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statistically associated with these two age groups, although
CNS invasion at diagnosis was more frequently observed in
the older age group. There was no isolated extramedullary
relapse in older-adolescents, and only one patients with
CNS-1 at initial evaluation suffered combined bone mar-
row and CNS relapse. Thus, the cumulative incidence of
CNS-related relapse of older-adolescents was as low as
2.5+ 25 % at 8 years after diagnosis. In the younger-
adolescents, 7 (7.5 %) of 93 relapses were CNS-related,
which resulted in the cumulative incidence of 2.1 + 0.8 %
at 8 years.

The difference in the cumulative incidence of NRM at
8 years was also not statistically significant (4.6 = 1.2 %
for the younger-adolescents and 7.5 + 4.2 % for the
older-adolescents, p = 0.15). Although 11 patients who
were aged <10 years died during induction therapy, death
during induction therapy was observed in only one of
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younger-adolescents, and no older-adolescent died during
induction therapy. Severe toxicity which resulted in dis-
continuation of protocol therapy occurred in 4 (1.2 %) of
younger-adolescents (including 2 pancreatitis) and 1
(2.4 %) of older-adolescent (due to pancreatitis), whereas
13 (1.2 %) of patients who were aged <10 years could
not continue because of toxicity (1 allergy and no
pancreatitis).

In the younger-adolescents, 48 patients received allo-
geneic HSCT during the first CR, and 14 relapses and 5
NRM were observed, which resulted in EFS of
62.4 &= 7.0 %, whereas 3 relapses and no NRM after HSCT
were observed in 11 older-adolescents who undertook
allogeneic HSCT during the first CR, and EFS at 8 years of
these patients was 70.0 £ 14.5 %.

Secondary neoplasms occurred in 4 patients (2 acute
myeloblastic leukemia, 1 myelodysplastic syndrome, and
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1 tongue carcinoma) among younger-adolescents and 1
patient (breast cancer) among older-adolescents.

Multivariate analysis of EFS did not reveal a statistically
significant difference between the younger-adolescents and
the older-adolescents (Table 3). Early response to treat-
ment was a significant prognostic factor (hazard ratio for
event was 1.81, p = 0.02). There was a high probability
(86.7 £ 8.8 %) at 8 years of EFS for patients with VGPR
in patients aged 15-18 years (n = 16).

Table 3 Multivariate analysis of the risk factors for event-free sur-
vival in patients aged 10 years or older

Characteristics Hazard ratio (95 % CI) p value
Patient age

10-14 years 1

15-18 years 0.92 (0.53-1.61) 0.77
Treatment

1.95-14 1

L99-15 0.95 (0.63-1.43) 0.80

1.99-1502/L.04-16 1.30 (0.79-2.14) 0.30
WBC at diagnosis

<100000 cells/pl 1

>100000 cells/pl 1.25 (0.76-2.04) 0.38
Immunophenotype

Non-T 1

T 1.04 (0.96-1.65) 0.85
PB blast on day 8

<1000 cells/ul 1

>1000 cells/ul 1.81 (1.12-2.93) 0.015

WBC white blood cell, PB peripheral blood, CI cumulative incidence

Discussion

Several studies showed that pediatric-type intensive che-
motherapy improves the prognosis of adolescents with
ALL, but the outcome of adolescent aged 15 years or older
is still not satisfactory [8]. However, there is no consensus
on an optimum treatment strategy for these patients
because of insufficient data. Therefore, accumulating
clinical features is important to resolve this issue. The
retrospective analysis of three consecutive TCCSG trials
presented in this study demonstrates that long-term out-
comes for children aged 15-18 years were comparable
with those aged 10-14 years.

Older children with ALL generally exhibit high-risk
factors such as high leukocyte count and T-cell phenotype.
In this study, we show that patients aged 10 years or older
had a higher frequency of the TCF3-PBXI fusion in our
cohort and that the frequency was not significantly differ-
ent between younger-adolescents and older-adolescents.

Consistent with the outcomes of adolescent patients with
ALL treated according to Dana-Farber Cancer Institute
(DFCT) ALL Consortium Protocols [10], the EFS proba-
bility curves in TCCSG trials were superimposable for
patients aged 10-14 and 15-18 years in our cohort and
were reproducible for each treatment protocol. One of the
distinctive features of DFCI treatment regimens is the use
of  intensive  asparaginase (total  doses  of
525000~750000 U/mz) and anthracycline (60-360 mg/mz).
Although asparaginase is one of the most important agents
for the treatment of ALL, adolescent patients have
increased rates of asparaginase-related toxicity such as
pancreatitis and thrombosis [18, 19, 27]. In contrast, a
significant feature of our treatment regimen was intensified

Table 4 Cumulative doses of chemotherapy during induction and consolidation therapy

CALGB 8811 LALA 94 CCG 1882 FRALLE 93 DFCI 9101/0501 TCCSG L95-14/1.99-
15/1502
PSL (mg/m?) 1260 840 1680 2540 1240-7240 2100-3480
DEX (mg/m?) 140 320 210 140 0-900 84-740
VCR (mg/m?) 22 (mg) 11.2 (mg) 19.5-37.5 10.5° 26 10.5-22.5
L-ASP (U/m?) 84000 90000 90000-348000 132000 525000-750000  84000-244000
Anthracyclines® 202 396 86-158 249 60-360 155-243
(mg/m®)
CPA (mg/m?) 4200 12500 3000-4000 0 0 2400-4600
Age 16-20 years 15-20 years 16-20 years 15-20 years 15-18 years 15-18 years (n = 41)
(n = 124) (n = 100) (n = 197) (n=177) (n = 51)

