厚生労働科学研究委託費(革新的がん医療実用化研究事業) 委託業務成果報告(業務項目)

脳定位治療法における部位別の許容値の決定および問題点の把握、解消

西山 史朗

埼玉県厚生連 久喜総合病院 放射線科 診療放射線技師

【研究要旨】

脳定位治療法は Stereotactic Radiosurgery (SRS)や Stereotactic Radiotherapy (SRT)が行わ れる。SRS、SRT では照射装置を回転させながらの照射する場合があり、独立計算は行われて おらず測定等で品質保証していた。本研究では小照射野である SRS、SRT に対応した独立計 算システムを用い、独立計算における許容値を評価した。その結果、脳定位 Arc 照射における 患者 CT 画像を用いた独立計算検証において、Confidence limit は±2.5%であり、系統誤差 2% 含めると 4.5%である。しかし、精度の高い散乱係数を採用することで、Confidence limit の 減少は可能であるといえる。

【研究協力者および所属施設】

- 眞壁 耕平 久喜総合病院 放射線科
- 石橋 悟 佐世保市立総合病院 中央放射線室
- 高橋 良 がん研究会有明病院 放射線治療部

橘 英伸 国立がん研究センター東病院臨床開発センター粒子線医学開発分野

【背景】

- 近年複雑な Plan (IMRT, VMAT, small field SRT, Arc field)が出現してきており、従来の 独立計算検証で投与線量を担保出来るとは いえない¹。
- ・ 高精度照射である脳定位照射(SRS・SRT) は回転照射であり品質保証は実測定で行っ ているが、独立計算検証は実施されていない。
- ・ 脳定位照射に関する独立計算検証の許容値 が明確に決定されていない。

【目的】

 Add-on micro multi-leaf collimator (mMLC)を使用した脳定位 Arc 照射の独立 計算検証の有用性を検討し、治療計画装置に 対する許容値を決定した。

【使用機器と方法】

mMLC を使用して脳定位照射を行っている国内2施設を対象とした。 使用機器・測定器具の

一覧を表1に示す。施設1の治療計画装置 (Radiation treatment planning system ; RTPS) L Ergo++ ver. 1. 7. 5 (Elekta, Stockholm, Sweden)、照射装置は Synergy (Elekta, Stockholm, Sweden), mMLC | # APEX (Elekta, Stockholm, Sweden)であり、施設2の RTPS | J iPLAN RT 4. 1. 2 (BrainLAB, Feldkirchen, Germany)、 照射装置は ONCORE(Siemens, Munich, Germany), mMLC | m3 (BrainLAB Feldkirchen, Germany)であった。 計算アルゴリズムは2施 設とも、Pencil Beam Convolution を使用し、不 均質補正有りで計算した。 独立計算検証で用い たソフトウェアは、SimpleMU Analysis (Triangle products, Wajima, Japan)の Clarkson method を使用した。 今回検証した患 者データの概要を表2に示す。

1. Non-Arc plan

ガントリー角度を0°で固定し、照射野を1× 1cm^2 , $2 \times 2 \text{cm}^2$, $3 \times 3 \text{cm}^2$, $5 \times 5 \text{cm}^2$, $8 \times 8 \text{cm}^2$, 10×10cm²とし、深さを使用エネルギーのdmax、 5cm、10cm、15cm、20cm と変化させて、水等 価としたバーチャルファントム (相対電子密 度:1.0)の各 SAD100cm のアイソセンターが 1Gy になる MU を RTPS で計算させ、また校正 用水ファントムを用いて実測も行った。実測は、 3×3cm²以下の小照射野では、0.015cc Pinpoint ion chamber (PTW-TN30014, Freiburg Germany)を使用し、それ以上は 0.6cc farmer ion chamber (PTW-TN30013, Freiburg Germany)を使用した。 さらに、RTPS から DICOM RT (Plan、Structure)及び CT 画像フ ァイルを出力し、SimpleMU Analysis (indp)に て取り込み、RTPS と独立して線量を求めた。ま た、測定した実測値と RTPS、Indp でそれぞれ

求めた値を比較した。 式(1)は RTPS の誤差 E_{RTP}(%)、式(2)は Indp の誤差 E_{indp}(%)を示 す。

$$E_{RTP} = ((D_{RTP} - D_{meas})/D_{meas}) \times 100$$
 (1)

$$E_{indp} = ((D_{RTP} - D_{meas})/D_{meas}) \times 100 \qquad (2)$$

D_{RTP}は、RTPS が計算した線量(Gy)、D_{meas}は 実測値(Gy)を表す。

2. 患者 Plan (患者 CT)

脳定位 Arc 照射を施行した 38 名の患者 Plan の DICOM RT (Plan, Structure)及び CT 画像 ファイルを出力し、Indp で取り込み、RTPS と 独立して線量を求め、RTPS との線量を比較した。 式(3)は Indp の RTPS に対する誤差 E[']_{indp}(%) を示す。

$$E'_{indp} = ((D_{indp} - D_{RTP})/D_{RTP}) \times 100$$
 (3)

