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A 26-year-old woman developed a pelvic chondrosarcoma 26 years after radiation therapy for a
rhabdomyosarcoma and was treated surgically by hemipelvectomy and reconstruction by a hip

transposition procedure.

There is no evidence of recurrence as of one year after surgery, and the

patient is able to walk with a hip orthosis, and a crutch. Only two cases of radiation-induced
chondrosarcoma after radiation therapy for a rhabdomyosarcoma have been reported in the

English-language literature.

We recommend that patients be followed up long term after radia-

tion therapy in order to enable early detection of radiation-induced sarcomas.
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ORIGINAL ARTICLE

PAX3-NCOA?2 fusion gene has a dual role in promoting the
proliferation and inhibiting the myogenic differentiation
of rhabdomyosarcoma cells

H Yoshida'“, M Miyachi'*, K Sakamoto', K Quchi’, S Yagyu', K Kikuchi', Y Kuwahara', K Tsuchiya', T Imamura’, T lehara’, N Kakazu?,
H Hojo® and H Hosoi'

INTRODUCTION

Rhabdomyosarcoma (RMS) is the most common childhood soft
tissue tumor. RMS can be divided into two main histopathological
subgroups: embryonal rhabdomyosarcoma (ERMS) and alveolar
rhabdomyosarcoma (ARMS). These subgroups differ considerably
in their clinical phenotype and molecular features. The prognosis
of ERMS is more favorable than that of ARMS. The majority of
cases of the more aggressive ARMS are associated with one of two
reciprocal translocations: t(2;13)(g35;q14), which generates an
intronic fusion of PAX3 (paired box 3) and FOXOAT (forkhead box
O1A) that is also known as FKHR (forkhead in human rhabdo-
myosarcoma) and t(1;13)(p36;q14), which generates an intronic
fusion of PAX7 and FOXOA1." The PAX3-FOXO1A translocation is
associated with increased treatment failure and mortality rate.?
PAX family members are transcription factors that regulate pattern
formation during embryogenesis.®> Several PAX genes, including
PAX3 and PAX7, contribute to tumorigenesis.* Pax3 is expressed in
the developing nervous system and in somite compartments that
give rise to skeletal muscle progenitors.>® Exons 2, 3 and 4 of
PAX3 encode the paired box, which is a distinctive feature of the
PAX family, whereas the homeodomain is encoded by exons 5 and
6, and functions as a DNA-binding domain. Forkhead box (or FOX)
genes have diverse roles including control of embryonic
development and adult tissue-specific gene expression. FOXOTA
has one transactivation domain (TAD) at the C-terminus,” and

Oncogene (2014) 33, 5601-5608
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translocations between PAX3 and FOXO1A lead to an increase in
transcriptional activation of the DNA-binding domains on PAX3.
PAX3-FOXO1A induces cellular proliferation® and malignant
transformation® and suppresses apoptosis.'°

Recurrent NCOAZ2 (nuclear receptor coactivator 2) gene rearran-
gements occur in ERMS."""? Mosquera et al.'’ reported NCOA2
gene rearrangements (SRF-NCOA2 and TEAD1-NCOA2) in three
cases of spindle cell RMS. Sumegi et al.'* identified the fusion gene
PAX3-NCOA2 in each case of ERMS and ARMS that they
investigated. We previously found a translocation involving
chromosome band 2g35, which is the locus of the PAX3 gene.'
We later identified NCOAZ as a candidate PAX3 partner gene using
fluorescence in situ hybridization (FISH). NCOA2 belongs to the
p160 protein family, which also includes SRC-1 (steroid receptor
coactivator), NCOA2/TIF2/ GRIP1/SRC-2 and pCIP/ACTR/AIB-1/RAC-
3/TRAM-1/ SRC-3. NCOA2 has several functional domains including
a PAS (sequence similarity with the Per Ardt-Sim motifs)/bHLH
(sequence similarity with basic helix-loop-helix motifs) domain,
a receptor interaction region, and two TADs.'"/ NCOA2 is
necessary for myogenic differentiation.’” In nuclear receptor
signaling, NCOA2 binds to nuclear receptors predominantly
through its nuclear receptor-interacting domain (NID)'®'® and
recruits two transcriptional co-activators, CBP (CREB-binding
protein)/p300 and CARM-1. CBP/p300 is recruited through its
CBP interaction domain (CID/TAD1)'®*® and CARM-1, an arginine
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methyltransferase, is recruited through TAD2.2'"%* Sumegi et al."?
demonstrated that deletion of TAD1 from PAX3-NCOA2 more
strongly suppressed the transforming activity of the chimeric
protein than did deletion of TAD2, and PAX3-NCOA2 needed an
intact activation domain 2(TAD2) and CID for optimal transforming
activity using the NIH3T3 mouse fibroblast cell line. Both TADs on
NCOA2 boost transcriptional activation of PAX3-NCOA2, as they do
in PAX3-FOXO1A.

