to this work. Y. Adachi () H. Ohashi A. Imsumran H. Yamamoto Y. Matsunaga K. Nosho H. Suzuki Y. Sasaki Y. Arimura K. Imai Y. Shinomura First Department of Internal Medicine Sapporo Medical University First Department of Internal Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo 060-8543, Japan e-mail: yadachi@sapmed.ac.jp H. Taniguchi · K. Imai The Institute of Medical Science, The University of Tokyo, Tokyo, Japan D. P. Carbone James Thoracic Center, The Ohio State University, Columbus, OH, $1/S\Delta$ #### Abbreviations $\begin{array}{lll} \text{ad-IGF-IR/482st} & \text{Adenovirus expressing IGF-IR/482st} \\ \text{ad-IGF-IR/950st} & \text{Adenovirus expressing IGF-IR/950st} \\ \text{ad-shIG F-IR} & \text{Adenovirus expressing short-hairpin} \\ \text{IGF-IR} \\ \text{des}(1-3)\text{IGF-I} & \text{NH}_2 \text{ terminally truncated IGF-I} \\ \end{array}$ dn Dominant negative EAC Esophageal adenocarcinoma ESCC Esophageal squamous cell carcinoma ERK Extracellular signal-regulated kinase IGF Insulin-like growth factor IGFBP IGF binding protein IGF-IR IGF-I receptor IGF-IR/482st Truncated IGF-IR of 482 amino acid long IGF-IR/950st Truncated IGF-IR of 950 amino acid long IGF-IR/dn Dominant negative form of IGF-IR InsR Insulin receptor Monoclonal antibody mAb Phosphatidylinositide 3-kinase PI3-K TKI Tyrosine kinase inhibitor #### Introduction Esophageal cancer is one of the cancers with the worse prognosis worldwide [1]. At the time of diagnosis, more than half of patients have either unresectable tumors or metastatic ones. Even after a curative-intent surgical operation, the 5-year survival is still limited [2], and the therapy for unresectable esophageal carcinomas is typically minimally effective. Therefore, we must aim to seek new therapeutic options for this disease. The main types of human esophageal tumor are squamous cell carcinoma (ESCC) and adenocarcinoma (EAC). Recently, advances in molecular research have brought new therapeutic strategies, including small molecule tyrosine kinase inhibitors (TKI) and monoclonal antibodies (mAb), into clinical testing. One group of new targets is the tyrosine kinase receptors. The insulin-like growth factor (IGF) family is a promising candidate [3, 4]. Agents targeting the IGF-I receptor (IGF-IR) pathway are moving into the clinic. Toward that end, we have studied this pathway in esophageal cancers. IGF-IR is a heterotetramer of two α - and two β -chains [5]. Binding of the ligands IGF-I and IGF-II to IGF-IR causes receptor autophosphorylation and activates multiple signaling pathways, including ras/extracellular signal-regulated kinase (ERK) and the phosphatidylinositide 3-kinase (PI3-K)/Akt-1 axes [6]. Activation of IGF-IR is regulated by multiple factors, including IGF binding proteins (IGFBP) and IGF-2 receptor [7–9]. Elevation of serum IGF-I increases the risk of developing several cancers [10], and IGF-IR is essential for both malignant transformation and progression [3, 4]. Reduction of IGF-IR can induce apoptosis in tumors but produces only growth slowing in untransformed cells, suggesting that it might be an excellent target for therapeutic intervention [3]. IGF-IR knockout mice are viable (though physically small), indicating that relatively normal development and differentiation can occur in its absence [11]. These findings suggest a potential basis for tumor selectivity in therapeutic applications. Human esophageal epithelial cells express IGF-IR, and IGF-I can stimulate both DNA synthesis and proliferation in these cells [12-14]. Salivary IGF-I continuously bathes the esophageal lumen and is in a free form (not bound to IGFBP, unlike the serum pool), which could enhance its binding ability to receptors on the esophageal mucosal cells [15]. These data indicate that the IGF/receptor may play important roles in homeostasis and esophageal premalignancy [14]. Both IGF-IR and IGFs are overexpressed in esophageal cancer tissues compared to normal ones [16-18]. In addition, IGFBP3 and an IGF-IR antibody suppress cancer cell proliferation [19, 20]. However, the role of the IGF axis in esophageal cancer has not been adequately studied. We reported previously that expression of IGF-IR and IGF-II were detected in 60 and 50% of ESCC, respectively, and were associated with invasion depth, metastasis, advanced tumor stage, and recurrence [21]. Patients with ESCC expressing both IGF-IR and IGF-II had a significantly shorter survival rate than those expressing either alone or neither in both single and