EFS
(O]

34 % at 7 years
46 % at 7 years

41 % at 5 years
45 % at 5 years

63 % at 7 years
68 % at 7 years

67 % at 5 years
78 % at 5 years

78 % at 5 years
81 % at 5 years

67.5 % at 8 years
70.7 % at 8 years

Chemotherapy during maintenance is not included

& Anthracycline was calculated as adriamycin equivalent

® Eighteen and 12 mg/m? of vindesine (VDS) were scheduled in the FRALLE93 and the TCCSGL04-16, respectively
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induction, including cyclophosphamide and block consol-
idation, with a relatively decreased total dose of asparagi-
nase  (84000-244000 U/m*)  and  anthracycline
(155-243 mg/m* of adriamycin equivalent) compared with
the DFCI treatment regimen. Summary of total dose of
chemotherapeutic agent and outcome of adolescent ALL is
listed in Table 4 [10, 15, 16]. Our results demonstrate that
TCCSG treatment regimens, which contained moderate
doses of asparaginase and anthracycline, achieved com-
parable outcome for adolescents aged 15-18 years.

Of note, approximately 30 % of our older patients
received HSCT during their first remission. Although a
previous report suggests an advantage of allogeneic HSCT
during the first remission in young adults [28, 29], pedi-
atric-type chemotherapy can minimize the indication for
allogeneic HSCT in adolescents [19, 30] to avoid acute and
late complications. Our analysis showed that early response
to treatment was a strong prognostic predictor in adoles-
cents and the outcomes were excellent for patients with
very good responses. Therefore, determining minimal
residual disease kinetics [31] may be useful for developing
a more refined stratification strategy, including limited
indication for allogeneic HSCT.

According to the TCCSG registration data, only 41
(2.4 %) of 1,725 patients were aged 15-18 years. A popu-
lation-based analysis from the Austrian study group inclu-
ded 6 % of 15 years or older ALL patients among 18 years
or younger [11], and children’s Oncology Group showed
that their clinical trials included 7 % of 15 years or older
among younger than 22-year-old ALL patients [8]. In most
countries, the percentage of adolescents who enter clinical
studies is lower compared with that of younger children
[32-35]. Therefore, to clarify comprehensive clinical
characteristics of adolescents with ALL, enrollment in
clinical studies is essential. Collaboration between pediatric
and adult study groups is required to obtain a comprehen-
sive understanding of the characteristics of adolescents and
young adults with ALL. More attention should be paid to
young adults that are older than 18 years. A prospective
collaborative trial is in progress in Japan [36].

Adverse events are generally more problematic in older
patients, such as osteonecrosis, thrombotic events, and infec-
tion [10, 19]. It is very important to assess how these adverse
events affect the quality of life by conducting prospective
studies to avoid poor medical compliance of older children.

In conclusion, we suggest that the clinical characteristics
and treatment outcomes of adolescents aged 15-18 years
are similar to those of children aged 10-14 years. There-
fore, our treatment backbone, intensive induction, and
block-type consolidation can be adopted for adolescents,
although further prospective studies and biological inves-
tigations are required for treatment optimization, including
a minimized indication for administering allogeneic HSCT.
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An Overall Characterization of Pediatric Acute
Lymphoblastic Leukemia with CRLF2 Overexpression
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For an overall characterization of pediatric B-cell precursor acute lymphoblastic leukemia (BCPALL) with CRLF2 overex-
pression (OE), we conducted genetic analysis of CRLF2 in 167 pediatric BCPALL patients. CRLF2 OE was detected in 30
(18%) of 167 patients, the P2RY8-CRLF2 fusion was identified in only 3 (1.8%) of 167 patients, all of which demonstrated
CRLF2 OE. Moreover, CRLF2 gain was identified in |8 (11%) of 167 patients. Messenger RNA sequencing revealed a novel
fusion transcript, CSF2RA-CRLF2, in a case with CRLF2 OFE, suggesting that this fusion is associated with CRLF2 OE. In sur-
vival analysis, no significant differences in 5-year event-free survival (EFS) and overall survival were observed between
patients with and without CRLF2 OE (70.7 vs. 75.4%, log rank P = 0.68 and 96.4 vs. 82.1%, log rank P =0.11, respectively).
However, a significant difference in 5-year EFS between CRLF2 OE patients with and without IKZF| deletion was observed
(44.4 vs. 83.1%, log rank P=0.02). In multivariate analysis, only IKZF| deletion was a significant predictor of inferior OS
(hazard ratio: 2.427, P = 0.04).These findings suggest that CRLF2 OE is not an independent prognostic factor in pediatric
BCPALL.  © 2014 Wiley Periodicals, Inc.
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(Mullighan et al., 2009a; Cario et al., 2010; Harvey
et al., 2010a; Ensor et al., 2011; Chen et al., 2012;
Palmi et al., 2012). However, it is controversial
whether alterations of CRLFZ2 can be considered
independent indicators of poor prognosis. To
address this issue, multivariate analysis of these
adverse genetic alterations, including CRLF2 OE,
IKZF deletion, and BCR-ABLI-like GEP, in uni-
formly treated patients will be required to evalu-
ate their independent prognostic value (Harvey
et al., 2010a; Ensor et al., 2011; Schwab et al,
2013; van der Veer et al., 2013; Yamashita et al.,
2013). Here, to assess the independent prognostic
value of CRLFZ2 OE and genetic alterations involv-
ing CRLF2, we conducted genetic analysis of
CRLFZ in 167 pediatric BCPALL patients treated
according to the Japan Association of Childhood
Leukemia Study (JACLS) ALL02 protocol.

