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Figure 3 KEGG pathway: “Pathways in cancer”. Yellow: genes targeted by an miRNA included in the UDB in this study. Orange: genes targeted
by more than one miRNAs included in the UDB in this study. Pathways surrounded by blue rectangles are listed in Table 5.

as is usual. A; and u; represent the eigenvalue and vector,
respectively.

Xik = Z UpgXij
j

gives the principal component score (PCS) of ith miRNA.
Using the obtained xj,k = 1,...,D(< M), miRNAs
were determined to be embedded into low D dimensional
space.

Multiplying X on both sides, the following is obtained:

1
= (XXT) (Xiwg) = i Katg), Gk = 1,...., M)

where v = Xuy can be regarded as an eigenvector. Then,
Xj = Z VkiXij
i

gives the PCS of the jth sample. Using the obtained xy;, k =
1,...,D(< M), samples were regarded to be embedded
into low D dimensional space.

160

PCA-based unsupervised FE selects outlier miRNAs in
low K(< M) dimensional embedding space,

rKi > A

where
K
2 2
i = Z Xik
k=1

Typically K is taken to be two. Since these outliers could
have a major contribution to u’s by definition, if there
are a limited number of well-defined outliers, the exclu-
sion of miRNAs other than outliers does not alter z;’s.
Since vy is a linear transformation of #; as shown above,
the exclusion of miRNAs other than outliers does not
alter v¢. Thus, retaining only outlier miRNAs may also
preserve lower dimensional embeddings of samples that
are important for disease diagnosis, e.g., discrimination
between patients and healthy controls. Although this is
only hypothetical, it explains why PCA-based unsuper-
vised FE is expected to function well. Currently, there are
no well-defined criteria for the selection of A. Although
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A was decided to include sufficient numbers (majority)
of outliers, these were selected by the visual inspec-
tion of two-dimensional embedding of miRNAs. Singular
decomposition-based interpretation is also available as
Additional file 3: Text S1.

Discriminatory analyses between patients and healthy
controls with cross-validations

Three discriminant analyses were performed in this study
as follows. The first, a PCA-based LDA, a discriminant
counterpart of the partial least square (PLS), is defined as
discrimination using the first k PCSs (i.e., from the first
to the kth PCSs). First, PCA was applied to all samples.
Then, PCA-based LDA was performed using only PCSs
in the training set. Since the learning process includes
unlabeled information of the test set, it is semi-supervised
learning. Samples in the test set were predicted using
trained PCA-based LDA. LDA was performed using lda
functions in R {31] and the prediction of samples in the
test set was performed by predict.lda functions in
R. Optimal k was determined using cross-validations.
The second analysis used an SVM trained with training
set samples using svm function included in the e1071
R package with default settings (e.g., with the usage of
Gaussian kernel), other than class.weight argument
that was set to attribute equal weights to sets of nor-
mal controls and patients when the number of samples in
normal controls differed from that of patients. Then, sam-
ples in the test set were predicted using predict.svm
function in R. Third, lasso was used for a discrimina-
tion study. Lasso was performed using the lars func-
tion included in lars R package, attributing 1 and 2
to healthy controls and patients, respectively, and using
the setting type="‘lasso. Then, samples in the test set
were predicted using predict .lars function in R for
s n/100,n = 0,...,100 with mode="fraction. Sam-
ples with predicted values larger (less) than 1.5 were
regarded to be patients (healthy controls). Optimal s was

Table 6 Details of data normalization
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selected by cross-validation. For all cases, leave one out
cross-validation (LOOCV) was employed.

Data normalization

Since this study is a meta-analysis using data sets col-
lected from various independent studies employing dis-
tinct measuring methods, we normalized data sets indi-
vidually by distinct methods (Table 6). Data from multiple
studies were treated identically and compared. In addi-
tion, some miRNAs with abnormally large values were
excluded from the analysis. Excluded miRNAs were hsa-
miR-486-5p (AD), hsa-miR-223 and hsa-miR-338 (CAD),
and hsa-miR-451 (NPC).

Stability test

On LOOCYV FE, selected features (miRNAs) are listed.
For lasso, miRNAs with non-zero Bs were listed by set-
ting type='coefficients’ for predict.lars function
with estimated optimal s. Because of LOOCYV, FE was
performed by M(=the number of samples) times. Then
stability was defined as

F‘
2

ie{i|F;#0}

S= -}—
N
where F; is the number of times that ith miRNA was
selected within M times FE. Summation was performed
for miRNAs that were non-zero F; (i.e., selected at least
once in FEs) and N is the number of miRNAs included
in the summation. Larger S, (A“le < § < 1) indicates more
stable FEs.

P-values computation for significant difference between
healthy controls and patients

P-values computed for significant differences between
healthy controls and patients of each disease were deter-
mined using ¢-test for each miRNA. Computed P-values
were adjusted by BH-criterion [32] and miRNAs with

Data set names/

Data normalization Data normalization

GEOID Disease Data retrieval methods timing methods

GSE46579 AD GSE46579_AD_ngs_data_summarizedxls.gz before FE zero mean/variance is one
GSE37472 carcinoma getGEO before FE zero mean/variance is one
GSE49823 CAD getGEO after FE zero mean/variance is one*
GSE43329 NPC getGEO before FE zero mean/variance is onet
GSE50013 HCC getGEO before FE# zero mean/variance is one*
GSE41922 BC GSE41922_series_matrix.txt.gz after FE zero mean/variance is one*
GSE49665 AML getGEO after FE zero mean/variance is one*

*no normalization for SVM/lasso, *no normalization for SVM with PCA-based FE, #after FE for PCA-based LDA with universal features. All the sample normalizations
were sample-based; i.e,, each sample was normalized to have both zero mean and unit variance. AD, Alzheimer disease; CAD, coronary artery disease; NPC,
nasopharyngeal carcinoma; HCC, hepatocellular carcinoma; BC, breast cancer; AML, acute myeloid leukemia. Data retrieval methods/data set names were used to
name files and for analysis. getGEQ indicates that individual sample profiles whose files names started with “GEO” were downloaded by the getGEO command in R.
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adjusted P-values less than 0.05 were regarded to have sig-
nificantly different expression between normal controls
and patients.

KEGG pathway analysis of UDB using DIANA-mirpath
DIANA-mirpath [25] was employed to investigate KEGG
pathways enriched by miRNA target genes. Twelve genes
were uploaded to DIANA-mirpath with the following set-
tings: “Species” was “Human’, “FDR” correction was “yes’,
“P-value threshold” was 0.05, and “Select the way to merge
results” was “pathway union” (direct link to DIANA-
mirpath and full list of KEGG pathways are shown in
Additional file 3: Text S2 and Additional file 1: Table S5).