However, the role of the NCOA2 rearrangement including PAX3-
NCOA2 in RMS tumorigenesis remains to be elucidated. In this
study, we compared the biological function of the PAX3-NCOA2
fusion protein with PAX3-FOXO1A fusion protein to reveal the
function of PAX3-NCOA2 in RMS tumorigenesis both in vitro and
in vivo. To this end, we expressed these two fusion genes in C2C12
mouse myoblast cell lines and studied their biological character.

RESULTS

PAX3-NCOA2 was identified in an ERMS tumor specimen and
transcriptional activation of the PAX3 consensus-binding site was
enhanced

We previously showed the PAX3 rearrangement in our case with
ERMS by FISH analysis.'® To identify the partner gene of PAX3 in
this case with the complex translocation involving 2g35 and 8q13,
and so on, we narrowed down the 8q13 breakpoint region by
stepwise FISH approach using bacterial artificial chromosome
(BAC) probes located on chromosome 8qgi13. The results
demonstrated that the BAC clone RP11-479K21 (located at
8g13.3) spanned the 8q13 breakpoint, and that the split signal
of RP11-479K21 probe was fused to the signal of RP11-624P23 (on
the telomeric side of the PAX3 gene located at 2g35) (data not
shown). RP11-479K21 clone contained the NCOA2 gene. These
results suggested that the candidate partner gene of PAX3 was
NCOA2 in our case with ERMS. Sequence analysis of the PAX3-
NCOA2 PCR products of our patient’s sample revealed that exon 7
of PAX3 (391st AA) was fused to exon 12 (798th AA) of the NCOA2
gene in-frame (Figure 1a). The resulting PAX3-NCOA2 fusion
protein consisted of the 391 N-terminal AA of PAX3 and the 666
C-terminal AA of NCOA2. A schema of the structures of intact and
chimeric proteins is shown in Figure ib. The PAX3-NCOA2 fusion
gene retained the DNA-binding domain of PAX3, and the CID/
TAD1 and TAD2 domains of NCOA2, in agreement with the
findings of Sumegi et al.’> When HEK293 cells were transfected
with the GFP-PAX3-NCOA2 expression vector, PAX3-NCOA2
localized in the nucleus (Figures 2a and b). The expressions of
PAX3-NCOA2 enhanced transcriptional activation of the PAX3
consensus-binding site 3.8 times more than did the expression of
the wild-type PAX3 and the expression of PAX3-FOXO1A
enhanced it 19.8 times more (both P<0.05) (Figure 2c).

PAX3-NCOA2 stimulated proliferation and motility in myoblasts
in vitro

We confirmed the protein expressions of PAX3-NCOA2 and PAX3-
FOXO1A in HEK293 cells transiently transfected with FLAG-tagged
constructs by western blotting (Figure 3a). Cell proliferation was
assessed using C2C12 cells expressing PAX3-NCOA2, PAX3-
FOXO1A or MSCV empty vector. On day 4, the numbers of
PAX3-NCOA2 C2C12 cells and PAX3-FOXO1A C2C12 cells were 1.3
times more (P<0.05) and 1.7 times more (P<0.05), respectively,
than the number of control cells (Figure 3b). The PAX3-NCOA2
cells switched from the Glphase to the S phase and showed an
accelerated cell cycle progression (Figure 3c). Wound closure was
more rapid with both the PAX3-NCOA2 cells and PAX3-FOXO1A
cells than with the control cells (Figure 3d), indicating that the
transformed cells have an enhanced motility. However, the wound
width (% of original width) indicated that the PAX3-NCOA2 cells
were not as motile as the PAX3-FOXO1A cells. When the cells were
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Figure 1. In-frame fusion of exon 7 of PAX3 to exon 12 of NCOA2.

(a) Representative RT-PCR and sequence analyses for chimeric
transcripts in our patient. Sequence alignment of the PAX3-NCOA2
breakpoint regions. Arrows depict the fusion point. Single-letter
amino-acid code is displayed beneath the nucleotide sequence.
(b) Comparison of wild type, fusion products associated with the
t2;8)(q35; q13) and t(2;13)(q35; q14) translocation. Interacting
proteins are displayed as bars. The letters within the bars designate
conserved domains (PD, paired domain; HD, homeodomain of the
PAX3 protein; CID, CBP interaction domain; and bHLH/PAS,
DNA-binding/protein heterodimerization domain, receptor nuclear
translocator domain, involved in DNA binding). S/T represents the
serine-threonine-rich region. Transcriptional domains of PAX3 are
DBD (DNA-binding domain) and TAD (transcriptional activation
domain). Arrows show the locations of LXXLL motifs in wild-type
NCOA2, FOXO1A and their fusion proteins. NCOA2 has all five
motifs, but the three on the N-terminus were lost during formation
of PAX3-NCOA2. On the other hand, FOXO1A has only one motif,
which is retained in PAX3-FOXO1A. All of the motifs on PAX3-NCOA2
(LXD4-5) and PAX3-FOXOTA (LXD) are in their transactivation
domains. LXD, LXXLL-containing helical motif.