MATERIALS AND METHODS

Patient Cohort and Samples

BCPALL patients, from whom DNA and RNA
extracted from diagnostic bone marrow or periph-
eral blood samples was available, were included in
this study (z=167). All patients were treated
according to the JACLS ALLO2 study protocol
(Suzuki et al., 2010; Hasegawa et al., 2011). Diag-
nosis of BCPALL was based on morphological
findings in bone marrow aspirates and immuno-
phenotype analyses of leukemic cells by flow
cytometry. Conventional cytogenetic analyses
using G-banding and molecular studies were part
of the routine work-up (Suzuki et al., 2010; Hase-
gawa et al, 2011). Bone marrows smears were
examined by microscopy on days 15 and 33 (end
of the induction phase) to evaluate treatment
response. M1, M2, and M3 marrow were defined
as fewer than 5, 5-25, and more than 25% blast
cells in the bone marrow aspirate, respectively.
Cases of BCR-ABLI-positive, infant, and Down
syndrome-associated ALL were excluded from
this study. Informed consent was obtained from
the guardians of patients, according to the Decla-
ration of Helsinki and treatment and genetic study
protocols were approved by the institutional
review boards of the participating institutes.

Detection of CRLF2 OE, P2RY8-CRLF2 Fusion, and
F232C Mutation in CRLF2

Real time quantitative polymerase chain reac-
tion (RQ-PCR) of CRLFZ was conducted as previ-
ously described (Asai et al., 2013). CRLFZ2-OE was

Genes, Chromosomes & Cancer DOI 10.1002/gcc
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defined as an expression level 10-fold or greater
than the median expression value in all patients
(Harvey et al.,, 2010a; Yamashita et al., 2013). The
P2RYS-CRLF?2 fusion was detected by reverse
transcriptase (RT)-PCR or the SALSA multiplex
ligation-dependent probe amplification (MLPA)
kit P335-A4 (MRC Holland, Amsterdam, Nether-
lands), as previously described (Asai et al., 2013).
The presence of the CRLF2 F232C point muta-
tion was detected by direct sequencing in cases
with CRLFZ OE, as previously described (Asai
et al., 2013).

Determination of IKZFI Deletion, CRLF2 Gain, and
JAK2 Mutation

IKZF] deletions and copy numbers of CRLFZ
were determined by MLPA analysis, as previously
described (Schwab et al., 2010; Asai et al., 2013).
Screening of JAKZ exons 16, 20, and 21 (gene
accession number NM 004972) mutations was per-
formed in patients harboring /KZF1 deletions, as
described previously (Asai et al., 2013).

Messenger RNA Sequencing (mRNA-seq)

For the determination of unrevealed genetic
alterations causing CRLFZ2 OE, mRNA-seq was
performed in seven CRLF2 OE patients harboring
IKZF1 deletions, where sufficient RNA samples
were available, according to previously described
methods (Masuzawa et al., 2014).

5'-Rapid Amplification of cDNA End (5'-RACE)

For determination of unknown 5 partners of
CRLF2, 5-RACE was performed in nine of 10
CRLF2 OE patients without P2ZRYS-CRLF?2 fusion
and CRLF2 gain, where mRNA-seq was not per-
formed, according to the manufactured protocol
(5'-Full Race Core Set, Takara Bio, Tokyo, Japan).
The primer pairs used in this analysis are listed in
Supporting Information Table 1.

Statistical Analyses

Estimation of survival distributions was per-
formed by the Kaplan-Meier method and differ-
ences compared using a log rank test. A P value
<0.05 (two-sided) was considered significant.
Event-free survival (EFS) was defined as the time
from diagnosis to any event (death from any cause,
relapse, secondary malignancy, or failure to
respond to therapy). Overall survival (OS) was
defined as time from diagnosis to death of any
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TABLE |. Association of Genetic Features with CRLF2 Overexpression

CRLF2 overexpression

P value
Yes% No%
Total 30 137
Karyotype <0.01
No fusion genes 26 86.7 80 584
(Normal karyotype) 8 26.7 31 22,6
(Hyperdig!oidltripie trisomy)” 8 26.7 7 5.1
(Others) 6 20.0 29 212
{Undetermined) 4 13.3 13 9.5
Fusion genes 4 13.3 57 41.6
(ETV6-RUNXI) 0 0.0 25 18.2
(TCF3(E2A)-PBX1) 0 0.0 24 17.5
(1 1q23/MLL fusion) 2° 6.7 8 5.8
(P2RY8-CRLF2) 3 10.0 0 0.0
CRLF2 gain I 36.7 7 5.1 <0.01
IKZF! deletion 9 30.0 16 1.7 0.02

*Triple trisomy indicates trisomy 4, 10, and |7.