Additional files

Additional file 1: Supporting Tables.
Additional file 2: Supporting Figures.
Additional file 3: Supporting Texts.
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Abstract

Liver cancer ranks sixth in cancer incidence, and is the
third leading cause of cancer-related deaths worldwide.
Hepatocellular carcinoma (HCC) is the most common
type of liver cancer, which arises from hepatocytes and
accounts for approximately 70%-85% of cases. Hepa-
titis B virus (HBV) frequently causes liver inflammation,
hepatic damage and subsequent cirrhosis. Integrated
viral DNA is found in 85%-90% of HBV-related HCCs.
Its presence in tumors from non-cirrhotic livers of chil-
dren or young adults further supports the role of viral
DNA integration in hepatocarcinogenesis. Integration of
subgenomic HBV DNA fragments into different locations
within the host DNA is a significant feature of chronic
HBV infection. Integration has two potential conse-
quences: (1) the host genome becomes altered (“cis”
effect); and (2) the HBV genome becomes altered
(“trans" effect). The cis effect includes insertional mu-
tagenesis, which can potentially disrupt host gene func-
tion or alter host gene regulation. Tumor progression
is frequently associated with rearrangement and partial
gain or loss of both viral and host sequences. However,
the role of integrated HBV DNA in hepatocarcinogen-
esis remains controversial. Modern technology has pro-
vided a new paradigm to further our understanding of
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disease mechanisms. This review summarizes the role
of HBV DNA integration in human carcinogenesis.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Hepatitis B virus; Integration; Hepatocar-
cinogenesis; Cis effect; 7rans effect; Whole genome
seguencing

Core tip: A high viral load is associated with an elevated
risk of hepatocellular carcinoma (HCC), and the risk re-
mains increased in hepatitis B surface antigen-negative
hepatitis B virus (HBV) and occult infections. The ability
of HBV to integrate into the infected host’s hepatocyte
genome is one of the most important direct pro-onco-
genic properties. The recent development of efficient
tools for genome-wide analysis of gene expression and
genetic defects has allowed a comprehensive overview
of the changes occurring with HCC. Specific HBV fea-
tures, including the integration of viral DNA into host
chromosomes, may trigger increased genetic instability.

Hai H, Tamori A, Kawada N. Role of hepatitis B virus DNA in-
tegration in human hepatocarcinogenesis. World J Gastroenterol
2014; 20(20): 6236-6243 Available from: URL: http://www.wjg-
net.com/1007-9327/full/v20/i20/6236.htm DOI: http://dx.doi.
org/10.3748/wjg.v20.i20.6236

INTRODUCTION

Approximately two billion people worldwide have been
infected with hepatitis B virus (HBV). With more than
350 million chronic HBV carriers, this virus is one of the
most common human pathogens and is a significant pub-
lic health issue.

Liver cancer is the sixth most common cancert, and
the third leading cause of cancer-related deaths™”. Hepa-

May 28, 2014 | Volume 20 | Issue 20 }
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tocellular carcinoma (HCC) is the most common type of
liver cancer, accounting for approximately 70%-85% of
cases™. In recent studies conducted in Asia and North-
ern America, the estimated risk of developing HCC was
observed to increase by 25-37-fold in hepatitis B sutface
antigen (HBsAg) cartiers compared with non-infected
patients®™, HBV frequently causes liver inflammation,
hepatic damage and subsequent cirrhosis. The develop-
ment of liver cirthosis is recognized as a major step in
HCC pathogenesis because it occurs in 80%-90% of
HCCs". A high viral load is associated with an elevated
tisk of HCCY, and the risk remains higher in HBsAg-
negative HBV and occult infections”"". HBV replica-
tion has unique characteristics". HBV is classified as a
pararetrovirus because of its similarity to retroviruses.
In fact, HBV replicates through reverse transcription of
pregenomic RINA that is an intermediate replicative mol-
ecule!™. The ability of HBV to integrate into the infected
host’s hepatocyte genome is one of the most important
aspects of its direct pro-oncogenic properties’?, Un-
like retroviruses, genomic integration has no role in HBV
replication and does not produce integrase enzymatic
activity protein, meaning that the integrative process is
likely mediated by cellular topoisomerase I activity"®,

Integrated viral DNA is found in 85%0-90% of HBV-
related HCCs and its presence in tumors from non-cit-
rhotic livers of children or young adults further supports
the role of viral DNA integration in hepatocarcinogen-
esis" ™, A significant feature of chronic HBV infection
is that HBV DNA fragments are integrated into different
locations within the host DNA™?. Tumor progression
is often associated with rearrangement and partial gain
ot loss of both viral and cellular sequences®>%. Various
small-scale isolated studies have suggested that HBV
integration into the host genome is a random event™,
however, integration has been observed at chromosomal
fragile sites, scaffold/matrix attachment regions, and
repeat/satellite sequence-rich regions[w]. Therefore, the
role of integrated HBV DNA in hepatocarcinogenesis
remains controversial. This review summarizes the role
of HBV DNA integration in human carcinogenesis.

HCC MECHANISMS

The are three major molecular mechanisms of hepato-
carcinogenesis caused by HBV infection””. First, the
expression of viral proteins, particularly hepatitis B virus
X protein (HBx), promotes cell proliferation and viabil-
ity. Second, the integration of HBV DNA into the host
genome alters the expression and function of endog-
enous genes and induces chromosomal instability. Finally,
genetic damage accumulates as a result of inflammation
and ongoing hepatocyte division to replace cells killed by
virus-specific T' cells.

Genetic alteration plays a crucial role in cancer inita-
tion and progression. The recent development of effi-
cient tools for genome-wide analysis of gene expression
and genetic defects has allowed a comprehensive ovet-

WIJG | www.wjgnet.com
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Integration sites in host genome

- ~HBV:DNA

RTERT: .o 2 e s ‘3" end of HBx
MLL G : chEi st Pres82/S
RAR-b '
CCNE1
Cyclin A2
FN1
ROCK1

SENP5 .
ANGPT1
PDGF receptor :
Calcium signaling-related genes
Ribosomal protein genes :
Epidermal growth factor receptor
Mevalonate kinase -
Carboxypeptidase
Platelet growth factor receptor

HBV: Hepatitis B virus; HBx: Hepatitis B virus X protein.

view of the changes occurring with HCCP**, Specific
HBYV features, including HBV DNA integration into host
genome, may trigger increased genetic instability.