D_{indp} は Indp が計算した線量(Gy)、D_{RTP} は RTPS が計算した線量(Gy)を表す。

3. 患者 Plan (実測)

脳定位 Arc 照射を施行した 38 名の患者 Plan を RT3000-New (TOYO Medic, Tokyo, Japan) に移し込み、の RT3000-New の CT 値を強制的 に 0 に割り当て、相対電子密度を 1.0 として計算 した。 RTPS が計算した線量は、Pinpoint ion chamber の電離体積の平均値ではなく、 Iso center 線量とした。 さらに、移し込んだ Plan の DICOM RT (Plan, Structure) 及び CT 画像 ファイルを出力し、Indp で取り込み、RTPS と 独立して線量を求めた。 実測に使用した Ion chamber は、施設 1 は、Pinpoint ion chamber、 施設 2 は、0.125cc ion chamber (PTW-TM31010, Freiburg Germany)を用いた。 方法 1 と同様に 実測に対する RTPS の誤差と Indp の誤差を算出 した。 さらに RTPS に対する Indp の誤差も算 出した。

4. Sc の決定

SimpleMU Analysis には、Sc の決定に際し て、"Field size for Sc"と言われるアルゴリズムが 搭載されている。 これは、Jaw で形成した照射 野サイズが MLC で形成した照射野の2倍以上で ある場合、MLC の照射野の等価正方形の Sc を 採用するアルゴリズムである。 脳定位 Arc 照射 を施行した 20 名の患者 Plan を用いて、方法 3 と同様に Indp で線量を求める時に、Field size for Sc の ON、OFF で実測に対する Indp の誤差 を算出した。

【結果】

1. Non-Arc plan

表 3 に実測に対する TPS と Indp の線量誤差 を示す。 APEX、m3 共に RTPS、Indp の誤差 の平均値は、± 1%未満であった。 誤差の最大値 は、APEX では Indp にて 4.53%、m3 では Indp にて、3.83%であった。 これは、1 × 1cm² の極 小照射野の結果が反映している。 2 施設のまと めでは、RTPS の平均値 ± 2SD(%)は、-0.17 ± 2.32、Indp の平均値 ± 2SD(%)は、0.45 ± 3.34 であった。

2. 患者 Plan (患者 CT)

表4に各施設における RTPS に対する Indpの 誤差を示す。Apex 及び m3の平均値 ± 2SD(%) は0.89±0.89、3.04±1.36 であった。 2 施設の 平均値 ± 2SD(%)は 1.97±2.45 であり、Indp が RTPS に対して系統的に 2% 程度高く算出して いた。

3. 患者 Plan (実測)

表 5 に各施設における患者 Plan を RT3000-New に移し込んで実測した線量に対す るRTPSとIndpの計算線量の誤差を示す。Indp におけるApexとm3の各平均値±2SD(%)は 1.1±1.34、1.17±1.9であった。各施設のRTPS の平均値は実測値に対して±1%未満であった。 2施設の平均値±2SD(%)は、RTPSが0.05± 2.28、Indp が 1.15±1.61 であった。 Indp が RTPS に比較して、系統的に 1%程度高く算出し ていた。

4. Sc の決定

図 1 に各施設における実測に対する Field size for Sc の使用の有無による Indp の計算誤差を示 す。 Apex は、Field size for Sc を OFF にする と ON 時に比較して誤差が約 5%増大した。 m3 は不変であった。

【考察】

Non-Arc plan では、1×1cm²の極小照射野に おいては、RTPS、Indp 共に誤差が大きくなっ た。 RTPS、Indp に登録された極小照射野にお ける Sc、Scp の値が大きく影響している可能性 がある。登録する為の Sc、Scp の測定の為には、 最適な電離体積を持った測定器具を選択する必 要がある。 極小照射野では、大きな電離体積を 持った Ion chamber では、Dose falloff の影響が 大きく受ける可能性がある²。

患者 CT 画像を使用した Indp は RTPS に比較 して 2%程度高く算出していた。 これは、Indp に登録された Sc、あるいは Sp の値が RTPS に 登録された散乱係数に対して小さいことが影響 していると思われた。 特に iPLAN に登録する 散乱係数は Sep のみであり、Indp に登録する散 乱係数は、Se と Sp であるので、iPLAN で計算 に使用されている Se と Indp に登録されている Se の違いが測定値に系統的に表れている可能性 がある。 逆を言えば、RTPS の散乱係数と Indp の散乱係数の一致度を高めれば、系統的な誤差は 減少可能だと思われる。 RTPS に登録されたビ ームデータと独立計算検証に使用するビームデ ータの整合性を確認することは重要である。