multivariate analysis. Dominant negative for IGF-IR (IGF-IR/dn) suppressed proliferation and up-regulating chemotherapyinduced apoptosis through blocking ligand-induced Akt activation in an ESCC cell line, TE-1 [21]. In addition, there is a strong positive association between visceral obesity (metabolic syndrome) and risk of EAC, and the IGF axis is speculated to relate to both obesity and EAC [22]. IGF-IR expression in resected EAC was significantly higher in viscerally obese patients than in those of normal weight. Disease-specific survival was longer in patients with IGF-IR-negative EAC than in those with IGF-IR-positive tumors [23]. Thus, there are several lines of evidence that the IGF axis may play an important role in EAC. There are several possible approaches to blocking IGF-IR signaling with therapeutic intent [24], including blocking the ligand or receptor using mAbs [25, 26] or TKIs [27, 28]. All of these are complicated by the high homology of this receptor to the insulin receptor (InsR). An approach that is intrinsically specific for IGF-IR is to use dominant negative or soluble IGF-IR receptor approaches to specifically inhibit the function of the wildtype receptor [29, 30]. We have constructed two different adenoviruses expressing IGF-IR/dn (ad-IGF-IR/dn) [31-34]. Ad-IGF-IR/482st encodes a truncated extracellular domain of IGF-IR (without the transmembrane domain) and thus produces a secreted protein that affects neighboring cells in addition to the transduced cells (a bystander effect). Another ad-IGF-IR/950st encodes a receptor that lacks the tyrosine kinase domain and thus remains on the membrane of the transduced cells to form non-functional receptor complexes. We have reported that ad-IGF-IR/dn may be a useful therapeutic strategy against several gastrointestinal tumors [21, 31, 32, 34, 35]. We have also reported that the adenoviral vector-based approach to express a short-hairpin inhibitory RNA of IGF-IR (ad-shIGF-IR) induced effective IGF-IR silencing in gastrointestinal cancers as manifested by effective blockade of the downstream pathway of IGF-IR and antitumor effects [36]. A dual targeting TKI for IGF-IR/InsR, BMS-536924, may have an advantage compared to a single targeting TKI, as transformed cells can also use insulin receptor activation of similar signaling pathways for proliferation in addition to IGFR signals [35, 37]. In order to evaluate the expression of IGF-IR in EAC and in metastatic sites of ESCC, we analyzed an esophageal cancer tissue microarray immunohistochemically. To assess IGF-IR blockade for both esophageal cancers, histologies ESCC and EAC, we used several strategies including IGF-IR/dns, shIGF-IR, and BMS-536924. #### Methods Materials, cell lines, and recombinant adenovirus vectors Anti-Akt1(c-20), anti-ERK1(K-23), anti-phospho-ERK1(E-4), ant-IGF-I(G-17), and anti-IGF-IRB(2C8) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA) and anti-phospho-Akt(Ser473) was from Cell-Signaling Technology (Beverly, MA, USA). Anti-IGF-IR(Ab-4) was from Oncogene Research Products (Cambridge, MA, USA) and anti-IGF-II was from Peninsula Laboratories (San Carlos, CA, USA). Pl3-K inhibitors, wortmannin and LY294002, p38-MAPK inhibitor SB203580, cisplatin (CDDP), and 5-fluorouracil (5-FU) were purchased from Sigma (St. Louis, MO, USA), and MEK1 inhibitor PD98059 was from Cell Signaling. Recombinant human IGF-I and IGF-II were purchased from R&D systems (Minneapolis, MN, USA) and des(1-3)IGF-I from GroPep (Adelaide, Australia). All human esophageal cancer cell lines (Fig. 1) were obtained from the Japanese Cancer Collection of Research Bioresources Cell Bank (Tokyo, Japan), Riken Bioresource Center Cell Bank (Tsukuba, Japan), and European Collection of Cell Cultures (Salisbury, UK). Cells were passaged in