ROLE OF HBV DNA INTEGRATION IN
HUMAN HEPATOCARCINOGENESIS

The association between HBV DNA integration into the
host genome and HCCs was first reported in the early
1980s"**. Subsequently, many studies wete performed
to further investigate this association (Table 1).

The integration of HBV DNA into host cellular
DNA during HBV chronic infection disrupts or pro-
motes cellular gene expression that is important for cellu-
lar growth and differentiation. Furthermore, the expres-
sion of HBV proteins may have a direct effect on cellular
functions, and may promote malignant transformation.
Integration events are thought to precede tumor develop-
ment because they are found in chronic hepatitis padents
and during the acute infection stage®".

Technological limitations of PCR and Southern blot-
based methods restricted previous studies that attempted
to characterize the most common HBV integrant(s) in a
small number of patients"*. HBV has a large number
of mutations at both the nucleotide and structural levels,
and the lack of prior knowledge of HBV sequences in
each sample may lead to PCR failure and false-negative
results. This occurs when the primers are designed for
deleted or polymorphic sites on the HBV genome. Re-
cently, two studies reported “short-read” whole genome
DNA paired-end sequencing of four and eighty-eight
HCC patients®™*, Integration sites could only be inferred
from paired-end reads containing both human and viral
sequences, because of the limitations of the short reads
generated using these platforms. Indirect roles have been
proposed because the lack of identification of a domi-
nant oncogene encoded by HBYV, including insertional

May 28, 2014 | Volume 20 | Issue 20 |
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activation of cancer-related genes from HIBV integration,
induction of genetic instability by viral integration or
HBx, and long-term effects of viral proteins that enhance
immune-mediated liver disease.

Integration has two potential consequences: (1) the
host genome becomes altered (“ais” effect); and (2) the
HBV genome becomes altered (“frans” effect). The cis
effect includes insertional mutagenesis, which can poten-
tally disrupt host gene function or alter host gene regu-
lation [eg., telomerase reverse transcriptase (TERT)]P.
Despite drastic rearrangements, the coding regions of
PreS2 and HBx were generally conserved and could be
transcribed™. Hence, these two HBV proteins may have
a trans role in hepatocarcinogenesis” .

CIS EFFECT

The main integration sites in the human genome and
the preferred integrating region within the HBV genome
have been researched extensively.

HBYV DNA integration occurs randomly within hu-
man genomes, and may involve multiple sites in different
chromosomes™. Thus, HBV behaves like an insertional,
non-selective mutagenic agent. The important host ge-
nome rearrangements associated with viral integration
suggest that the main oncogenic effect is from the induc-
tion of higher genomic instability™”. Most reported inte-
gration events occur near or within fragile sites or other
repetitive regions, such as the Alu sequences and micro-
satellites that are prone to instability, tumor development,
and progression”™. Integration of HBV DNA sequences
begins in the eatly stages of acute infections, and mul-
tiple integrations have been detected in chronic hepatitis
tissues. Clonal integrated HBV sequences have been ob-
served in approximately 80% of HBV-related HCCs™.
Viral insertion sites have been mapped in multiple regions
on virtually all chromosomes, suggesting a random distri-
bution throughout the host genome. HBV insertions are
commonly associated with large genetic alterations that
may lead to the abrogation of control mechanisms that
safeguard chromosomal integrity™ ", Similar to retroviral
proviruses, HBV DNA targets actively transcribed chro-
mosomal regions within genes or in the immediate vicini-
ty. Sequence analysis of multiple viral-host junctions have
identified cellular coding regions within several kbps in
90% of cases, with frequent targeting of gene families in-
volved in cell survival, proliferation and immortalization
including: hTERT, the PDGF receptor, MLL, calcium
signaling-related genes and ribosomal protein genes"”
These findings favor the view that viral insertion induces
the first genetic alteration in tumor development. Target
genes may play a role in hepatocarcinogenesis, which was
previously shown for HBV insertions into the retinoic
acid receptor b (RAR-b) and the cyclin A2 genesm’m.

Among the numerous viral integration sites described,
some notable regions include the tyrosine-protein-kinase
domain of the epidermal growth factor receptor gene!™,
the mevalonate kinase gene™”, the carboxypeptidase
gene®, platelet growth factor receptor genes'” and

Baishidenge  WIG | www.wijgnet.com

HTERT.

The FIBx gene in the HBV genome tends to be the
most common region, but the most common integra-
tion sites in the human genome are not fully identified.
Several integration sites in the human genome such as
TERT, MLL4, CCNET, FN1, ROCKT and SENP5 have
been reported™ ™. TERT encodes a telomerase reverse
transcriptase, which plays an essential role in overrid-
ing cellular senescence. Its dysregulation in somatic cells
is linked to carcinogenesis'™. MILLA encodes a histone
methyltransferase that plays a critical role in gene expres-
sion and epigenetics in cancer cells. The translocation
breakpoint of the intron 3 region of MILL4 is one of the
preferential targets for HBYV DNA integration and may
be involved in liver oncogenesis™. CCNET encodes cy-
clin E1, which is required for cell cycle G1/8 transidon.
FINT encodes fibronectin, 2 component of the extracellu-
lar matrix that is involved in cell adhesion and migration
processes. The protein encoded by ROCKY can activate
LIM kinase, and inhibits actin-depolymerizing activity by
phosphorylating cofilin. SENP5 encodes a protease spe-
cific for SUMO proteins, and is required for numerous
biological processes. All of these genes are upregulated in
malignant tissues™. Hence, HBV integration into these
genes may cause HCC.

Whole genome sequencing (WGS) of a large cohort
has provided an opportunity to identify novel recurrent
integrations. In addition to the confirmation of recut-
rent HBV integration into the MLL4 (#» = 9) and TERT
(n = 18) loci accompanied by upregulation of gene ex-
pression, recurrent integration events were observed at
the CCNET7 (n = 4), SENP5 (n = 3), and ROCK? (n =
2) loci®™. CCNET expression was, on average, 30-fold
higher in tumors with HBV integration compared to the
normal controls. Cyclins are mainly involved in regulating
the cell cycle in eukaryotic cells, and are major targets for
oncogenic signals. HBV integration at the CCNET locus
has provided at least one molecular mechanism driving
aberrant cell cycle control leading to HCC. Currently,
three genome-sequencing studies have been published
that analyzed HBV integration events. Genome sequenc-
ing of four HCC patients identified 255 HBV integration
sites in the three HBV-positive patients including the
MII4 locus in one sample and the ANGPT7 locus in
another™. RNA sequencing revealed a distinct transcrip-
tional impact of viral integration. HBV DNA integra-
tion into the third exon of MII4 resulted in a human-
viral fusion transcript, and a 20-fold increase in MILL4
transcription in comparison to the adjacent normal liver
tissue. For the ANGPT7 gene, HBV DNA was inserted
into 10-kb upstream of the promoter region, leading to a
greater than eightfold elevation in ANGPT7 expression.
In a genome sequencing study of 27 HCCs, including
11 HBV-associated HCC, 14 HCV-associated HCC, and
two cases that were unrelated to viral infection, the aver-
age proportion of the TERT integration sites (41%) was
higher than that of other integration sites. These findings
are consistent with previous reports of recurrent HBV

integration at the TERT locus®.
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Preferential HBV integration into gene promoters (P
< 0.001), and significant enrichment of integration into
chromosome 10 (P < 0.01) was observed in the tumors.
Integration into chromosome 10 was significantly as-
sociated with pootly differentiated tumors (P < 0.05). In
particulat, recurrent integration into the TERT stromoter
was correlated with increased TERT expression”.

