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reveal differences for ERa. Ponceau protein staining and detection of the
62 kDa nucleoporin (NUP62) were used as lcading controls.

Additional file 8: Figure S5. Expression analysis with exposure to YC-1.
(A) High expression of the Ribosome pathway (false discover rate <5%) is
shown in the parental MCF7. (B) Top panels, the Ribosome pathway is
significantly altered (that is, underexpressed) in MCF7 cells, but not in
MCF7-LTED cells, exposed to YC-1. Bottom panels, both MCF7 and
MCF7-LTED cells show underexpression of the cell cycle pathway with
exposure to YC-1. (C) Western blot analysis results of phospho-serine
235/236 S6 ribosomal protein, E2F1 and control TUBA in MCF7 and
MCF7-LTED cells in basal or YC-1-exposed conditions.

Additional file 9: Table S4. Pathways differentially expressed (false
discovery rate <5%) in MCF7 and/or MCF7-LTED cells, in basal and/or
YC-1 conditions.

Additional file 10: Table S5. Differential expression analysis of
predicted E2F1 target sets (false discovery rate <1%) in MCF7 and
MCF7-LTED cells exposed to YC-1.

Additional file 11: Figure S$6. Results from RACT activity assays with
depletion and/or reconstitution of MYC-Vav3, Left panel, graph
depicting RAC1 activity from triplicate assays in the conditions depicted
across the x-axis. The asterisks correspond to significant differences

(P <0.05). Right panels, Western blot analysis results of total VAV3,

MYC (for MYC-Vav3) and control TUBA in MCF7 and MCF7-LTED cells
transduced with shRNA control (pLKO.1) or shRNA-VAV3 plus MYC-Vav3
constructs.

Additional file 12: Table S6. Results of the GWAS and the replication
study for SNPs in VAV3.
L
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Abstract

Peripheral neuropathy is a common dose-limiting toxicity for patients treated with paclitaxel. For
most individuals there are no known risk factors that predispose patients to the adverse event, and
pathogenesis for paclitaxel-induced peripheral neuropathy is unknown. Determining whether there
is a heritable component to paclitaxel induced peripheral neuropathy would be valuable in guiding
clinical decisions and may provide insight into treatment of and mechanisms for the toxicity.
Using genotype and patient information from the paclitaxel arm of CALGB 40101 (Alliance), a
phase III clinical trial evaluating adjuvant therapies for breast cancer in women, we estimated the
variance in maximum grade and dose at first instance of sensory peripheral neuropathy. Our
results suggest that paclitaxel-induced neuropathy has a heritable component, driven in part by
genes involved in axon outgrowth. Disruption of axon outgrowth may be one of the mechanisms
by which paclitaxel treatment results in sensory peripheral neuropathy in susceptible patients.

Keywords
paclitaxel; neuropathy; polygenic; heritability; pathway

Introduction

Peripheral neuropathy is a common and often dose-limiting toxicity associated with cancer
chemotherapy treatment. Paclitaxel is a chemotherapeutic agent in the taxane family, and
functions by inhibiting microtubule assembly and inducing apoptosis. It is commonly
prescribed in the treatment of carcinomas of the breast, ovary, lung, and head and neck!.
Sensory peripheral neuropathy induced by paclitaxel is dose-dependent and is the most
common toxicity associated with this microtubule inhibitor. Severe toxicity (Grade 3 or
higher) generally occurs in 5-10% of patients although rates as high as 30% have been
reported for certain dosage regimens?. Known risk factors for paclitaxel induced neuropathy
include prior exposure to a neurotoxic agent or medical conditions associated with
peripheral neuropathy, such as diabetes?=6, though most patients who suffer from paclitaxel-
induced neuropathy do not have an identifiable predisposition. The pathogenesis of
paclitaxel induced peripheral neuropathy is unclear. Paclitaxel treatment may target axons,
myelinating Schwann cells, or the dorsal root ganglion and neuron cell bodies of peripheral
nerves’. At any of these sites, damage may be mediated by microtubule stabilization or
mitochondrial disruption®. At very high single or cumulative doses almost all patients will
experience some degree of peripheral neuropathy, but in certain susceptible patients
neuropathy will occur at lower cumulative doses or with greater severity. Interindividual
susceptibility to paclitaxel induced peripheral neuropathy may be driven by an overall
increase in exposure to paclitaxel, or an increased sensitivity to damage or decreased
capacity for repair at any of the putative targets of paclitaxel in the peripheral neuron.