PKaryotype other than normal karyotype, hyperdiploid, triple trisomy, and |1q23 abnormality, showing negative results after screening for the chi-

meric fusions described in the text.
“One patient had both MLL-AFFI and P2RY8-CRLF2 fusions.

cause or last follow-up. Patients with no events of
interest were censored at the date of last contact.
Hazard ratios for probability of relapse between
subgroups were calculated using a univariate Cox
model. Multivariate analysis was performed using
a Cox regression model, adjusted for other risk fac-
tors, including age at diagnosis, initial WBC count,
NCI risk, M3 bone marrow status at day 15, and
IKZF1 deletion. Other comparisons were per-
formed using the }(2, Fisher exact, and Mann-
Whitney U tests, as appropriate.

RESULTS

Genetic Features of Patients with CRLF2 OE

The chromosomal and genetic features of the
167 patients included in this study are provided in
Table 1. CRLF2 OE was identified in 30 (18%) of
patients. Recurrent fusion genes, including E7V6-
RUNXI and TCF3-PBXI, were absent in patients
with CRLF2 OE (0 vs. 36%, P < 0.01), consistent
with previous reports (Russell et al., 2009; Yoda
et al., 2010; Ensor et al., 2011; Palmi et al., 2012;
Schwab et al., 2013). In contrast, two of the 10
cases with chromosome 11g23 abnormalities
showed CRLF2 OE. A PZ2RYS-CRLFZ fusion was
identified in three patients, one of whom also har-
bored a MLL-AFFI fusion (Table 1). Thus, 26 of
30 patients with CRLFZ OE did not carry recur-
rent fusion genes. Karyotype was determined by
G-banding analysis in 22 of the 26 CRLF2-OE
patients without recurrent chromosomal abnormal-
ities (Table 1). Eight of these were identified as
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having normal karyotypes, a similar percentage to
that of patients without CRLFZ OE (36 vs. 46%,
P=0.42). Interestingly, a high hyperdiploid
(HHD) karyotype was identified in eight of the
remaining 22 patients, which was significantly
more than in the non-CRLF2 OE patients (36 vs.
10%, P =0.005). In terms of genetic alterations
related to high risk BCPALL, MLPA analysis
revealed /KZF7 deletions in 25 (15.0%) of 167
patients. /KZF7 deletion was more common in
CRLE2 OFE than in non-OFE patients (30 vs. 12%,
P=0.02, Table 1, Fig. 1). JAKZ activating muta-
tions were not identified in any of the 25 patients
with /KZF7 deletions.

Genetic Alterations Related to CRLF2 OE

CRLF? gain was identified in 18 (11%) of 167
patients by MLPA analysis and was significantly
more common among CRLFZ OE patients than
non-OE patients (11/30 [37%] vs. 7/137 [5%)],
P<0.01; Table 1). In addition, none of the
patients with CRLFZ gain had a deletion of
IKZFI. Interestingly, seven of 11 CRLF2 OE
patients with CRLFZ gain had a HHD karyotype,
suggesting the presence of an extra copy of the
sex chromosome. A PZRYS-CRLF2 fusion gene
was detected in three (1.8%) of 167 patients, all of
whom were in the CRLF2 OE group. One of the
three PZRYS-CRLF2-positive patients also carried
an /KZF1 deletion and another harbored an MLL-
AFF1] fusion gene (Table 1). Thus, 13 (43%) of 30
patients with CRLFZ OE had either CRLF2 gain

Genes, Chromosomes & Cancer DO 10.1002/gec
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Figure .

CRLF2 expression levels measured by RQ-PCR. Red box, patients demonstrating

CRLF2 overexpression; yellow triangle, patients with IKZF/ deletion.; green circle, patients with

the P2RY8-CRLF2 fusion.

or carried the PZRYS-CRLFZ fusion. We also
assayed for the CRLF2 F232C point mutation in
14 of the 30 CRLF2 OE patients with sufficient
DNA sample available, no mutations were
detected. To determine other genetic alterations
leading to CRLFZ OE, we performed mRNA-seq
on seven of the 17 CRLF2 OE-positive patients
who did not have other genetic alterations of
CRLF2 and for whom sufficient RNA samples
were available. Although we did not identify any
known fusion transcripts, for example, [lgH-
CRLF2, we found that one patient had a novel
fusion transcript, CSFZRA-CRLFZ2, which was asso-
ciated with a 32 kb deletion, spanning from the
region 5 of CRLFZ to its first intron, resulting in
the absence of the CRLF2 promoter region. This
result was confirmed by RT-PCR and Sanger
sequencing (Figs. 2A-2D, Supporting Information
Table 1). Thus, we observed no genetic alteration
of CRLFZ in six of seven patients with CRLF2 OE
assayed by mRNA-seq. Of interest, mRNA-seq
and RT-PCR identified three EBF/-PDGFRB
positive cases among these six patients. Next, we
performed 5'-RACE in nine of 10 patients without
CRLF2 gain, P2ZRY8-CRLF2, and CSFZRA-CRLF2.
However, we could not find any CRLFZ rearrange-
ments in these patients (data not shown). We can-
not exclude the possibility of [gH-CRLFZ fusions
in the remaining one patient with CRLF2 OE, as
there was insufficient material for 5¥-RACE and
FISH analysis. The summary of the genetic altera-
tions related to CRLFZ OF is presented (Fig. 3).