We found that HBV DNA integration enhanced host
chromosomal instability leading to large inverted duplica-
tions, deletions and chromosomal translocations®™. Many
of these chromosomal segments contain genes encoding
key factors in liver carcinogenesis, such as p53, Rb, Wnt/
b-catenin, cyclins A and D1, TGFb, and Ras®".

TRANS EFFECT

Integrated viral sequences may contribute “i# frans” to
tumotigenesis through the production of truncated and
mutated HBx ot preS2/S proteins, though they cause de-
fective replication. These proteins may impact HCC de-
velopment by disrupting cellular gene expression control
or by activating oncogenic signaling pathways.

The HBx protein is a multifunctional regulator of vi-
ral and cellular genes that interferes with viral replication
and proliferation. HBx and Pre-S2/S regulatory proteins
that ate generated from integrated viral sequences are
involved in hepatocyte transformation. Moreover, HBx
and truncated Pre-S2/S have been shown to be effective
transactivators of cellular and viral genes and are in-
volved in signal transduction pathways, cell cycle control
and transcriptional regulation®**",

The C-terminal region of HBx, produced by HBx
truncation, contributes to HCC development. It has been
suggested that the C-terminal region is required for reac-
tive oxygen species (ROS) production and 8-oxoguanine
(8-0x0G) formation, which are biomarkers of oxidative
stress. Oxidative stress and mitochondrial DNA damage
play an important role in the development of HCCP,
Other studies have found that HBx C-terminal trunca-
tion, particularly involving 24 amino acids, plays a role
in enhancing cell invasiveness and metastasis in HCC by
activating MMP10 through C-Jun signaling®. Also, HBx
C-terminal truncaton was closely related to the overex-
pression of centromere protein A in HCC'. In addition,
HBx C-terminal truncation directly regulates miRNA
transcription and promotes hepatocellular proliferation”

Most HBV-related HCCs have integrated viral ge-
nomic sequences, including the HBx gene. Although the
integrated forms of HBx are frequently rearranged and
show numerous point mutations, deletions or truncation,
integrated HBx may encode functionally active proteins
with transactivating ability®*". Characterization of HBx
expression in malignant hepatocytes and infected liver
tissues has been often hampered by the difficulty in ob-
taining valid high-affinity anti-HBX antibodies for im-
munodetection®. Despite this, the expression of HBx
is maintained through multistage hepatocarcinogenesis
from pre-neoplastic nodules or foci of transformed he-
patocytes to HCC*,
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Evidence of transcriptional activity at integrated X
sequences has been demonstrated in tumors and chroni-
cally infected livers®™ and may be correlated with the
detection of the X protein in human HCCs™. It was
suggested that downstream cellular sequences contribute
to activated expression and/or enhanced transactivating
capacities of the integrated HBV sequences®™®. The X
gene product transactivates homologous and heterolo-
gous transcriptional enhancers and promoter sequences.
In the meantime, expression of cellular genes is activated
“in trans” from increased X gene products. Many clones
preserved transactivation activity in spite of the trunca-
tion at the 3’ end of the X ORF". The cDNA structure
of X mRNA from integrated HBV DNA suggested X-cell
fusion mRINA.

The preferred region within the HBV genome in-
volved in integration and viral structural alteration is
located at nucleotides 1600-1900 around the 3’-end of
HBx and the 5-end of the Precore/Core genes, where
viral replication and transctiption is initiated. Upon in-
tegration, the 3’-end of HBx is frequently deleted and
HBx-human chimeric transcripts, which can be exgressed
as chimeric proteins, are commonly observed™. The
3’-end of the HBx gene is the preferred region for hu-
man genome integration®**"", leading to the C-terminal
truncated form of HBx, and is an important mechanism
in HBV-related hepatocarcinogenesis.

Recently, WGS was performed on a large cohort of
HCC patients with 81 HBV-positive, seven HBV-negative
HCC samples and adjacent normal tissues to survey HBV
integration in liver cancer genomes®™?. A systematic and
in-depth bioinformatics analysis was performed to study
HBYV integration. The 399 detected HBV integration
events occurred more frequently in tumors (344 events)
than the normal controls (55 events), and represented a
6.3-fold increase. The HBV genome break points were
also examined, and 40% of the break points were re-
stricted to an 1800-bp region of the HBV genome where
the viral enhancer, the X gene and the core gene ate lo-
cated. This viral breakpoint may facilitate the formation
of human-viral fusion proteins and create cis-regulatory
effects on expression of downstream genes that disturb
the host gene regulatory network.

Some HCC patients do not have detectable hepatitis
B surface antigen in their serum, but have low levels of
serum HBV DNA and fragments of HBV DNA in their
genomic cellular DNA (occult HBV infections). The
prevalence and molecular status of occult HBV in HCC
patients has been investigated in many studies in patients
from different regions worldwide"*>", Tn HBsAg-nega-
tive HCC patients, HBV DNA was detected in neoplastic
and/or adjacent non-neoplastic liver tissue in almost half
of patients, some of which were anti-HCV positive™. In
some patients, positivity for anti-HBc antibodies was the
only marker of HBV infection. Covalently closed circular
HBV DNA may be detected in the liver of some patients,
indicating persistence of the viral genome template for
transcription and replication. An observational cohort
study showed that HCC develops more commonly in oc-
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cult HBV patients among HBsAg-negative patients with
chronic hepatitis C.