Given the wide interindividual variability in incidence and severity of the toxicity
independent of any known risk factors, it is likely that there is an underlying genetic basis
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for susceptibility to paclitaxel-induced neuropathy. Small candidate gene studies focusing on
genes involved in paclitaxel pharmacokinetics and pharmacodynamics (e.g., ABCB1,
CYP2C8) or paclitaxel targets (e.g., B-tubulin) have had mixed results, with some identifying
variants associated with neuropathy?'!, and others failing to replicate previous results!'? 13,
Recently, a genome-wide association study from this group!# identified several SNPs with
moderate effect size in FZD3, FGD4, and EPHAS associated with severity or dose at onset
of paclitaxel-induced sensory peripheral neuropathy. An independent genome-wide study
identified SNPs in RWDD3 and TECTA associated with onset of paclitaxel-induced
neuropathy!?, but these findings were not replicated by others'®. The large number of
putative causative variants identified, many with small effect size, and the discrepancies
from study to study suggest a complex polygenic etiology for susceptibility to paclitaxel-
induced neuropathy.

Pharmacogenomic studies, especially those involved in the study of drug toxicities, come
with their own particular set of challenges. Sample sizes are often limited, and phenotype
definitions can be imprecise!”. This is compounded in cases where the toxicity does not
appear to be driven by one or a few polymorphisms with large effect size, such as CYP2D6
polymorphisms and morphine toxicity '8, but rather by a number of variants cach with small
potential contribution to disease, as we propose is the case for paclitaxel-induced peripheral
neuropathy. For these phenotypes, determining the extent to which genetic variability
confributes to a particular toxicity can be challenging. Traditional heritability studies require
large numbers of siblings or family structures that are not practicable, especially when
studying potentially toxic drugs. Even when evidence for a heritable component to toxicity
is available, candidate gene/candidate variant studies or traditional genome-wide association
studies will likely be unable to identify variants with small effects that together explain a
large portion of the expected heritability.

Recently, a method has been developed to estimate additive genetic variation or narrow-
sense heritability driven by common SNPs (i.e. those typically captured on genotyping
platforms) in unrelated individuals using linear mixed models!® 20. This approach was
applied to genome-wide SNP data in breast cancer patients treated with paclitaxel to
determine the extent to which paclitaxel-induced sensory peripheral neuropathy is heritable
and to identify causal SNPs driving this heritability.

Materials and Methods

Patient Data and Study Design

The patient cohort for this study was taken from the paclitaxel arm of CALGB 40101
(Alliance), a Phase 111 trial studying adjuvant therapy for patients with breast cancer; all
patients in the current study were also enrolled in CALGB 60202 (Alliance), the
pharmacogenomic companion study, and signed an IRB-approved, protocol-specific
informed consent for use of their specimens. Paclitaxel was administered every two weeks
over three hours at 175 mg/m? for four or six cycles. A total of 1,040 paclitaxel-treated
individuals were included in the cohort; after quality control, including principal component
analysis, call rate (>98%), and clustering performance, 859 Caucasian patients were retained
for further analysis. Germline DNA was genotyped on the HumanHap610-Quad Genotyping
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BeadChip (Illumina) platform. SNP quality control measures for minor allele frequency (=
0.01), genotyping call rate (=99%), and Hardy-Weinberg equilibrium in controls (exact test
p = 0.001) were applied using PLINK (v1.07). Genotyped data was imputed to call
genotypes of un-typed SNPs using MACH?!> 22 (1.0) and the 1000 Genomes?3 Pilot I (June
2010) data from unrelated Caucasian (CEU) individuals as a reference; imputed data was
filtered for r2> 0.9. Recent publications describe further details regarding the
pharmacogenomic!# and clinical?* studies. Details regarding patient selection, SNP quality
control and imputation are outlined in Supplemental Figure 1.