Clinical Features of Patients with CRLF2 OE

The comparison of the characteristics of
patients with or without CRLF2 OE is provided in
Supporting Information Table 2. Significant differ-
ences in age at onset, initial WBC count, and NCI

Genes, Chromosomes & Cancer DOT 10.1002/gec
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risk, which are well-known prognostic factors for
pediatric BCPALL, were not observed. There
were also no significant differences in treatment
responses, including initial prednisolone response,
frequency of M3 at day 15 in induction phase, and
remission—induction rate. In survival analysis, no
significant differences in 5-year EFS or OS were
observed between patients with and without
CRLF2 OE (70.7%, CI 49.7-84.2 vs. 75.4%, CI
67.2-81.9, log rank P =0.68; 96.4%, CI 77.2-99.5
vs. 82.1%, CI 74.5-87.6, log rank P =0.11; Table
2, Figs. 4A-4B).

Survival Analysis of BCPALL Patients According
to CRLF2 OE and CRLF2 Genetic Alterations

To determine the prognostic significance of the
genetic alterations observed in patients with
CRLFZ OE (7= 30), survival analyses were per-
formed. Initially, we hypothesized that a particular
type of CRLF2 alteration was associated with poor
prognosis. Thus, we focused on CRLIFZ gain and
PZRYS-CRLF?2 fusion. However, neither of these
features had prognostic impact on 5-year EFS or
OS (Table 2). Next, we evaluated whether con-
comitant /[KZF] deletion affected the prognostic
significance of CRLF2 OE. Interestingly, 5-year
EFS and OS of the CRLF2 OE patients with
IKZF]1 deletions (7 =9) was inferior to that of
those without /KZF 1 deletion (z = 21) (Figs. SA-
5B). None of the CRLF2 OE patients with CRLF?
gain also carried an /KZF7 deletion. In univariate
analyses of 167 patients, age at diagnosis and NCI
risk were associated with inferior EFS and OS
(Table 3). The M3 bone marrow status at day 15
was also a strong predictor for inferior EFS in uni-
variate analysis. In terms of genetic alterations,
univariate analysis revealed that neither CRLFZ
gain nor P2RYS-CRLFZ2 fusion were associated
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Figure 2. (A) Sequence of fusion junctions determined by mRNA-seq. (B) CSFZRA-CRLF2 rear-
rangement detected by RT-PCR. (C) Sanger sequencing results of CSF2RA-CRLF2 fusions. (D) Sche-
matic representation of the CSF2RA-CRLF2 genomic rearrangement.

with poor EFS or OS. By contrast, /KZF1 deletion
was strongly associated with poor EFS in univari-
ate analysis (Table 3). In muluvariate analysis of
167 patients, only /KZF7 deletion was a significant
predictor of inferior OS (hazard ratio 2.427, 95%
CI 1.037-5.679, P = 0.04; Table 3). Collectively,
the concomitant presence of both IKZF7 deletion
and CRLFZ2 OE was associated with poor outcome.

DISCUSSION

In this study, we found CRLF2 OE in 30 of 167
(18%) patients, only three of which (10%) carried
the PZ2RYS-CRLFZ2 fusion gene. We were unable
to screen all samples for the I[gH-CRLFZ fusion
due to lack of material for FISH analysis. How-

81

ever, mRNA-seq and 5-RACE did not identify
this fusion in 29 of 30 CRLFZ OE patients. As part
of this study, we identified a novel, rare chimeric
fusion transcript, CSFZRA-CRLFZ in the patient
with the second highest CRLFZ2 expression level,
as measured by RQ-PCR (Fig. 2A). Sequence
analysis indicated that the CRLF2 promoter region
was deleted, suggesting that an enhancer of
CSF2RA may control the expression level of
CRLFZ? in this patient (Figs. 2B-2D). However,
the majority (16 of 20) of patients were found not
to have CRLFZ rearrangements by mRNA-seq and
RT-PCR, which is a greater proportion than
reported from the Children’s Oncology Group
(COG; 93/186) and the Berlin—Frankfurt—M{inster
group (BFM) (2/36) studies (Cario et al., 2010;

Genes, Chromosomes & Cancer DOI 10.1002/gec
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i CRLFZOE(n=30)

IKZF1deletion (+) (n=9)

@m | JKZFdeletion (-) (n=21)

P2RYE-CRLFZ2(n=1) { Unknown (n=1)
CSF2RA-CRLFZ{n=1) {| No-CRLFZrelated
alteration{n=6%)

R (=1

P2RY8-CRLFZ
-+ MLL-AFFI

| P2RYE-CRLF2Y CRLFZgain (n=1) |

[ No-CRLF2relatedalteration (n=9) |

Figure 3. Summary of genetic alterations in 30 patients with CRLF2 overexpression. OE, over-
expression. * Including three patients with EBF/-PDGFRf fusions. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

TABLE 2. Five-Year Event-Free Survival and Overall Survival
of CRLF2 OE Patients According to Genetic Alterations
Related to CRLF2 OE

Survival, % (95% Cl) at 5 years

N Event-free Overall

Total 30
CRLF2

Gain (+) i 78.8 (38.1-94.3) 100

Gain (—) 19 66.7 (40.4-83.4) 94.4 (66.6-99.2)
P2RY8-CRLF2

Positive 3 66.8 (54.1-94.5) 100

Negative 27 71.3 (48.8-85.2) 96 (74.8-99.4)
IKZF1
Deletion (+) 9 444 (13.6-71.9) 88.9 (43.3-98.4)
Deletion (—) 21 83.1 (55.9-94.3) 100