In addition to genetic and genomic perturbations,
HBYV integration is also associated with various clinical
parameters including disease occurrence at younger age,
higher levels of AFP and poor overall survival™. This
suggests an association between viral DNA integration
and a more aggressive pathogenesis of HCC,

Beside genomic alterations, epigenetic factors, such as
methylation-associated gene silencing, have been shown
to be involved in the deregulation of cellular function in
HCC. The HBV genome is almost completely unmethyl-
ated in the early stages of carcinogenesis, from chronic
active hepatitis to hepatic cirrhosis, while it becomes
more methylated in the established liver tumors, both in
patients and in cultured cancer cell lines'".

CONCLUSION

The multistep development of liver cancer is associated
with the accumulation of genetic and epigenetic changes.
The long latency of HCC development following prima-
ry HBV infection reflects an indirect oncogenic pathway.
Evidence of multiple cooperative mechanisms during
neoplastic transformation is increasing, Genetic instabil-
ity, which is particulatly high in HBV-telated HCCs, may
be related to HBV integration.

The integration of HBV has the primary cr effect of
altering gene regulation. Sequence variations and struc-
tural alterations of the HBV genome that modify viral
protein structure, function and integration events gener-
ate novel HBx-human chimeric proteins that may exert a
trans effect by facilitating host immune surveillance eva-
sion and/or that contibute to tumorigenesis.

Next generation sequencing technology has provided
a new paradigm for undetstanding disease mechanisms.
WGS and whole exome sequencing efforts have led to
the discovery of previously unknown somatic vatiations
in HCC, such as point mutations in chromatin remodel-
ing genes and recurrent HBV integrations. A large num-
ber of data sets from genome wide associaton studies
may need further investigation. Additional research into
the development and treatment of resistant HBV strains
is warranted.
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Introduction

Abstract

Background and Aim: To elucidate the clinical characteristics of hepatitis B virus reac-
tivation (HBV-R), we performed a prospective long-term study of patients with hemato-
logic malignancy, including both hepatitis B virus (HBV) carriers and those with resolved
HBV infection.

Methods: Twenty-one patients with hematopoietic stem-cell transplants (HSCT) and 36
patients given rituximab-based chemotherapy were enrolled. Entecavir was administered
prophylactically to eight patients with HBV surface antigen (HBsAg). HBV-DNA was
measured every month in 49 patients with resolved HBV infection, and preemptive therapy
was given to eight patients with HBV-R.

Results: HBV-R developed in five (26%) of 19 patients with HSCT and three (10%) of 30
patients given rituximab-based chemotherapy. HBV-R occurred a median of 3 months
(range: 2—-10) after the end of rituximab-based chemotherapy and 22 months (range: 9-36)
after HSCT. HBV-R did not develop in patients with an antibodies against HBsAg (anti-
HBs) titer exceeding 200 mIU/mL at baseline. Mutations in the “a” determinant region
with amino acid replacement were detected in four of the eight patients with HBV-R.
Preemptive therapy prevented severe hepatitis related to HBV-R. Entecavir treatment was
stopped in four patients with HBV-R. Since the withdrawal of entecavir, HBV-DNA has
not been detected in two patients persistently positive for anti-HBs. No patient had fatal
hepatitis.

Conclusions: Proper management of patients with HBsAg or resolved HBV infection
prevented fatal hepatitis related to HBV-R in patients who received immunosuppressive or
cytotoxic therapy. Entecavir could be safely discontinued in patients with HBV-R who had
acquired anti-HBs.

HBV-R in patients negative for hepatitis B virus surface antigen
(HBsAg).

Hepatitis B virus (HBV), a circled DNA virus with approximately
3000 bases, causes liver disease in humans, including acute hepa-
titis, chronic hepatitis, cirrhosis, and hepatocellular carcinoma.!?
HBYV viral loads in serum are regulated by both viral replication
and host immunity. It is well known that HBV reactivation
(HBV-R) occurs in patients who receive immunosuppressive or
cytotoxic therapy and in patients after transplantation, particular in
those who receive allogeneic or autologous hematopoietic stem-
cell transplants (HSCT).>” HBV-R is generally defined as a con-
secutive more than 1-log increase in the serum HBV-DNA level in
patients with previously inactive or resolved HBV infection.®® In
patients with HBV-R, hepatitis flare can occur, leading to hepatic
failure.' De novo hepatitis is defined as a hepatitis flare caused by

Journal of Gastroenterology and Hepatology 29 (2014) 1715-1721

Screening and prophylaxis for HBV-R in patients who receive
cytotoxic therapy have been recommended by several groups of
hepatologists.!"™* However, it remains unclear how long such
patients should be observed. A meta-analysis has suggested that
prophylactic treatment with Iamivudine, a nucleoside analogue
with very potent anti-HBV replication activity, might reduce the
risk of HBV-R and HBV-associated morbidity and mortality.'* As
compared with entecavir, prolonged treatment with lamivudine has
a higher risk of viral breakthrough owing to the emergence of viral
variants with reduced sensitivity to the drug, resulting from muta-
tions in the YMDD locus of the HBV polymerase gene. Entecavir
is speculated to be more suitable for patients with HBV-R who
require more than 1 year of treatment. Recently, retrospective
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studies have shown that entecavir is more effective than
lamivudine as prophylactic therapy for HBV-R.!>:16

To our knowledge, there were few prospective long-term studies
that have evaluated outcomes after prophylactic therapy in patients
with HBsAg or preemptive therapy in patients without HBsAg.
In particular, the endpoint of the nucleoside analogue therapy
remains uncertain in patients’ with HBV-R. We performed this
prospective study to elucidate the prevalence of HBV-R on regular
screening and the characteristics of patients with HBV-R. We also
evaluated the effectiveness of entecavir for HBV-R and assessed
the risk of HBV reappearance after the end of entecavir treatment.

Patients and methods

Enrolled patients and management. In 2007, we orga-
nized a project team to perform a prospective study of HBV-R in
patients with hematologic malignancy in Osaka City University
Hospital. Before the start of rituximab-based chemotherapy or
HSCT, HBsAg, antibodies against hepatitis B virus core antigen
(anti-HBc), and antibodies against HBsAg (anti-HBs) in sera of
the patients were tested by chemiluminescent enzyme immunoas-
say (CLEIA,; Fujirebio Inc., Tokyo, Japan). Patients positive for
one or more HBV serum marker were enrolled in the study. After
enrollment, HBV-DNA was measured by a real-time polymerase
chain reaction (real-time PCR)-based method (COBAS TagMan
PCR, Roche Diagnostics, Tokyo, Japan).!” The quantified range of
the real-time PCR assay was between 2.1 and 8.8 log copies/mL.
Patients with hepatitis C virus, alcoholic liver disease, primary
biliary cirrhosis, or autoimmune liver disease were excluded.
HBV-DNA was regularly measured every month, from the start of
chemotherapy or the time of HSCT to 1 year after the end of
therapy. After monthly screening, HBV-DNA was measured once
every 3 months. In patients in whom HBV-DNA was detected,
HBYV genotype was identified by enzyme-linked immunosorbent
assay (ELISA) with monoclonal antibodies to type-specific
epitopes in the preS2-region (Institute of Immunology, Tokyo,
Japan), as described elsewhere.'® Prophylactic or preemptive treat-
ment against HBV-R-associated hepatitis was given to patients
with a serum HBV-DNA level exceeding 2.1 log copies/mL; such
patients received 0.5 mg entecavir per day. Treatment with
entecavir was discontinued after more than 6 months had elapsed
from the disappearance of both HBsAg and HBV-DNA in serum.