Two phenotypes are of interest in studying paclitaxel-induced neuropathy — severity of the
neuropathy and cumulative dose at onset of neuropathy. These outcomes may be driven by
distinct or overlapping sets of genes. Peripheral neuropathy was graded on a scale of 0 to 5
according to the National Cancer Institute Common Toxicity Criteria for Adverse Events
(NCI-CTCAE) version 2.0. The distribution of neuropathy grades in our cohort (Figure 1)
matches expected numbers from prior clinical trials?>- 26, Because the linear mixed
modeling approach requires a continuous quantitative or binary phenotype, both severity of
neuropathy and dose at onset of neuropathy were treated as continuous variables. Severity of
neuropathy was modeled using the highest grade of neuropathy over the course of treatment
with log-transformed cumulative dose administered at highest grade of neuropathy (mg/m?)
as a covariate. For patients who did not experience the toxicity, cumulative dose
administered over the course of the study was used as the covariate. Onset of neuropathy
was modeled using deviance residuals from a time-to-event analysis as a continuous
phenotype. The deviance residuals are a normalized transform of the martingale residuals,
which estimate the difference at a particular cumulative dose t between observed (incidence
of grade 2 or peripheral higher neuropathy, 0 or 1) and expected events (predicted hazard for
neuropathy at dose t) for a given patient. Residuals from survival models have been
previously used to model time to onset of various phenotypes as a quantitative trait when it
is not possible to apply a survival model directly?’—2°. The time-to-event analysis was
conducted using a null Cox proportional hazards model without predictors, with time
defined as cumulative paclitaxel dose and event defined as first instance of grade 2 or higher
peripheral neuropathy!#. For patients who did not experience grade 2 or higher neuropathy,
cumulative dose administered over the course of the study was used, producing right—
censored dosage date. Deviance residuals from the Cox score test were calculated using the
survival package in R3%-31,

Pathway Definitions

Pathways evaluated were selected based on putative pathology for paclitaxel-induced
neuropathy. Five Gene Ontology3? (GO Release 2012-09-15) Biological Process terms were
included: Axonogenesis (GO: 0007409), Myelination (GO: 0042552), Transmission of
Nerve Impulse (GO: 0019226), Microtubule-Related Processes (GO: 0007017), and
Mitochondrial Organization and Transport (GO: 0006839 and 0007005), along with a
manually curated set of genes associated with congenital peripheral neuropathy33 and a set
of genes in the paclitaxel pharmacokinetic/pharmacodynamic pathway3*. For GO terms, all
possible genes (regardless of evidence code) were included. For each pathway, gene
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boundaries for the largest isoform of each gene were extracted from the UCSC Table
Browser using UCSC gene annotations from human genome build 37 (hgl9). These gene
boundaries (plus an additional 10 kb upstream and downstream) were used to extract all
dbSNP135% SNPs in the gene regions. Pathway SNP lists were used to extract the pathway-
specific portion of the genome in PLINK (v1.07)36.

For SNP sets grouped by position in the genome (genic vs. intergenic), gene and SNP
annotations were extracted from the UCSC Table Browser using CCDS?7 gene annotations
from human genome build 37 (hg19), and SNP annotations from dbSNP135. Genic regions
were defined as 10 kb upstream and downstream of transcription start and stop sites. For
genes with multiple CCDS isoforms, the longest isoform was used. The Biofilter’® software
(v2.0.0) was used to extract SNPs by genomic position.