RPMI1640 and DMEM, both with 10% fetal bovine serum. Recombinant adenoviruses expressing IGF-IR/dn (482 and 950 amino acids long, IGF-IR/482st and IGF-IR/950st, Ad-IGF-IR/482st and Ad-IGF-IR/950st, respectively) were generated as described previously by homologous recombination [31]. Recombinant adenovirus vectors expressing shIGF-IR (ad-shIGF-IR) were generated as described previously [38]. An adenovirus expressing β -galactosidase was used as a control (ad-LacZ). Scrambled shRNA adenovirus (ad-Scr) is another control that has a short hairpin sequence but no specific target, also as described previously. BMS-536924 was kindly provided by Bristol-Myers Squibb (New York, NY, USA). Stock solution was prepared in DMSO and stored at -20° C. #### Immunohistochemical analysis The paraffin-embedded esophageal tissue microarray (ES208) was purchased from US Biomax (Rockville, MD, USA). After deparaffinization, endogenous peroxidase activity was blocked. Antibodies were applied after blocking with normal goat serum. Sections were incubated with the anti-rabbit secondary antibody (Santa Cruz Biotechnology) and a strep tavidin-HRP followed by exposure to the diaminobenzidine tetrahydrochloride substrate (Dako). The sections were counterstained in Mayer's hematoxylin and mounted. Immunostaining signals were scored by two independent observers. Semiquantitative scores were given as the score of the percentage of positive cells plus the score of the staining intensity. The scoring criteria of the percentage of positive cells were as follows: score 0, 0-5% positive cancer cells; score 1, 6-25%; score 2, 26-50%; score 3, 51-75%; score 4, 76-100% positive. The intensity score was given as follows: score 0, no staining; score 1, weak/equivocal; score 2, moderate; score 3, Fig. 1 The expressions of IGF-axis in esophageal carcinoma cell lines. a RT-PCR revealed that three cells express mRNAs of IGF-II and IGF-IR but not IGF-I. b Western blotting showed that two EAC and four ESCC cells express both IGF-IR and InsR strong staining. The final scores were from 0 to 7 and four or more were considered positive. #### Reverse transcription PCR Total RNA from cells was isolated by the acid guanidinium thiocyanate-phenol-chloroform method. Primer sets for the amplification of IGF-I cDNA sequences were 5'-CACTGT CACTGCTAAATTCA-3' and 5'-CTGTGGGCTTGTTGAAA TAA-3' [39]. Primers for IGF-II cDNA were 5'-AGTCGATGC TGGTGCTTCTCA-3' and 5'-GTGGGCGGGGTCTTGG GTGGGTAG-3' [40]. Primers for IGF-IR were 5'-ATTGAG GAGGTCACAGAGAAC-3' and 5'-TTCATATCCTGTTTT GGCCTG-3' [40]. Randomly primed cDNAs were prepared from 1 mg of total RNA by M-MLV reverse transcriptase (Takara, Japan) and amplified by PCR. For amplification of these sequences, 35 cycles of PCR was programmed as follows: 94°C, 30 s; 60°C, 30 s; 72°C, 30 s. #### Western blotting Cells were cultured in serum-free medium for 24 h and then stimulated with 20 ng/ml IGF-I or 10 nM insulin. Cell lysates were prepared as described previously [31]. Equal aliquots of lysate (100 μ g) were separated by 4–20% SDS-PAGE and immunoblotted onto polyvinylidene Hybond-P membrane (Amersham, Arlington Heights, IL, USA). Analysis was performed using the indicated antibodies, and bands were visualized by ECL (Amersham). #### Assessment of the effect on in vitro cell growth Tumor cells were grown to 70% confluence in six-well plates and infected with adenovirus. The number of cells was then assayed by Trypan blue staining. Four thousand cells were seeded into the wells of a 96-well plate, and each was infected with adenovirus or control. Cell growth was measured using WST-1 reagent (Roche, Basel, Switzerland) as described previously [21]. #### In vitro tumorigenicity Anchorage-independent growth was assessed by soft agar clonogenicity assays. Briefly, cells were detached and plated in 0.2% agarose with 1% underlay (2×10^4 cells/5-cm dish). After 1 week, media were added over the soft agar. The medium overlay was changed after 1 week. Colonies greater than 125 μ m were counted after 3 weeks using a calibrated graticule. Colony forming activity was assessed by plating 3×10^3 per plate on 60-mm culture dishes