Table 1 Clinical characteristics of the enrolled patients

A Tamori et al.

In the present study, HBV-R was defined as more than a 1-log
increase in the serum HBV-DNA level as compared with the value
at enrollment or as a serum HBV-DNA level higher than 2.1 log
copies/mL.

Fifty-seven patients (23 women and 34 men) were enrolled from
November 2007 to January 2013. The mean age was 60 years
(range, 23-82). Eight patients were positive for both HBsAg and
anti-HBc, 43 were positive for both anti-HBs and anti-HBc, and 6
were positive for only anti-HBc (Table 1). No patient had a history
of HBV vaccination. The mean follow up was 16 months (range,
4-63). Seven patients died within less than 1 year because of
progression of hematologic malignancy or infection without HBV.

Sequencing of HBV-DNA. In patients with HBV-R, the
nucleotide sequences of HBV polymerase coding area were deter-
mined by the direct sequencing method after nested PCR amplifi-
cation.'” Briefly, HBV-DNA was extracted from 200 UL of serum
and was amplified as two overlapping fragments, A (nucleotide
[nt] 271-1941) and B (nt 1679-335), with the use of an Expand
High Fidelity PCR System (Roche Diagnostics, Mannheim,
Germany). To amplify fragment A, primers HBMF1 (5’-YCCTG
CTGGTGGCTCCAGTTC-3") and 1972R (5-AAAGAATTCAG
AAGGCAAAAAAGA-3") were used for the first-round PCR, and
primers HBMF2 (5-GTCTAGACTCGTGGTGGACTTCTCTC-
3’) and n1941R (5’ -CAGAAGCTCCAAATTCTTTATA-3") were
used for the second-round PCR. To amplify fragment B, primers
1653F (5'-CATAAGAGGACTCTTGGACT-3") and HBMR2 (5'-
AAGCCAXACARTGGGGGAAAGC-3") were used for the first-
round PCR, and primers 1679F (5-AATGTCAACGACCG
ACCTTG-3") and 335R (5-TGAYTGGAGRTTKGGGACT-3")
were used for the second-round PCR. Each PCR product was
purified and sequenced directly by the dideoxy chain termination
method, using a BigDye Terminator v1.1 Cycle Sequencing Kit
and an ABI PRISM 3100 DNA Genetic Analyzer (Applied
Biosystems, Foster City, CA, USA).

Ethical considerations. This study protocol complied with
the ethical guidelines of the Declaration of Helsinki 1975 (2008
revision) and was approved by the Ethics Committee of Osaka
City University Graduate School of Medicine (UMIN Clinical
Trials Registry, UMIN000009491). Written informed consent was
obtained from all enrolled patients.

Age Gender Anti-HB marker Disease Treatment

HBsAg-positive
n=8 62 (63-79) Male: 7 Anti-HBs positive: 7 ML: 7 CHOP-R: 6

Female: 1 Anti-HBc positive: 8 Leukemia: 1 HSCT: 2
HBsAg-negative
n=49 60 (23-82) Male: 27 Anti-HBs positive: 43 ML: 29 CHOP-R: 28

Female: 22 Anti-HBc positive: 49 Leukemia: 14 HSCT: 19

MDS: 6 R-Hyper CVAD: 2

CHOP-R, combination chemotherapy with cyclophosphamide, doxorubicin, vincristine, prednisolone, and rituximab; HSCT, hematopoietic stem-cell
transplantation; MDS, myelodysplastic syndromes; ML, malignant lymphoma; R-Hyper CVAD, combination chemotherapy with cyclophosphamide,

vincristine, doxorubicin, dexamethasone, and rituximab.
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Results

Prophylactic therapy for patients with HBsAg. In
the eight patients with HBsAg, prophylactic treatment with
entecavir was started before cytotoxic therapy (Table 2). All eight
patients were infected with HBV genotype C. In response to
entecavir, the HBV-DNA load decreased to under 3 log copies/mL
in all patients and fell to undetectable levels in all but one patient
with HBeAg (case 32). Four of the eight patients died because of
progression of hematologic malignancy or infection. Hepatic
failure did not occur in any of the patients with HBsAg. Entecavir
treatment has continuously prevented HBV-R in the other four
patients.

Preemptive therapy for patients with HBV
resolution. The clinical backgrounds of the 49 HBsAg-
negative patients are shown in Table 1. At enrollment, HBV-DNA
was not detected in patients without HBsAg. At the end of follow
up, HBV-R has occurred in five (26%) of 19 patients who received
HSCT and three (10%) of 30 patients who received rituximab-
based chemotherapy. HBV-R occurred a median of 3 months
(range, 2—-10) after the end of rituximab-based chemotherapy. On
the other hand, HBV-R occurred a median of 22 months (range:
9-36) after HSCT.

As compared with patients without HBV-R, anti-HBs titers at
enrollment were slightly but not significantly lower in patients
with HBV-R (P = 0.085). Among patients given rituximab-based
chemotherapy, the anti-HBc titer was significantly higher in the
presence of HBV-R (P =0.02, Table 3). HBV-R occurred in one
(17%) of six patients without anti-HBs. Reactivation occurred in
six (26%) of 23 patients with anti-HBs titers below 50 mIU/mL,

Study of hepatitis B virus reactivation

one (13%) of eight patients with anti-HBs titers between 50 and
200 mIU/mL, and none of 12 patients with anti-HBs titers exceed-
ing 200 mIU/mL. During the screening period, anti-HBs titers
gradually decreased in six patients with HBV-R. Anti-HBs titers
became negative at the time of HBV-R in seven patients. Anti-HBs
titers remained persistently positive in 36 patients without HBV-R.