Linear Mixed Modeling Heritability Analysis

Heritability estimates for the whole genome and for pathways were generated using the
GCTA (v1.01) software tool??, We estimated the genetic relatedness matrix (GRM) for 859
Caucasians using all post-QC genotyped SNPs. Principal components analysis was
conducted using GCTA, and the first 20 eigenvectors for each individual were used as
covariates in all subsequent analyses to control for any remaining population stratification.
To ensure that all subjects in the study were unrelated, we excluded one of each of a pair of
individuals with genetic relationship greater than 0.03, roughly corresponding to second
cousins or closer familial relationships; ten individuals were excluded in this step. An
additional four individuals were excluded due to incomplete phenotype information for a
final population of 845 unrelated Caucasians (Supplemental Figure 1). All analyses were
restricted to autosomes, and were conducted with the assumption that causal SNPs will have
the same allele frequency distribution as genotyped SNPs.

For pathway specific heritability analyses, a separate GRM was constructed for each
pathway and for its complement (whole genome GRM excluding SNPs in the pathway)
using the set of 845 unrelated Caucasians. Total genetic variance for severity and onset of
neuropathy was partitioned simultaneously onto pathway and “non-pathway” SNPs.
Likewise, for genomic position based heritability analyses, total genetic variance for both
phenotypes was partitioned onto genic and intergenic regions. To correct for the
simultaneous evaluation of multiple pathways, GCTA p-values were Bonferroni corrected
by multiplying each p-value by the number of pathways tested together (seven in the first
round and ten in the second round). Empirical distributions representing the null hypothesis
that the trait is not heritable were generated as follows for each pathway specific heritability
estimate: for severity of neuropathy, residuals and expected values were extracted from
linear regression of grade of neuropathy with log cumulative dose of paclitaxel and the first
20 principal components. For each of 1000 permutations, residuals were permuted, summed
with expected values for each individual, and used to estimate pathway-specific heritability
in GCTA. For onset of neuropathy, deviance residuals were calculated as described, then
input as an independent variable in a linear regression including 20 principal components
from which residuals and expected values were extracted. As with severity of neuropathy,
for each of 1000 permutations, residuals were permuted, summed with expected values for
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each individual, and used to estimate pathway-specific heritability in GCTA. Empirical p-
values were generated by calculating the probability of obtaining a heritability estimate
greater than that estimated from observed data.

PLINK Set Test

Results

Briefly, the PLINK Set test as implemented in this study calculates the mean of all
significant (p < 0.05) per-SNP p-values after filtering for SNPs in linkage disequilibrium (r?
>0.5). An empirical p-value is applied to each set test by permuting phenotype labels across
individuals. SNP p-values for severity and onset of neuropathy were calculated in PLINK by
linear regression of residuals from regression of grade of neuropathy on number of minor
alleles, with log cumulative dose of paclitaxel and principal components as covariates in
both initial regression and PLINK set test.

The variance explained by common (MAF > 1%) SNPs for paclitaxel-induced neuropathy
was estimated in a cohort of 845 unrelated Caucasian breast cancer patients treated with
single agent paclitaxel. Two outcomes were of interest — severity of neuropathy (measured
on a grade of 0 to 5) and cumulative dose administered at onset of neuropathy (> grade 2),
both treated as continuous quantitative variables. The variance explained by all genotyped
SNPs across the genome was estimated as 41% for severity of neuropathy and 55% for onset
of neuropathy, but with high standard errors (44% and 47%, respectively) due to the small
sample size. To narrow in on the causative SNPs driving heritability and reduce noise from
non-causative SNPs, two methods were applied: (1) a genomic position based SNP
selection, extracting SNPs in genic regions, and (2) a biological pathway based selection that
extracted SNPs that fall in biological pathways that are associated with putative mechanisms
for susceptibility to paclitaxel-induced neuropathy.

When partitioning the genome in SNP sets by genomic location (Figure 2), a trend toward
higher heritability was found in genic regions for severity (h? = 49% = 37%, p = 0.07) and
onset of peripheral neuropathy (h? = 48% = 35%, p=0.08). For severity of petipheral
neuropathy, pathway specific results show highest heritability estimates for the
Axonogenesis gene set (h? = 21% % 12%, p = 0.040; Table 1). A complementary pathway
analysis approach, the PLINK set test, was used to further extend our pathway based
heritability results. Consistent with the GCTA analysis, only the Axonogenesis set is
significant (p = 0.012) for severity of neuropathy using the set test (Supplemental Table 1).
For onset of peripheral neuropathy, no significant signal of heritability was detected in any
of the pathways tested (Supplemental Table 2).