and incubated for 24 h. The cells were then treated with BMS-536924 and were incubated for 14 days. After air-drying, cells were fixed with methanol and stained with Giemsa solution. Colonies containing 50 cells or more were counted. #### Measurement of apoptosis The DNA fragmentation assay was performed as follows: low molecular weight DNA was extracted with 0.5% Triton X-100, 10 nM EDTA, and 10 mM Tris-HCl, pH 7.4, treated with 400 μg/ml RNase A and then proteinase K for 1 h at 37°C, ethanol-precipitated, and subjected to 1% agarose gel electrophoresis. The gels were stained with 1 µg/ml ethidium bromide. Early apoptosis was quantified by staining with Annexin-V-FITC according to the manufacturer's protocol (BD Biosciences) and measured by flow cytometry. Cells undergoing apoptosis showed an increase in Annexin-V binding but excluded propidium iodide. TUNEL assays were performed with in situ apoptosis detection kit (Takara) following the manufacturer's protocol. Caspase-3 colorimetric protease assay was performed following the manufacturer's protocol (Caspase-3 Colorimetric Protease Assay Kit; MBL). In brief, 3×10^6 cells were lysed in 100 μ l of chilled cell lysis buffer, and total cell lysates (100 µg) were incubated with 4 mM VETD-pNA Substrate (200 µM final concentration) at 37°C for 1 h. Caspase-3 activity was measured by colorimetric reaction at 405 nm. First, cancer cells infected with Ad-IGF-IR/dns or Ad-LacZ were induced with 10 mJ/cm 2 UV light. To assess the efficacy of IGF-IR/dn on chemotherapy-induced apoptosis, tumor cells were treated for 24 h with 1 mM 5-FU or 50 μ M cisplatin. #### Migration assay Wounding assays were performed using a modification of the procedure described by Pennisi et al. [41]. Briefly, six-well chambers were prepared by scratching registration marks onto the slide surface. TE1 cells (infected with adenoviruses) were plated, grown normally for 48 h, and starved overnight. Cells were
cut with a cell scraper, and five images were captured Table 1 Summary of immunohistochemical expression of IGF-IR | Normal esophageal mucosa
Esophageal carcinoma | IGF-IR (+)
0/7
31/57 | 0%
54% | p = 0.0111 (Fisher) | |--|----------------------------|-----------|---------------------| | | IGF-IR (+) | | | | Squamous cell carcinoma | 23/34 | 68% | | | Primary sites | 15/23 | 65% | | | Metastasized sites | 8/11 | 73% | | | Lymph node | 6/9 | 67% | | | Skin | 2/2 | 100% | | | Adenocarcinoma | 8/22 | 36% | • | | Adenosquamous carcinoma | 0/1 | 0% | | Fig. 2 The effect of IGF-IR on EAC cells. a WST-1 assay showed cell growth of OE33, 48 h of culture with/without IGFBP3. b Trypan blue assay showed the number of viable cells. c WST-1 assay revealed cell proliferation of adenoviruses-infected OE33, d Colony formation assays showed the effect of IGF-IR/dn and cisplatin on colony formation. e OE33 was stimulated for 5 min with ligands in serum-free medium. Western blotting showed signal transduction. f DNA fragmentation assay detected UV-induced apoptosis. g Cells were treated for 24 h with cisplatin. Then, caspase-3 assays were performed along the cut surface on an Olympus IX-71S1F-2 microscope (Tokyo, Japan) using a ×20 objective. Additional images were captured 24 h later. For each experiment, the number of migrating cells was counted by two independent observers [41]. 978 Tumor Biol. (2014) 35:973–985 Fig. 3 The effect of IGF-IR on the growth of ESCC. a WST-1 assay showed cell growth after 48 h of culture. b Trypan blue assay showed the viable cell number of ESCC cells with several inhibitors or IGF-IR/482st. c Soft agar assays detected that ad-IGF-IR/dns blocked colony formation. d Colony formation assay showed the effect of IGF-IR/482st on colony number Tumor Biol. (2014) 35:973-985 Fig. 4 The down-stream signals from IGF-IR by Western blotting. a Both TE8 and TE1 cells were stimulated for 5 min with IGFs, and then whole cell lysates were extracted. b Both cells were stimulated from 0 to 20 min with IGFs. e-f Four cell lines infected with adenoviruses were stimulated for 5 min with IGFs. g Adenoviruses-infected T.Tn cells were stimulated for 5 min with 5 ng/ml des(1-3)IGF-1