Cl, confidence interval

Chen et al., 2012). Chen et al. (2012) reported that
CRLF2 OFE was found in 186 of 1,061 (17%) pedi-
atric BCPALL patients by RQ-PCR analysis,
which is similar to our findings. Conversely, the
frequency of CRLFZ OE in our study was higher
than that reported from the BFM study group (49/
555, 8.8%; Cario et al., 2010). Although the cutoff
was set between positivity and negativity for
P2RYS-CRLFZ2 and IgH-CRLFZ in these two stud-
ies, the frequency of CRLFZ OE was different.
These findings suggest that CRLFZ expression
levels might vary among patients with the same
fusion, due to the number of fusion-positive
clones. In fact, CRLF2 expression levels tend to
be low in patients harboring a CRLFZ2 rearrange-
ment in a minor clone (Cario et al., 2010), which
may account for the range of CRLFZ high expres-
sion reported. Previously, we found that CRLFZ
rearrangements occur with a low frequency in a
Japanese pediatric BCP-ALL cohort (Asai et al,
2013). Here, we confirmed a low frequency of
P2RYS-CRLFZ? (3/30, 10%) fusion, considerably
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below those in reported by the COG (65/186,
34.9%) and BFM (21/49, 42.9%) study groups.
Interestingly, Yamashita et al. (2012) also
described a similar frequency of PZRYS-CRLEZ2
positive patients with CRLF2 OE (2/15; 13.3%) in
another Japanese pediatric BCPALL cohort. In
addition, Harvey et al. (2010a) also described an
association of Hispanic ethnicity with CRLFZ rear-
rangement. These findings suggest that the fre-
quency of CRLF2 rearrangement may be
associated with ethnic differences. Previous
reports have also described that /gH-CRLF2 was
much less frequent than PZRYS-CRLFZ (0.7 vs.
3.8%, 1 vs. 5%, and 2.9 vs. 6.1% in BFM, the
United Kingdom Medical Research Council
(MRC), and COG studies, respectively; Cario
et al,, 2010; Ensor et al., 2011; Chen et al., 2012).
Thus, it is unlikely that we would have found
more patients with /gH-CRLFZ than those with
P2RYS8-CRLF?Z in this study.

Interestingly, GRLF2 gain was the most fre-
quent genetic alteration identified in relation to
CRLF? OE in this study (11/30, 37%; Table 1).
Cario et al. (2010) reported that nine of 45
(20%) CRLFZ? OE patients had an extra copy of
CRLF2, but none of these was among the 25
patients with the highest expression levels
CRLF2. Chen et al. (2012) also found that 102
of 168 (61%) CRLFZ OE patients had an extra
copy of the sex chromosome or CRLF?Z itself.
They determined that this copy number gain
occurred with almost equal frequency in the
CRLFZ OE group, irrespective of the presence
of CRLF2 rearrangement. Thus, it is not entirely
clear whether the presence of an extra copy
affects the expression levels of CRLFZ. How-
ever, in this study, only one of 11 patients car-
ried a PZ2RYS-CRLFZ fusion gene (Fig. 3). In
addition, all of them had a higher CRLFZ
expression than the CRLFZ expression level of
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Figure 4. (A) Probability of EFS for patients with or without CRLF2
overexpression. (B) Probability of OS for patients with or without
CRLF2 overexpression.

the P2RYS-CRLFZ fusion-positive patient (data
not shown). These findings suggest that CRLFZ
gain itself contributes to the high expression of
CRLF2 in this cohort. Collectively, CRLFZ rear-
rangements  (including PZRYS-CRLF2, IgH-
CRILF2, and rare fusions) and CRLFZ gain seem
to be the major genetic alterations of CRLF2
that induce GRLEFZ OE.

Previous studies demonstrating the prognostic
significance of CRLF2 OE have been controver-
sial (Mullighan et al., 2009a; Cario et al., 2010;
Harvey et al, 2010a; Ensor et al, 2011; Chen
et al, 2012; Palmi et al., 2012). Recently, van
der Veer et al. (2013) reported that a BCR-
ABLI-like gene expression signature and [KZF/
deletion were independent adverse prognostic
factors for EFS in pediatric BCPALL (HR 3.1,
95% CI 1.8-5.2, P<0.001 and HR 2.5, 95% CI
1.5-4.2, P=0.001, respectively). They also found
that CRLF2 OE was not an adverse prognostic
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Figure 5. (A) Probability of EFS according to CRLF2 expression level
and IKZF/ deletion. (B) Probability of OS according to CRLF2 expres-
sion level and IKZF| deletion.

factor for EFS. In terms of the prognostic
impact of CRLF2 OE, we did not find a signifi-
cant effect in this study, consistent with the
results of the Dutch group (Fig. 4). Multivariate
analysis also determined that /KZFI deletion,
but not CRLF2 OFE, was an adverse prognostic
predictor for OS (HR 2427, 95% CI 1.037-
5.679, P=0.04; Table 3), which was consistent
with our previous result (Asai et al., 2013).
Interestingly, we found that three CRLF2 OE-
positive patients carried an EBF/-PDGFR ffusion
gene (Roberts et al.,, 2012) using mRNA-seq (data
not shown). As BCR-ABLI-positive patients show
CRLEF2 OF despite CRLF2 rearrangement (Cario
et al., 2010), some patients with BCR-ABLI-like
signatures might also show CRLF2 OE, resulting
in poor prognosis. Conversely, we identified 11
patients with CRLFZ2 gain, none of whom had
IKZF1 deletions, suggesting that these two
genetic alterations are mutually exclusive. The
good prognosis of patients with CRLFZ gain in this
study may be a consequence of their lack of
IKZF deletion. In conclusion, this study showed