plated on soft agar, 3£ 0.5 colonies grew from the control cells,
whereas 53.6 £4.2 and 115.2+ 0.5 colonies grew from the PAX3-
NCOA2 cells and PAX3-FOXO1A cells (Figure 3f), respectively,
indicating that both lines were capable of anchorage-independent
growth. However, anchorage-independent growth of the PAX3-
NCOA2 cells was only about half that of the PAX3-FOXO1A cells
(Figure 3g).

PAX3-NCOA2 inhibited the differentiation from myoblasts into
myotubes in the differentiation medium

PAX3-NCOA2 and PAX3-FOXO1A morphologically blocked
myotube differentiation (Figure 4a). Few of either PAX3-NCOA2

© 2014 Macmillan Publishers Limited
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Figure 2. Confocal microscopy images showing localization of PAX3-
NCOA2 in HEK293 cells. Cells were transfected with (a) GFP-PAX3-
NCOA2 expression vector or (b) GFP empty vector. Scale bar, 20 pm.
(¢) Expression of PAX3-NCOA2 promoted transcriptional activation
of PAX3 consensus-binding site by luciferase assay. Results represent
the means £ s.d. of three independent experiments. *P<0.05 and
**¥P < 0.01 compared with wild-type PAX3.

or PAX3-FOXO1A cells were stained with myosin heavy
chain (MHC), a marker of muscle differentiation (Figure 4b).
MHC positivity of PAX3-NCOA2-expressing cells and PAX3-
FOXO1A-expressing cells were 2.3+ 0.3% and 0.3 £ 0.3%, respec-
tively, whereas the control cells was 53.0+3.8% (P<0.05)
(Figure 4c).

PAX3-NCOA2 promoted turmorigenesis in vivo

When fibroblasts expressing the fusion genes were transplanted
into nude mice, the PAX3-NCOA2 and PAX3-FOXOTA cells took
~6.8 and 5.2 weeks, respectively, to form 15-mm-diameter
tumors (Figure 5a). Therefore, tumorigenic properties of the
PAX3-NCOA2 and PAX3-FOXO1A cell lines well reflect their in vitro
anchorage-independent growth. ,

Every tumor was solid, firm and fibrotic. Unexpectedly, the
tumors induced by the PAX3-NCOA2 and PAX3-FOXO1A cells did
not differ with respect to any of eight characteristics examined:
cell shapes, growth pattern/architecture, cellular cohesiveness,
muscle differentiation, number of giant cells, nuclear-to-cytoplasm
volume ratio reversal, hyperchromatism, cellular/nuclear pleo-
mophism and stromal matrix. None of the tumors displayed the
alveolar architectures on H&E stain and silver impregnation
(Figure 5b, i-iii). All tumors were generally densely cellular and
were mainly composed of a mixture of primitive RMS cells and
limited numbers of nucleated giant cells and spindle-shaped
tumor cells without myxoid stroma. All tumors stained positive for
desmin, myoD1 and myogenin (Figure 5b, iv-vi), which are
commonly used markers for RMS. Although some tumors showed
evidence of local invasion, none of the tumor-bearing mice
developed metastasis.

© 2014 Macmillan Publishers Limited

The LXXLL motifs of PAX3-NCOA2 was not required for anchorage-
independent growth

The LXXLL motif (where L is leucine and X is any amino acid) is
found in various co-activators, including NCOA®*?® and FOXO
family proteins, as well as in PAX3-NCOA2 and PAX3-FOXO1A
(Figure 1b). To examine whether the LXXLL motif is involved in
anchorage-independent growth, we constructed mutation/dele-
tion constructs of the motif (Supplementary Table 1) following
previous reports.®’*® However, these mutations and deletions did
not significantly affect anchorage-independent growth of either
cell line (Figure 6), suggesting that the LXXLL motif is not a
promising therapeutic target.