“Children” of the GO Axonogenesis term, defined as terms with a “is_a” or “part_of”
relationship with the Axonogenesis term, were subsequently tested for the severity of
neuropathy phenotype (Table 2). Of the ten terms tested, GO Regulation of Axonogenesis
(GO: 0050770), GO Axon Extension (GO: 0048675), and GO CNS Neuron Axonogenesis
(GO: 0021955) showed strong heritability signals (h2 =13% = 6% (p = 0.009), 10% = 5% (p
=0.020) and 5% = 3% (p = 0.020), respectively). To determine whether the signal from
these three terms comes from independent genes in each set or overlapping genes in the
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three sets, heritability estimates were calculated using the pair-wise and three-way union or
itersection of the GO Regulation of Axonogenesis, GO Axon Extension, and GO CNS
Neuron Axonogenesis sets. The union or intersection of the GO CNS Neuron Axonogenesis
set with GO Axon Extension or GO Regulation of Axonogenesis sets resulted in lower
heritability estimates than either independent set with high standard error (data not shown).
For the GO Axon Extension and GO Regulation of Axonogenesis sets, the heritability signal
from each independent set and the union and intersection sets are very similar (Figure 3),
suggesting that a large portion of the SNPs driving the heritability in the Regulation and
Extension sets come from the 44 genes found in both gene sets.

Heritability estimates were also calculated using imputed data; as with the genotyped SNPs,
whole genome estimates of heritability with imputed SNPs had very high standard errors.
For genomic position and pathway analyses, results from imputed data were similar to those
described above for genotyped data, with a trend to higher heritability estimates in genic
versus intergenic regions for the severity of peripheral newropathy (Supplemental Table 3)
and in the GO Axonogenesis set for severity of peripheral neuropathy (Supplemental Tables
4~ 06).

Discussion

These results suggest that a portion of variation in severity and onset of paclitaxel-induced
sensory peripheral neuropathy is captured by additive effects of common SNPs in this
clinical trial population. Previous studies have indicated that heritability is driven primarily
by SNPs in genic regions*, and a similar trend is found in our study. Within genic regions,
we also noted a higher proportion of variance in severity and onset of peripheral neuropathy
captured by SNPs in intronic regions (data not shown), but it is unclear whether this is due
to a bias in the design of the genotyping chip or true bias in the genomic location of SNPs
associated with paclitaxel induced neuropathy. If real, the enrichment of heritability signal
in introns suggests that the majority of causal SNPs have subtle biological effects — for
example, small changes in expression or stability that may be regulated by intronic SNPs,
rather than overt changes in protein structure or function caused by variation in exons. This
is consistent with a polygenic model in which many small, additive effects together
contribute to the phenotype.

Further, a set of genes was identified that drive a substantial portion of the heritability of
severity of paclitaxel-induced peripheral neuropathy, implicating axonogenesis, and more
specifically the regulation of axon outgrowth, in the pathophysiology of this adverse event.
These results are supported by evidence from human biopsies, electrophysiological studies,
and animal and cell-based models that paclitaxel causes a distal axonopathy, in which the
degeneration of axons occurs first at axon ends. This pattern of neuronal damage is
consistent with a length-dependent neuropathy, targeting the long axons that extend into the
hands and feet first, as typically occurs with paclitaxel induced neuropathy*!~*4. Further,
there is evidence that demyelination and ganglionopathy, if they do occur, are secondary to
axon damage*!- 4443, The current results suggest that susceptibility to paclitaxel-induced
neuropathy is caused in part by heightened sensitivity to or reduced capacity to repair this
distal axon damage.
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Of the 44 genes in the GO Axon Extension and GO Regulation of Axonogenesis overlap set
(Supplemental Table 7), a number have been implicated in neuropathy, including hereditary
neuropathy genes (MAP1B*, NGF*? FXN8), genes with variants or expression signatures
associated with diabetic or HIV-induced peripheral neuropathy (APOE*® 50, MAPTY!,
CDH4%1), genes involved in neurological pain pathways (MT3°2, TRPV2%3, CCR5%4,
CXCL12%), and genes involved in response to or repair/prevention of peripheral nerve
damage (RYK3S, SLITI®7, NTRK3%8, NGF3% 60, TRPV253 NTNI6! NDEL162). The majority
(38) of these 44 genes fall in the GO term Regulation of Axon Extension (GO 0030516),
which is a subset of both GO Regulation of Axonogenesis and GO Axon Extension.