Genes, Chromosomes & Cancer DO 10.1002/gce



822 YANO ETAL.

TABLE 3. Univariate and Multivariate Cox Models of Event-free and Overall Survival for 167 Patients

Univariate Multivariate

Variable Hazard ratio

95% Cl P value Hazard ratio 95% Cl P value

Event-free survival

CRLF2 overexpression (yes vs. no) 1.175
Age (yrs) at diagnosis (10-18 vs.1-9) 2.051
Sex (male vs. female) 1.458
WBC count (X 1,000 cells /pl) (> 100 vs. < 100) 2,117
NCI risk (HR vs. SR) 2.193
PPR vs. PGR 0416
Day 15 BMA (M3 vs. MI/M2) 2.695
IKZF! deletion (yes vs. no) : 2.681
CRLF2 gain (yes vs. no) 0.644
P2RY8-CRLF2 (yes vs. no) 1161
Overall survival
CRLF2 overexpression (yes vs. no) 0.331
Age (yrs) at diagnosis (1018 vs.1-9) 2.101
Sex (male vs. female) 1.584
WBC count (x1,000 cells /ul) (> 100 vs.< 100) 1.740
NCI risk (HR vs. SR) 2433
PPR vs. PGR 0.619
Day 15 BMA (M3 vs. MI/M2) 2.135
IKZF| deletion (yes vs. no) 2.192
CRLF2 gain (yes vs. no) 0.274

0.544-2.539  0.68 0.746 0.319-1.741 050
1.116-3.768  0.02 1.343 0.608-2.969 047
0.782-2.718 024

1.126-3.982 0.02 1.589 0.736-3430 024
1.102-4.364  0.03 1.317 0.507-3.424 057

0.101-1.721  0.23
1.353-5.369  0.005 2.015 0.948—4.284  0.07
1.371-5242  0.004 2.006 0.942-4272  0.07
0.199-2.082 046
0.160-8439  0.88

0.079-1.388  0.13 0.181 0.039-0.827 0.03
1.025-4.306  0.04 1.360 0.537-3441 052
0.754-3.330  0.22

0.814-3.718 0.15 1.387 0.551-3491 049
1.044-5.672  0.04 1.652 0.525-5.196  0.39
0.147-2.598 051

09164977 0.08 1.860 0.736-4.698  0.19
0.975-4.925  0.06 2.427 1.037-5.679  0.04

0.037-2.010  0.20

Cl, confidence interval; WBC, white blood cell; NCI, National Cancer Institute; SR, standard risk; HR, high risk; PPR, prednisolone poor response;
BMA, bone marrow aspiration; SCT, stem cell transplantation; CR, complete remission.

that CRLF2 OE is not an independent prognostic
factor in pediatric BCPALL.
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Abstract Investigation of genetic alterations associ-  leukemic samples to determine homozygous JAK3 V674A
ated with relapse in acute lymphoblastic leukemia (ALL)  mutation only in relapsed leukemic cells. In contrast, leu-
may help to identify druggable targets for specific thera-  kemic cells at initial diagnosis harbored hemizygous
pies. Early T-cell precursor ALL (ETP-ALL) is a subtype  JAK3 V674A mutation. Further, whole-exome sequencing
of T-ALL with poor prognosis. Although the genetic land-  revealed mutations in 18 genes only in relapsed samples,
scape of ETP-ALL has been determined, genetic altera-  although none of these was recurrent in T-ALL. These find-
tions related to the relapse of ETP-ALL have not been fully  ings suggest that aUPD at 19p13.1 is partly associated with
investigated. Here, we report the first patient with relapsed  relapse in this patient. Pharmacological inhibition of JAK3
pediatric ETP-ALL to exhibit a homozygous JAK3 activat-  may be therapeutic in such cases.

ing mutation, V674 A, caused by acquired uniparental dis-

omy (UPD). Single nucleotide polymorphism array analy-  Keywords ETP-ALL - JAK3 - Acquired UPD - SNP

sis revealed acquired UPD (aUPD) at the 19p13.3-pl12  array - Whole-exome sequencing

locus only in leukemic cells at relapse. Sanger sequence

of the JAK3 gene, which was located at 19p13.1 and fre-

quently mutated in ETP-ALL, was performed in paired  Introduction

Early T-cell precursor acute lymphoblastic leukemia (ETP-
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recent comprehensive genetic analysis revealed the land-
scape of genetic alterations in ETP-ALL [2], little is known
about additional genetic alterations related to relapse. Here,
the present study identified the first case of relapsed ETP-
ALL with a homozygous JAK3 V674A activating mutation
[3] caused by uniparental disomy (UPD) of the 19p region.

Case report

The patient is 15-year-old male who developed ETP-ALL
at the age of 13. Peripheral blood at the onset showed a
white blood cell count of 230,800/l (with 95 % lympho-
blasts). By bone marrow (BM) aspiration, abnormal lymph-
oblasts accounted for 97.6 % of the nucleated cell count.
The blasts were positive for cytoplasmic CD3 (cCD3),
CD7, CD13, CD38, CD45, and CDS58, and negative for
CD1a, CD5, and CD8 by flow cytometric analysis (FCM),
suggesting a diagnosis of ETP-ALL.