DISCUSSION

Our in vitro results revealed that the expression of PAX3-NCOA2
promoted transcriptional activation of the PAX3 consensus-
binding site and that PAX3-NCOA2 actually acted as a transcrip-
tional activator. PAX3-NCOA2 also enhanced proliferation, cell
cycle progression, motility and anchorage-independent growth. In
addition, we showed that PAX3-NCOA2 blocked myotube
differentiation. These data indicated that PAX3-NCOA2 has a dual
role in the tumorigenesis of RMS: promotion of cell proliferation
and inhibition of myogenic differentiation. Our PAX3-NCOA2
results bear a close resemblance to previous findings that PAX3-
FOXO1A promoted cell proliferation and motility and inhibited
differentiation.?*' Our results suggest that PAX3-NCOA2 and
PAX3-FOXO1A share the same mechanism for tumorigenesis.
Finckenstein et al®?* called PAX3-FOXOIA genes ‘pangenes’ in
tumorigenesis, meaning that they simultaneously initiate
myogenesis and inhibit terminal differentiation. It is not
surprising that PAX3-NCOA2 acts as a pangene like PAX3-FOXOT1A
because PAX3-NCOAZ2 induces tumors derived from muscle tissue
in vivo.

The tumors in nude mice derived from C2C12 cells transformed
with PAX3-NCOA2 share several pathologic features with human
ERMS tumor samples: the shapes of cells were small and round or
spindle-like, and the cells having abundant cytoplasm were
irregularly distributed among immature undifferentiated cells
(Figure 5b, i-vi). Although PAX3-FOXO1A-expressing C2C12 cells
developed non-invasive ERMS-like tumors in our experiment,
Zhang et al®® showed that mouse myoblasts transformed with
PAX3-FOXO1A-induced malignant, ARMS-like tumors in mice. In
addition, almost all PAX3-FOXO1A tumor-bearing mice develop
spontaneous metastasis to the lungs, one of the targeted sites for
metastasis in human ARMS. On the other hand, Wang et al>*
reported that a PAX3-FOXO1A stable cell line formed tumors but
the tumors did not have alveolar structure and did not invade any
organ, in agreement with our results. As suggested by Naini
et al®®, whether or not a tumor is malignant with alveolar
structure may depend on not only PAX3-FOXO1A but also one or
more other abnormalities as well, loss of p16INK4A/p14ARF or
overexpression of MYCN.

Sumegi et al." did not report the prognosis of his patients with
the PAX3-NCOA2 fusion gene. However, our case had localized
RMS, responded to standard therapy and is alive and in remission
at 9 years after treatment. Mosquera et al'' also reported
recurrent NCOA2 rearrangements in spindle cell-type RMS, which
is a subtype with good prognosis. In all of our experiments, the
most aggressive phenotype was PAX3-FOXO1A, followed by
PAX3-NCOA2, as expected. The finding that the PAX3-NCOA2
stable cell line expressed a less aggressive phenotype than did the
PAX3-FOXO1A stable cell line supports our hypothesis that RMS
with the PAX3-NCOAZ2 fusion gene has a better prognosis than
RMS with the PAX3-FOXO1A fusion gene.

The LXXLL motif was originally observed in cofactor proteins
that interact with hormone-activated nuclear receptors.®
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Figure 3. Promotion of some characteristics of tumorigenesis by PAX3-NCOA2. (a) Western blot showing expressions of intact and chimeric
genes. The molecular weights of wild-type PAX3, PAX3-FOXO1A, and PAX3-NCOA2 were 53, 97 and 120kDa, respectively. (b) Cell growth of
C2C12 with and without the chimeric gene 96 h later. Results represent the means * s.d. from three independent experiments. (c) Cell cycle of
C2C12 with and without the chimeric gene 72h later as determined by flow cytometry. Results represent the meansts.d. of three
independent experiments. ¥*P<0.05 and **P<0.01 compared with the same phase of MSCV empty vector. (d) Light microscopic images of
C2C12 cells that were scratched using a pipette tip and compared the wound width 6 h later. Scale bar, 100 um. (e) Average wound widths,
expressed as a percent of the original width, obtained from 30 measurements in each photo. PAX3-NCOA2 enhances motility of mouse
myoblasts. Results represent the means + s.d. of three independent experiments. *P<0.05 and **P<0.01 compared with MSCV empty vector.
(f) Photographs of colonies of C2C12 cells with and without the chimeric gene 14 days later. (g) Anchorage-independent growth of the three
cell types using a colony-forming soft agar assay as described in Materials and methods. Results represent the means s.d. of three
independent experiments. **P<0.01 compared with MSCV empty vector.