Alanine aminotransferase (ALT) levels increased to more than
five times the upper limit of normal in three of eight patients with
HBV-R (Table 4). In one patient (case 4) who had received
rituximab-based chemotherapy, the ALT level rose to 452 TU/L
after entecavir treatment (Fig. 1). At that time, HBV-DNA
decreased to below 2.1 log copies/mL. It was speculated that
HBV-R was not directly related to ALT flare in this patient. Two
other patients who underwent HSCT discontinued regular screen-
ing for HBV-DNA on their own initiative. Briefly, case 30 dropped
out of regular screening 15 months after enrollment, and ALT
levels rose to 362 IU/L with an increase in HBV viral load at
month 22. Another patient (case 205) dropped out of the study 25
months after enrollment, and ALT levels elevated to 1642 TU/L
with a concurrent increase in HBV viral load at month 36.
Although HBV-R-related hepatitis occurred in these patients,
treatment with entecavir fortunately prevented hepatic failure.
With the exception of these two patients, preemptive therapy pre-
vented hepatitis related to HBV-R. Treatments for hematologic
diseases were completed without hepatic failure in all of the
enrolled patients without HBsAg. One patient with HBV-R died of
infection 43 months after HSCT. At the last follow up, HBV-DNA
was not detected on real-time PCR. Among the seven survivors
with HBV-R, four patients discontinued treatment with entecavir.
After the withdrawal of entecavir, HBV-DNA was detected again
in two patients without anti-HBs. One of the two patients required

Table 2 Baseline characteristics and outcomes of HBsAg-positive patients

No. Gender Age Hematologic Treatment HBeAg Anti-HBe HBV-DNA ALT (IU/L) Observation Outcome
disease {% inh) {log/mL) period (month)
32 M 79 ML CHOP-R 1600 — 8.5 78 26 Dead
66 M 63 ML CHOP-R — 100 ND 10 37 Alive
77 M 57 ML CHOP-R — 97 2.8 22 40 Alive
87 M 62 ML HSCT 419 — 3.6 10 16 Dead
80 M 62 ML CHOP-R — 100 4 106 5 Dead
120 M 53 AML HSCT — 89 2.3 155 3 Dead
141 M 58 ML CHOP-R — 100 3.7 18 26 Alive
21 F 58 ML CHOP-R — 100 4 106 5 Alive

AML, acute myeloid leukemia; ML, malignant lymphoma; ND, data no available.

Table 3 Comparison between patients with or without HBV reactivation in the HBsAg-negative group

All patients (n = 49)

With reactivation  Without reactivation

Patients with HSCT (n = 19)

With reactivation

Patients with chemotherapy (n = 30)

Without reactivation ~ With reactivation ~ Without reactivation

Age 55 (44-64) 64 (23-82) 55 (44-60) 49 (23-66) 60 (563-64) 67 (49-82)
Gender; M/F 2/6 21/20 2/3 8/6 3/0 13/14
Anti-HBs 35+48 243 + 366 41+63 161 +210 25+5 295+ 420
Anti-HBc 77+33 63+38 80+13 67 £36 99+ 1* 69 + 36%
Observation period 37 (24-63) 12 (4-61) 41 (32-62) 9 (4-55) 32 (24-63) 13 (4-61)

*P=0.02, There were no differences in anti-HBs between the two groups.

Data were shown mean + SD.

Journal of Gastroenterology and Hepatology 29 (2014) 1715-1721
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Table 4 Clinical characteristics of patients with HBV reactivation

A Tamori et al.

No. Gender Age Hematological Treatment Anti-HBs/Anti-HBc At the time HBV-DNA at HBsAg at or ALT peak Outcome
Disease at the enrollment  of HBV reactivation  after after
reactivation (Log/mL) reactivation  reactivation
(month) (IU/mL) (IU/L)

4 M 53 ML CHOP-R 19.6/98.4 2 5.4 1047 452 Alive
30 M 59  Chronic leukemia HSCT 30.2/70 221 6.6 2000 362 Death
37 M 60 ML CHOP-R 28.5/97.9 10 3.6 negative 28 Alive
68 F 46  MDS HSCT ND/97.4 10 4.1 45.7 49 Alive

121 M 55  Acute leukemia HSCT 151.7/71 22 2.8 negative 58 Alive
128 M 64 ML R-Hyper CVAD  26.9/99.2 3 3.1 negative 45 Alive
150 F 60 MDS HSCT 14/ND 9 5.4 63.4 22 Alive
206 M 44  MDS HSCT 7.4/81.5 36" 5.4 145 1642 Alive

"Two patients with HSCT dropped out of regular screening for HBV-DNA 1 year after enroliment. In another patient who had received rituximab-based

chemotherapy, ALT increased to 452 IU/L during entecavir treatment.
ALT flare occurred in three patients with HBV reactivation.
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Figure 1 Clinical course of four patients with hepatitis B virus (HBV) reactivation in whom entecavir was withdrawn. After entecavir treatment,
HBV-DNA was detected again in patients 4 and 128. On the other hand, HBV-DNA has not been detected in patients 37 and 68, in whom antibodies
against HBsAg (anti-HBs) remains above 20 miU/mL. CHOP-R: combination chemotherapy with cyclophosphamide, doxorubicin, vincristine, pred-
nisolone, and rituximab, PBSCT: peripheral blood stem-cell transplantation. |, CHOP-R; -e-, HBV-DNA; -, Anti-HBs; —=, ALT (IU/L).

retreatment with entecavir. On the other hand, HBV-DNA has not
been detected in two other patients who were persistently positive
for anti-HBs (Fig. 1).

DNA sequence of reactivated HBV. All reactivated
HBV was genotype C. Sequence analysis showed that reactivated
HBV did not have mutations associated with resistance to
nucleos(t)ide analogues in the reverse transcriptase region.

1718

Four of eight reactivated HBVs had mutations in the “a” deter-
minant region of the S gene region with amino acid replacement
(Fig. 2). In detail, case 121 had two mutations: 113 threonine to
serine and 143 serine to threonine. In case 128, two mutations
were detected (129 glutamine to arginine and 130 glycine to
asparagine), and anti-HBs was positive at HBV-R (Fig. 1, case
128). An amino acid replacement of 145 glycine to arginine was
detected in cases 150 and 205. In both cases, anti-HBs were
negative at the time of HBV-R. At the time of HBV-R, HBsAg was
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Figure 2 Alignment of amino acids codes from the 111th to 156th amino acids of hepatitis B (HB) surface antigen, the “a” determinant region.
Comparison of the modified hepatitis B virus (HBV) ADR* and the eight reactivated HBV revealed several point mutations in “a” determinant region.
Point mutations with amino acid replacement were detected in cases 121, 128, 150, and 205.

not detectable in two (cases 121 and 128) of four patients with
HBYV mutated in the “a” determinant region.