The pathway results are also consistent with gene expression analyses in mouse and human
studies of diabetic neuropathy. In a study examining the pathophysiology of diabetes-
induced neuropathy the GO Axonogenesis term was identified as an overrepresented
pathway in a differential expression analysis in the db/db vs db/+ mouse sciatic nerve!,
Similarly, the GO Regulation of Axonogenesis term was identified as an overrepresented set
in genes up-regulated in sural nerve biopsies from patients with advanced progression of
diabetic neuropathy®3. Although neuron damage is caused by different mechanisms in
diabetes and following paclitaxel treatment, these results suggest that susceptibility to
sensory peripheral neuropathy is driven by the same sets of genes.

Despite success in estimating heritability for paclitaxel-induced neuropathy and identifying
a subset of the genome driving this heritability, some limitations in available methods and
data are noted. One of the primary limitations of any pathway or gene set based analysis is
the gene set definitions available. All available set definitions are limited by current
knowledge about the pathway in question, and well curated sets are restricted to those
pathways of interest to researchers. Further, the number of SNPs captured per gene varies,
either because of true differences between number of variants or haplotype structure
between genes, or because of differences in coverage between genes on the genotyping
platform that was used. Such variability in local coverage is known to be a limitation in all
commercial genotyping platforms®*. While imputation of missing SNPs did increase SNP
density in each set, heritability estimates with imputed data were close to those with just
genotyped data; because of the high imputation quality threshold used (r2 > 0.9), it is likely
that additional SNPs are in high LD with genotyped SNPs, adding little additional
information. For onset of peripheral neuropathy, no significant signal of heritability was
detected in any of the pathways tested, either because genes driving heritability of onset of
neuropathy are in a pathway we did not select, or because the use of deviance residuals from
the Cox proportional hazards regression rather than a direct proportional hazards regression
did not adequately model the data. It is also possible that one or more of the selected
pathways is incompletely annotated. Gene Ontology terms are annotated using a
combination of experimental evidence and computational analyses, and can be both
manually and electronically annotated32 63, The extensive set of sources for term annotation
makes Gene Ontology the most comprehensive source of annotated terms available, but also
contributes to significant noise (incorrectly assigned genes) being built into the terms.
Unfortunately, highly accurate manually annotated gene sets are currently limited, and those
that exist reflect the current body of knowledge regarding a given pathway. The Gene
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Ontology was the only database that included gene sets for each of the peripheral
neuropathy mechanisms of interest, For the GO set Axonogenesis, more restrictive set
definitions were investigated, including limiting pathway genes to those annotated to
Axonogenesis by experimental evidence and those that were direct associations. The GO
Axonogenesis experimental set gave an estimate of heritability significantly lower than that
derived from the complete gene set (8% vs 22% for the complete set), suggesting that using
a more conscervative gene annotation would result in loss of power (Supplemental Table 8).