Functionally active examples of LXXLL motifs have also been In conclusion, our study has two main findings: the PAX3-NCOA2
documented in proteins that do not directly interact with nuclear fusion gene 1) has a dual role in the tumorigenesis of RMS,
receptors, including several transcription factors,***” cAMP (cyclic  promoting cell proliferation and inhibiting myogenic differentia-
adenosine monophosphate) response element-binding protein tion and 2) is less aggressive than the PAX3-FOXOIA fusion gene.
(CREB)-binding protein (CBP) and p300,*® and mediator subunits. PAX3-NCOA2 could be a potential marker of low risk in RMS. The
In fact, PAX3-NCOA2 has two LXXLL motifs. Deguchi et al*® analyses needed to determine the risk stratification and prog-
constructed LXXLL mutants and deletions of MOZ-TIF2 fusion nostic factors of RMS have progressed from classic morphology to
protein, and demonstrated that these abnormalities contributed molecular diagnoses, using aberrant chimeric genes. The present
to decrease anchorage-independent growth and transcriptional results should help provide a more rational stratification of RMS.
activity in murine bone marrow cells. On the other hand, PAX3-

FOXO1A has only one LXXLL motif. Mutating it was found to

decrease the transcriptional activity of FOXO1A in simian virus-40- MATERIALS AND METHODS

transformed hepatocytes.”” However the LXXLL motif did not  Tumor tissue samples

have a key role in our experimental system using a moUse  Tymor specimens from our patient with ERMS were surgically resected
myoblast cell line transduced with human chimeric genes. This before any chemotherapy and immediately stored at — 80 °C. The patient’s

difference might be due to a difference of cell types or to @ symptoms are described elsewhere.'® Written informed consent was given
difference in the conformation of the chimeric proteins. by the parents according to the protocol approved by the institutional
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Figure 4. Inhibition of myogenic differentiation

by PAX3-NCOA2 and PAX3-FOXO1A. (a) Representative light microscopic images of mouse

myoblasts with MSCV vector alone (control), cells expressing PAX3-NCOA2 and cells expressing PAX3-FOXO1A after 4 days in differentiation
medium (DM). Scale bar, 50 um. The MSCV empty cells formed multinuclear fusion myotubes, while the PAX3-NCOA2 and PAX3-FOXO1A
formed only a few fusion cells. () Fluorescent images of MHC staining after 4 days in DM. Scale bar, 100 pm. Representative images of MSCV
empty showed MHC and DAPI (for nuclei), meanwhile that of PAX3-NCOA2 and PAX3-FOXO1A demonstrated few MHC-positive cells. (c)
Numbers of MHC-positive cells per 5.0 x 10% cells. Results represent the means + s.d. of three independent experiments. **P<0.01 compared

with MSCV empty vector.

review board of Kyoto Prefectural University of Medicine in accordance
with the Declaration of Helsinki.

FISH analysis

The BAC clones (RP11 series) were selected according to the University of
California Santa Cruz Genome Browser (http://genome.ucsc.edu) and were
obtained from Invitrogen (Basel, Switzerland). These BAC DNAs were
isolated using a NucleoBond BAC 100 kit (Macherey-Nagel inc,, Easton, PA,
USA) and were directly labeled by means of nick translation with
SpectrumGreen-dUTP or SpectrumOrange-dUTP (Abbott Molecular/Vysis,
Des Plaines, IL, USA). Hybridization, washing and detection were performed
using standard procedures. FISH images were captured and analyzed with
the PowerGene system (Applied Imaging, Santa Clara, CA, USA).

Cell cultures, transfection, infection and reagents

Mouse myoblast C2C12 cells and human embryonic kidney HEK293 were
purchased from the American Type Culture Collection (Manassas, VA, USA).
These cells were maintained in growth medium: Dulbecco’s modified
Eagle’s high-glucose medium, supplemented with 10% fetal bovine serum,
penicillin (100 U/ml) and streptomycin (10 mg/ml) at 37 °C in a humidified
atmosphere of 5% CO,. Stable C2C12 cell lines expressing PAX3-NCOAZ,
and PAX3-FOXO1A were established using a murine stem cell virus (MSCV)
retrovirus expression system (Clontech Laboratories Inc, Madison, WI,
USA). C2C12 cells were transfected in 60-mm dishes at ~50% confluence
with 1 ug of purified expression vector DNA, 8 ul of Enhancer and 7.5 ul of
Effectene (Qiagen, Hombrechtikon, Switzerland) in 1ml of Dulbecco’s
modified Eagle’s high-glucose medium. After 48h, the cells were
trypsinized and replanted at a 1: 5 dilution in medium. Selection of
stability transfected cells was performed with 1000 pg/ml of G418 sulfate
(Life Technologies, Carlsbad, CA, USA).

© 2014 Macmillan Publishers Limited

Reverse transcription—polymerase chain reaction (RT-PCR) and
direct sequencing of PAX3-NCOA2

Total RNA was extracted from a tumor specimen with the use of an RNeasy
mini kit (Qiagen) according to the manufacturer’s instructions. Comple-
mentary DNA (cDNA) was synthesized with the use of the SuperScript First-
Strand Synthesis System for RT-PCR (Invitrogen) according to the
manufacturer’s instructions. The fusion region of PAX3-NCOA2 was PCR
amplified in overlapping fragments. The primer pairs used in this
experiment are listed in Supplementary Table 2. The entire coding region
of PAX3-NCOA2 was PCR amplified. PCR products were sequenced with
the use of the BigDye Terminator v3.1 Cycle Sequencing kit (Applied
Biosystems, Rotkreuz, Switzerland) and the ABI PRISM 377 Sequence
Detection System (Applied Biosystems).