患者 Plan の実測においては、Indp が実測値あ るいは RTPS に対して 1%程度高く算出していた が、系統的な誤差としては非常に小さいといえる。 これは Arc 照射で約 60 個の Segment を一つ一 つ正確に計算出来ていると思われた。

脳定位照射における SRS、SRT では小照射野 を使用する為、値の勾配が大きい Sc の決定が重 要な因子である。 方法 4 での Field size for Sc を OFF にすると、Apex では誤差が RTPS に比 較して 5%程度増大した。 これは Apex の Jaw の設定に関係している。 Apex は、mMLC で照 射野を形成しても Jaw は常に 12×14cm²と一定 である。 Field size for Sc を OFF にすると、12 ×14cm2の等価正方形のScを選択する。一方、 m3の場合は、mMLCで形成した照射野の最大 開度の MLC に対して Jaw は常に 2mm の間隔を あけてフィットする機構である。 その為、Jaw の照射野がmMLCの照射野が2倍になることは ないので、Field size for Sc の ON、OFF によっ て線量値の違いはない。 このことから脳定位照 射の SRS、SRT における Sc の決定因子として Simple MU Analysis に実装されているアルゴリ ズムである Field size for SC は ON で使用する べきである。

【結論】

Add-on mMLC を使用した脳定位 Arc 照射に おける患者 CT 画像を用いた独立計算検証にお いて、Confidence limit は±2.5%であり、系統誤 差 2%含めると4.5%である。 しかし、精度の高 い散乱係数を採用することで、Confidence limit の減少は可能であるといえる。

【参考文献】

1Stern et al. :Verification of monitor unit calculations for non-IMRT clinical radiotherapy :Report of AAPM Task Group 114 , Medical Physics, Vol. 38, No. 1, January 2011

2S. N. Rustgi and D. M. D. Frye : Dosimetric characterization of radiosurgical beams with a diamond detector Med. Phys. 22 (12), December 1995

【研究発表】

西山史朗、眞壁耕平、石橋悟、橘英伸 "Add-on micro multi-leaf collimator を使用した脳定位 Arc 照射の独立計算検証の有用性",日本放射線 腫瘍学会第27回学術大会(横浜市)、2014年12 月

【知的財産権の出願・登録状況】
(予定を含む)
1. 特許取得
なし
2. 実用新案登録
なし
3. その他
なし

表1. 使用機器と測定器具

Institution	Kuki general hospital Sasebo city general hospita			
RTPS	Ergo++ ver 1.7.5 (Elekta)	iPLAN RT 4.1.2 (BrainLAB)		
Accelerator	Synergy (Elekta) ONCOR (SIEMENS)			
Add-on mMLC	APEX (Elekta) m3 (BrainLAB)			
Algorithm	PBC			
Water phantom	Type1233 1D Scanner	PTW MP3		
Dosimeter	RAMTEC Smart PTW UNDOS			
Ion chamber	PTW-TN30013	PTW-TM30013		
	PTW-TN30014	PTW-TM31010		
Phantom	RT300	00-New		
Analysis	SinpleMU Analysis ver1. 1. 9 (Triangle Products)			

Institution	Kuki general hospital	Sasebo city general hospital		
Number of patients	19	19		
Number of arc	4.9(4-5)	5.7(4-7)		
Number of segment	$56 (\ 54 - 58 \)$	63.8 ($44 - 70$)		
PTV volume (cc)	9.5(0.5-27.6)	11.5(0.4-44.4)		
Mean of field size (cm2)	2.5(1.1-5.4)	3.2(1.5-5.0)		
Prescribe dose (Gy)	8(1.8-13)	4(2.5-6.25)		

表 2. 患者 Plan information

Calculator Ave	Ave (%)		Max (%)		1SD (%)		2SD (%)	
	m3	Apex	m3	Apex	m3	Apex	m3	
TPS	0.29	-0.62	2.36	-3.01	0.92	1.21	1.83	2.42
Indp	0.58	0.31	4.53	3.83	1.58	1.77	3.17	3.53

表 3. Non-arc における実測に対する TPS と Indp の誤差の比較

		1		
mMLC	Ave (%)	Max (%)	1SD(%)	2SD(%)
Apex	0.89	1.47	0.44	0.89
m3	3.04	4.35	0.68	1.36

表 4. Patient の CT 画像を用いた TPS に対する Indp の誤差の比較

Calculator Ap	Ave (%)		Max (%)		1SD(%)		2SD(%)	
	Apex	m3	Apex	m3	Apex	m3	Apex	m 3
TPS	0.83	-0.8	2.28	-1.75	0.83	0.66	1.66	1.33
Indp	1.1	1.17	1.84	2.89	0.67	0.95	1.34	1.9

表 5. 患者 Plan の実測に対する TPS と Indp の誤差

図 1. 実測値に対する Field size for Sc の ON、OFF による Indp の誤差