G-banding analysis of the BM cells revealed the kar-
yotype to be 46, XY (2/4), 46,XY,add(1)(q32),add(9)
(p24), -12, +mar (2/4). Fluorescence in situ hybridization
(FISH) analysis revealed a hemizygous deletion of ETV6.
The patient received induction chemotherapy consisting
of prednisolone, dexamethasone, vincristine, daunoru-
bicin, cyclophosphamide, and L-asparaginase, according
to the Japan Association of Childhood Leukemia Study
(JACLS) ALLO2 protocol [4]. However, complete remis-
sion (CR) was not achieved and thus the patient was treated
with salvage regimens, including arranon-G monotherapy
(650 mg/m?*day for 5 days) and combination chemother-
apy consisting of high-dose cytarabine (AraC) (2 g/m*day
for 5 days), fludarabine (Flu) (30 mg/mz/day for 5 days),
and idarubicin (Ida) (8 mg/m?%day for 2 days). However,
CR was not achieved. The patient then received allogenic
hematopoietic stem cell transplantation (allo-HSCT) from
his mother, a 6/8 HLA match. The pretransplantation-con-
ditioning regimen consisted of cyclophosphamide (60 mg/
kg/day on days —3 to —2) and total body irradiation (TBI)
(4 Gy on days —8 to —6). Graft vs. host disease (GVHD)
prophylaxis consisted of tacrolimus (FK), mycophenolate
mofetil (MMEF), methylprednisolone, and short-term meth-
otrexate (MTX). Desired neutrophil counts (>500 per L)
were obtained by day 12, reticulocyte counts (>1.0 %) by
day 18, and platelet counts (>5.0 x 10* per wL) by day 22.
Genotyping using XY-FISH analysis of a BM sample taken
at day 14 revealed that 97.2 % of total nucleated cells were
of donor origin. There was no evidence of acute GVHD.
Chronic GVHD developed 7 months after allo-HSCT, and
was successfully treated with FK and prednisolone.

At 22 months after allo-HSCT, the patient experienced
severe constipation. Positron emission tomography—com-
puted tomography (PET-CT) scanning demonstrated that
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uptake of 18F-fluorodeoxyglucose (FDG) was increased
in mediastinum lymph nodes, abdominal paraaortic lymph
nodes, and mesenteric lymph nodes, which were enlarged.
Peripheral blood tests showed a white blood cell count of
3,900/uL (with no lymphoblasts). BM aspiration showed
no abnormal lymphoblasts. Histological examination
of mesenteric lymph nodes revealed the proliferation of
lymphoblasts, which were positive for cCD3, CD7, CD10,
CD13, CD19, cCD79a, and CD117, and negative for CD2,
CD4, CDs, CD8, CD20 and CD33, HLA-DR, myeloperox-
idase (MPO), terminal deoxynucleotidyl transferase (TdT),
and k and » immunoglobulin by FCM. FISH analysis
revealed that the relapsed lymphoblasts harbored a hemizy-
gous deletion of ETV6; thus we diagnosed extramedul-
lary relapse of ETP-ALL and treated the patient with
reinduction chemotherapy consisting of etoposide, AraC,
and mitoxantrone. After one cycle of reinduction chemo-
therapy, the abnormal uptake previously seen in the medi-
astinum lymph nodes, abdominal paraaortic lymph nodes,
and mesenteric lymph nodes by PET-CT was not observed,
suggesting CR was achieved. The patient then received a
second allo-HSCT from a 4/8 HLA-matched elder brother.
The pretransplantation-conditioning regimen comprised
Flu (30 mg/m2 on days —5 to —2), melphalan (L-PAM)
(70 mg/m* on days —4 to —3), antithymocyte globulin
(ATG) (1.25 mg/kg on days —2 to —1), and TBI (2 Gy on
day -6). GVHD prophylaxis consisted of FK, methylpred-
nisolone, dexamethasone palmitate (0.1 mg/kg/day on days

Table 1 Genomic abnormalities at initial diagnosis and at relapse,
determined by single nucleotide polymorphism analysis

Initial diagnosis (bone marrow) Relapse (lymph node)

UPD 1q25.2-q25.3 UPD 1q25.2-q25.3

del 2q14.1-q14.3

UPD 4q28 del 4928
UPD 5p13.1—q12 UPD 5p13.1-p12
del 5q31.1

del 9p22.1-p21.3
UPD 10p15.3-p12.3
UPD 10q23.1-g23.2
UPD 11pl1

del 12p13.3-p12.3

del 18422.1-g22.3

UPD 20p11.2-p11.1
UPD 20p11.1
UPD 20q11.1-q12.1

del 9p22.1-p21.3
UPD 10p15.3-p12.3
UPD 10g23.1-q23.2
UPD 1ipll

del 12p13.3-p12.3
del 13q13.3—q14.1
del 13q14.2-q21.1
del 13q21.1-q21.3
del 18q22.1-g22.3
UPD 19p13.3-p12
UPD 20p11.2-pl1.1
UPD 20p11.1

UPD 20q11.1-q12.1

UPD uniparental disomy, del deletion