Localization assay

HEK293 cells were transfected with GFP (green fluorescent protein)-PAX3-
NCOA2 expression vector and the fusion protein was observed with
confocal microscopy BZ-8000 (KEYENCE, Osaka, Japan).

Assay for cell proliferation

C2C12 cell lines expressing each gene or MSCV vector alone were seeded
at 2 x 10* cells/well. Every 24 h, an aliquot of the cells was lysed under
hypotonic conditions, and nuclei were counted with a Coulter counter
(ERMA Inc., Jacksonville, FL, USA) until 96 h later (day 4).

Cell cycle analysis

Cells were plated for 72 h and then washed twice with 1 x PBS and then
incubated for 30 min with propidium iodide (Pl) to stain DNA. Propidium
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Figure 5. Effects of PAX3-NCOA2 and PAX3-FOXO1A on the

proliferation of C2C12 cells in a murine xenograft model.
(@) C2C12 cell were injected into subcutaneous tissue of BALB/c
nude mice. Tumor diameters were measured every 2 or 3 days. Each
point represents the meanstsd. of three independent
experiments. (b) Images representative of tissue sections of
PAX3-NCOA2 stained with H&E (i, ii), silver impregnation (iii) and
with antibodies specific for desmin (iv), myoD1 (v) and myogenin
(vi). Scale bar, 200 um (i, iii) and 100 pm (ii, iv-vi), respectively. The
tumor cells ranged from small round cells to large elongated poorly
differentiated cells, and exhibited varying degrees of myogenic
differentiation. There were small oval or long spindle-shaped
differentiated rhabdomyoblasts with eosinophilic cytoplasm, with-
out cross striation. Even in silver impregnation (iii), there was no
alveolar architecture. Also lacking was the classic cystic pattern with
tumor cells palisaded against fibrovascular stroma. None of the cells
were anaplastic. In the immunohistology, desmin, myoD1 and
myogenin were positive; however, the expressions of myoD1
and myogenin were different. Thus, the latter differentiation in
rhabdomyogenesis appeared to be abnormal or suppressed.

jodide fluorescence was read on a FACS Calibur (BD Biosciences, Franklin
Lakes, NJ, USA), and the data were analyzed with Cell Quest software (BD
Biosciences). The cell cycle phase was determined on the basis of DNA
content using the ModFit LT Software (Verity Software House, Topsham,
ME, USA) as described previously.*®

Oncogene (2014) 5601 ~5608

85

140 7 — wild type
= 120 E=3 Mutation
2 &8 Deletion
T
£ 100 A
£
15
Q 80+
b4
g 60
z
£ 40+
>
5
3 207
&)

0
PAX3-NCOA2 PAX3-FOXO1A
Figure 6. Effect of mutations and deletions of the LXXLL motif on

anchorage-independent growth of PAX3-NCOA2 and PAX3-FOXO1A
cells using a colony-forming soft agar assay. Results represent the
means £ s.d. of three independent experiments. A P-value of less
than 0.05 was considered statistically significant; NS, no significance.

Anchorage-independent soft agar colony formation assay

Cells were cultured in a two-layer soft agar system developed by
Hambruger et al.*® It consisted of a 1% Noble agar underlayer and a
0.7% Noble agar overlayer containing 2 x 10* cells in 35-mm dishes.
Colonies were allowed to form for duration of 2 weeks with fresh media
added every 3 days. Plates were stained with crystal violet and colonies
more than 0.1 mm in diameter were counted.

Luciferase reporter assay for PAX3-FOXO1A enhancer

A luciferase reporter construct was generated by inserting multimerized
PAX3 DNA-binding sites (6 x e5 DNA-binding sites) into pGL3 vector.
A total of 1x10° HEK293 cells were plated per 35-mm plate and
cotransfected 24 h later with FLAG expression vectors, pGL3 basic 6 x e5
vector and pRL-TK vector; 290, 90 and 20pug, respectively. Luciferase
activity was determined by using a dual luciferase assay system (Promega,
Wallisellen, Switzerland) to adjust for differences in transfection efficiency.
Data shows luciferase expression relative to pFLAG wild-type PAX3.