The standard errors for the whole-genome heritability analyses are high due to the limited
sample size. Large sample sizes are difficult to obtain in genomic studies of drug toxicities,
since recruitment into these studies is often limited to existing clinical trials. However, by
narrowing in on the “causative” SNPs, signals of heritability were obtained even with
relatively small sample sizes. In this study, constraints were also imposed by the linear
mixed modeling method applied, which requires a continnous or dichotomous phenotype.
Although severity of neuropathy is best modeled as an ordinal variable, it is treated as a
continuous quantitative variable for the purpose of this study. Likewise, onset of neuropathy
is best fit in a survival model but deviance residuals from a survival model were used as a
continuous trait in the current analysis. Despite these limitations, the results from the
modified phenotype definitions are likely close to those that would be estimated from the
application of non-linear phenotype definitions. For example, effect estimates for SNPs in
biological pathways from severity of neuropathy modeled as a linear or ordinal variable
(Supplemental Figure 3) or onset of neuropathy modeled as a linear phenotype or time-to-
event analysis (Supplemental Figure 4) are highly correlated (12 = 0.91 and 0.97,
respectively). However it is important to note that, because of the constraints on the
phenotype definition, we treat heritability estimates obtained from our analyses simply as an
indication of association between a certain sets of SNPs and our phenotypes of interest,
rather than absolute measures of percent of variance explained by a particular SNP set.
Finally, a gene boundary cutoff of 10 kb was selected to ensure that the SNPs are associated
with the genes in our pathway (as opposed to a neighboring gene), though at the cost of
losing potential causative SNPs in upstream and downstream regulatory regions of a gene.
Because most genetic variability appears to be explained by SNPs in or near genes*? our
approach likely captures a significant fraction of the variability explained by the genes in a
given set.

In summary, these results suggest that there is a heritable component to the severity and
dose to onset of paclitaxel-induced sensory peripheral neuropathy. Further, genes involved
in axon outgrowth may modulate the severity of paclitaxel-induced neuropathy.
Understanding the mechanisms and pathways involved in susceptibility to paclitaxel-
induced sensory peripheral neuropathy will help identify therapies that can mitigate the
toxicity and guide future drug development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Distribution of sensory peripheral neuropathy in the study population

The distribution of the highest reported grade of sensory peripheral neuropathy is shown for
849 unrelated genetic Europeans from the paclitaxel arm of CALGB 40101. Toxicity is
measured using the NCI-CTCAE Scale v2.
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Figure 2. Heritability estimates for severity and onset of paclitaxel-induced sensory peripheral
neuropathy for SNPs in genic and intergenic regions
Total genomic variance for both severity and onset of neuropathy was partitioned onto genic
and intergenic regions. The error bars denote the SE for the heritability estimates.
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Figure 3. Heritability estimates for severity of paclitaxel-induced sensory peripheral neuropathy
for SNPs in selected GO biological pathways
Heritability was estimated for sets of SNPs within all pathways contained within the GO

Axonogenesis pathway. Results are shown (heritability + SE) for those pathways with
significant (P < 0.05) heritability signals. The heritability estimates for the intersection
between and union of the Axon Extension and Regulation of Axonogenesis are also shown.
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Heritability estimates for severity of paclitaxel-induced sensory neuropathy using SNPs in biological pathways implicated in the toxicity

Table 1

Heritability Estimates Pathway Characteristics

Pathway

VG)vp)! SE P2 padi’ Empirical P4 #Genes Size (Mb) #SNPs
GO Axonogenesis 0.213 0.120 0.040  0.28 0.011 502 78.0 17,581
GO Impulse Transmission 0.000 0.122  0.500 1 0.999 746 106 22,886
GO Myelination 0.029 0.035 0.200 1 0.255 75 6.86 1,336
Congenital Peripheral Neuropathy 0.000 0.030  0.500 1 0.999 40 4.03 947
Paclitaxel Phanngxcokmencs/ 0.011 0017 0300 I 0221 10 120 402
Pharmacodynamics
5O Mitochondrial Transport and 0012 0055 0400 | 0.545 274 197 3668

rganization

GO Microtubule Related Processes 0.000 0.072  0.500 1 0.999 34 3.5% 5,775

Heritability was estimated for sets of SNPs within £10 kb of genes in biological pathways implicated in the pathophysiology of paclitaxel-induced sensory peripheral neuropathy. The congenital
neuropathy and paclitaxel pharmacokinetics/pharmacodynamics pathways were manually constructed from the literature.

2 . . .
P-value from GCTA. Software upper limit for p-value is 0.5; maximal values are noted as 1.

3 .
P-value corrected for seven observations.

4 . .
P-value from permutation analysis.
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