Western blot

Cells were lysed with Laemmli sample buffer. Protein concentrations in the
cell lysates were measured with the Bio-Rad DC Protein Assay (Bio-Rad
Laboratories, Hercules, CA, USA). Samples were boiled for 5min in sample
buffer containing bromophenol blue and 1 x B-ME, and equal amounts of
protein were separated by sodium dodecylsulfate~polyaclylamide gel
electrophoresis (SDS-PAGE). Electrophoretic separation was carried out on
10% polyacrylamide gel (Bio-Rad Laboratories), and the proteins were
subsequently transferred to an Immobilon-P membrane (Millipore, Billerica,
MA, USA). Membranes were blocked in PBST (phosphate-buffered saline
with Tween 20) with 5% non-fat dry milk powder and incubated with the
following primary antibodies: FLAG (Sigma-Aldrich, St Louis, MO, USA). The
membranes were then washed with PBST and incubated with goat anti-
mouse secondary antibody (GE Healthcare, Little Chalfont, UK) or anti-
rabbit (GE Healthcare). Antibody binding was detected with the enhanced
chemiluminescence detection system (ECL and ECL plus; GE Healthcare).

Assays for the differentiation of myoblast and
immunofluorescence

To initiate myogenesis, cells were rinsed thoroughly with phosphate-
buffered saline (PBS) before adding differentiation medium; Dulbecco’s
modified Eagle’s high-glucose medium containing 2% Horse serum,
penicillin (100U/ml), and streptomycin (10mg/ml) 24h after seeding
(day 1). Differentiated cells were observed on day 4 with a confocal
microscope BZ-8000 (KEYENCE) to assess morphological change. For
immunofluorescence, cells on cover slips were fixed with absolute
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methanol, washed and incubated with anti-myosin heavy chain antibody
(Sigma-Aldrich) for 1h, rinsed with PBS, incubated with fluorescein
isothiocyanate-conjugated anti-mouse IgG (Invitrogen) for 1h, and
visualized using a fluorescence microscope as previously described.”

Wound-healing assay

The cell layers were scratched using a pipette tip,; and then cultured in the
differentiation medium. Immediately after scratching (0 h), the plates were
photographed and the distance between the edges of the wound area was
measured and defined as 100%. At 6h after scratching, the plates were
photographed and the distance between the edges of the wound region
was again measured and presented as a percentage of the distance
between the edges of wound area at Oh.

In vivo tumorigenesis

Tumors were induced in 4- to 6-week-old male athymic nude mice (BALB/c
nu/nu; SHIMIZU Laboratory Supplies, Kyoto, Japan). Each mouse was
injected subcutaneously with 2 x 10° C2C12 cells suspended in 0.5 ml of
PBS at a single site to the lower flank. Turmor diameter was monitored
every 2 or 3 days on onset of tumor formation. Mice were killed when
the tumor size reached 17mm in diameter. At the end point of
the experiments, tumors were extracted and immediately photographed.
A portion of the tumor was embedded in paraffin for histopathological and
immunohistochemical analyses. At least three mice were used in each
experiment. The mice used for this study were handled in strict adherence
with local governmental and institutional animal care regulation.

Histopathology and immunohistochemistry

Histological specimens were fixed in 10% formalin and routinely processed
for embedding in paraffin. Histological sections 4-um-thick were stained
with hematoxylin and eosin (H&E), silver impregnation or hybridized to
antibodies specific for desmine, myoD1 and myogenin. Slides were
reviewed by a board-certified pathologist (H Hojo) to define the histologic
type of cancer. The sections were incubated with anti-desmin, anti-myoD1
and anti-myogenin antibody that was diluted at 1:20, 1:25 and 1:50
respectively. Sections were then treated with a VECTASTAIN Elite ABC kit
(Vector Laboratories, Burlingame, CA, USA).

Mutant and deletion construction

The LXXLL motif of NCOA2 was mutagenized by inverse PCR using Topo-
PAX3-NCOA2-vector with Xhol and Bam HI tags as a template. The PCRs
were initiated with a 2-min incubation at 95 °C followed by 10 cycles of
95°C for 30s, 60°C for 30s and 72°C for 7min, and finally 10min
incubation at 72 °C. The template plasmid was digested with Dpn | for 1h
at 37°C, and the remaining PCR products were treated with restriction
enzymes Xhol and Bam HI. A total of 7.5 ul MSCV vector and insert DNA
with 7.5 l Ligation high ver.2 were ligated with a DNA Ligation Kit Ligation
high Ver2 (Toyobo, Osaka, Japan) according to the manufacturer's
instructions. Thereafter, the composed plasmid was transformed into
competent cells, and MSCV vector containing these cDNAs was generated
by transfecting C2C12 cells. Mutagenesis/deletion of the LXXLL motifs of
PAX3-NCOA2 and PAX3-FOXO1A were performed in the same way. The
primer pairs used in this study are listed in Supplementary Table 2.

Statistical analysis

Statistical analysis was performed using the unpaired Student's t-test.
A P-value of less than 0.05 was considered statistically significant.

ABBREVIATIONS

ARMS, alveolar rhabdomyosarcoma; BAC, bacterial artificial
chromosome; bHLH, sequence similarity with basic helix-loop-
helix motifs; CBP, CREB-binding protein; cDNA, complementary
DNA; CID, CBP interaction domain; CREB, cAMP (cyclic adenosine
monophosphate) response element-binding protein; DM, differ-
entiation medium; ERMS, embryonal rhabdomyosarcoma; FISH,
fluorescence in situ hybridization; FKHR, forkhead in human
rhabdomyosarcoma; FOXO1A, forkhead box O1A; G1, Gap1; GFP,
green fluorescent protein; H&E, hematoxylin and eosin; LXD,
LXXLL-containing helical motif; MHC, myosin heavy chain; MSCV,
murine stem cell virus; NCOA2, nuclear receptor coactivator 2; NID,
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nuclear receptor-interacting domain; PAS, sequence similarity with
the Per Arndt-Sim (PAS) motifs; PAX3, paired box 3; PBS,
phosphate-buffered saline; PBST, phosphate-buffered saline with
Tween 20; Pl, propidium iodide; RMS, rhabdomyosarcoma; RT-
PCR, reverse transcription—polymerase chain reaction; SDS-PAGE,
sodium dodecylsulfate—-polyacrylamidegel electrophoresis; TAD,
transactivation domain
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Frikwgind KRB A FRh TH 5.

viI S EERISEENT A 7 0 RNA, miR-206 D
BEnREORZE, AERBETmE LUF
BFAT—H—ELTOERE

R ORI PN B T i B ~ — o — R L

et YR, 2 v A rzBoBERs iz -
" RNA (microRNA : ELF miRNA) D FFFENAW B i /n b
FORBT 07 4 AR R TCH B - LA
R T B0, B AT T & HlaRE A ol
e, BT 07 4 AT X D RS LT AEES
BB, Fie, AN CE b EE OB IR T b B R
Gl ok e, 1% %09 microRNA (miR-1, 133a,
133h, 206) 75, B0/ AMIERRIC OB L T
2D AR TV AT, —JF, i T sk o
MRNA BEET A C LA BB h, KREDHA, Vv
ATE, WSEEAAA, FAARE T, miRNA DA~ —
H— b LT O HENTSE X052, Chb Oilihi
o O microRNA VL2 divie, MBS U CHFTEL T
B0, N4 dw—h—& L THEFEIATWEY £IT,
Hor ok, R YLEY microRNA AR PR o i iss
IS ATRE TR e s & 2 B R T o 7

Rl s 4, SERiRUmmi 23 Pl R L LT, 1l
{i7 200 pL. 4T microRNA A L, SERY 742 4
A PCRIZ & DB A AT » 7o, BB LEEEE Mano-Whiteny
UBE %, BEIE OREL L LT ROC I 2 Al v~ TR
AT o fo MUET P O 5 5 B0 microRNA (miR-1, 133a,
133b, 206) DFEBLL, IEREOHRIEEGIC L LT, BEUH
PR G s o TR L Cus (p=0.03). &<,
miR-206 ¥\ TEE, R 1.0, FRIVE 0913 EHMY < 1
FAv—=h =k LTHBTHEZ LDtz Fiz, Wi
miR-206 L AAEGRC I T, IEEEAEE) Lo e, il
miR-206 DAL F A8z, Bl X b, 5555509 microRNA
C#H % miR-206 7 BT PR E o E 2 inc SR C
BAC EER L

& HICHEMIRCR B U B vl 21 4, JRBTRC A
[l 28 (il R Ci, BRI 0.809, 455LE 0893 TH D, M
i miR-206 75 BH L O B EME, VRIS CREROERIE T
BB LR LN et A b, fEEKY Vo iR
B O(ND, @fEEE MDD EFOmR-206 588, Thb
AR (N0, MO)Y SEFI LT, HRic LA L Twi
(p=0.01)*",

Ll X b, Bl st s g, i mir-206 558
DFERE, B2, BREEHos =2V v SRERTHES
Tl e tn, E T, miR-206 OB, BRAEA &
ML THY, SRELTERRLOHMATEEI NS,
JRSG O BRI R RS- Tl A2 Y s b 2 AT
LG, AR O AT miR-206 DERHRLT 5 TETH
b, BEioRLT, FHEOHEMICOWTHHEIET ST
ETHB.

&FhVYIC

Sl ko E O B IR e OB L SR o R
cooV TR Le. Eio, TEEOB BEE A v —
g e WTHER L. L THRERE DR L L
(6 A 2 BEochfi] U A 2 BECILIRIEIEY - IR HrEL 285
A X BWRIEIHE OB L - b Tl b, BT
DHEED I Y A 2 BT IR AR T R T
B, AYA IR TI— B A 2B o, MR L D BT
REOIEWE 2D b, SIS h D OFEGR L Eoicd
g FEIGE e L TH A 5.
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