Discussion

In the present prospective study, the rates of HBV-R in patients
with resolved HBV infection were 26% after HSCT and 10% after
rituximab-based chemotherapy. Previous studies reported that
HBV-R occurred in 12-20% of patients who had undergone
HCSTS-3 and 4.1-17.9% of those who had received rituximab-
based chemotherapy for malignant lymphoma.**-% The rate of
HBV-R in our study is consistent with these previous finding. In
retrospective studies of patients who underwent HSCT, HBV-R
was defined as seroreversion in HBsAg-negative patients.>”* This
is quite a difference from the present study, which used real-time
PCR to measure HBV-DNA. During follow up, HBV-DNA was
detected earlier than HBsAg. In addition, HBsAg did not turn
positive in three of the eight patients with HBV-R. Two of the five
patients in whom HBsAg was consistently negative had mutations
in the S determinant region of HBV-DNA. Our data confirmed that
detection of the viral genome was the most specific and sensitive
screening tool for HBV-R, particularly as compared with serologi-
cal tests. A recent large-scale prospective study using HBV-DNA
test showed that HBV-R occurred in 17 (11.3%) of 150
HBV resolved patients who had received rituximab-based
chemotherapy.?’

In our patients with resolved HBV infection, HBV-R occurred
within 1 year after the end of rituximab-based chemotherapy and
more than 1 year after HSCT. Although HBV-R rarely occurs more
than 3 years after HSCT,?®? the longest reported period to HBV-R
after HSCT was 47 months.” In the two patients in the present
study who discontinued HBV monitoring more than 15 months
after enrollment, HBV-R-associated ALT flare occurred. These
results might be useful for establishing follow-up periods for
HBV-R according to treatment. Recently, careful monitoring for
HBV-R has been broadly recommended for anti-HBc-positive
patients who receive immunosuppressive or cytotoxic therapy.
However, the incidence and timing of reactivation might differ
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according to the details of treatment, such as the drugs used or
procedures performed. Cost-benefit analyses should be performed
according to specific diseases and treatments to assess the value of
screening for HBV-R.

Several studies have suggested that decreased levels or loss of
anti-HBs is a predictor of HBV-R in anti-HBs-positive patients.”3
In our study, anti-HBs had become negative at the time of HBV-R
in seven of eight patients. However, the other patient (case 128)
was positive for anti-HBs at HBV-R. A case report has documented
the development of fatal hepatitis in a patient with HBV-R who
had a high titer of anti-HBs.*' It is well known that HBV vaccina-
tion provides no protection against HBV with mutations in the
HBsAg coding region (i.e. “escape mutant HBV”). Consequently,
escape mutant HBV can increase in anti-HBs-positive patients. In
our patient who was positive for anti-HBs at the time of HBV-R,
two mutations in the “a” determinant region of the S gene were
detected. Borentain ef al. showed that reactivated HBV is associ-
ated with several mutations in the “a” determinant region of the S
gene.? Interestingly, four reactivated HBVs in our study had muta-
tions with amino acid replacement in “a” determinant region. This
finding suggests that the mutated HBV might persist in some
patients who have HBV-R without serum HBsAg and/or that such
HBYV might preferentially increase during immunosuppressive or
cytotoxic therapy. Taken together, although patients with low anti-
HBs titers might have an increased risk of HBV-R, assessment of
anti-HBs alone without screening for HBV-DNA may fail to iden-
tify some patients at high risk for HBV-R.

Our study showed that prophylactic therapy in HBsAg-positive
patients and preemptive therapy in HBV-resolved patients could
prevent hepatic failure related to HBV-R associated with cytotoxic
or immunosuppressive therapy for hematologic malignancies.
Specifically, entecavir reduced HBV viral load in both patients
with HBsAg and eight patients with HBV-R and maintained it
below 2.1 log copies/mL for more than 6 months; the duration of
entecavir treatment ranged from 3 to 35 months. The emergence of
lamivudine-resistant HBV mutants has been reported in patients
who received prophylactic treatment for HBV-R.¢*2 No entecavir-
resistant mutants emerged in our study, suggesting that entecavir
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might be better suited for patients who require longer periods of
prophylactic or preemptive treatment.

In a recent randomized controlled study of HBV-resolved
patients with lymphoma, prophylactic entecavir treatment before
rituximab-based chemotherapy prevented HBV-R in all but one
(2.4%) of 41. As compared with preemptive treatment at the
time of HBV-R, prophylactic treatment with entecavir more effec-
tively prevented HBsAg reverse seroconversion. However, ALT
levels increased to above 100 IU/mL in each patient who received
prophylactic or preemptive treatment. Fatal hepatitis did not occur
in that trial. Our study also showed that preemptive therapy pre-
vented fatal hepatitis in patients with HBV-R who continued to
undergo regular screening. Further studies are needed to establish
whether prophylactic therapy should be started before cytotoxic or
immunosuppressive treatment in all patients with resolved HBV
infection.

Another important issue is whether entecavir treatment can be
safely discontinued in patients with HBV-R. Fatal hepatic failure
has been reported after the withdrawal of prophylactic lamivudine
therapy in HBsAg-positive patients with HSCT.*® In general,
nucleot(s)ide analogue treatment should be continued in HBsAg-
positive patients. However, there are no firm recommendations for
patients who have HBV-R without HBsAg. We withdrew entecavir
after more than 6 months after the disappearance of both HBV-
DNA and HBsAg in four patients with HBV-R who had received
preemptive therapy. After the withdrawal of entecavir, HBV-DNA
was detectable in two patients without anti-HBs. On the other
hand, HBV-R has not occurred in the other patients whose anti-
HBs turned positive after preemptive therapy. Our findings suggest
that entecavir can be safely discontinued in patients with HBV-R
after anti-HBs has become consistently positive. To confirm our
speculations, longer-term studies in larger groups of patients are
necessary.

In conclusion, this prospective study confirmed that current
recommendations for patients with HBsAg and those with
resolved HBV infection can prevent fatal hepatitis related to
HBV-R in patients who receive immunosuppressive or cytotoxic
therapy. To improve cost-benefit ratios, future studies should
attempt to find other reliable markers and to establish optimal
screening periods for HBV-R according to specific diseases or
treatments. Finally, we speculated that entecavir can be safely
discontinued in patients with HBV-R who have acquired anti-HBs.
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Abstract

of pancreatic adenocarcinoma.

RO resection (OR: 3.63; 95% Cl: 1.12 to 14.28; P=0.0316).

Background: Clinical factors determining short-term survival after pancreatectomy have been well studied, but
factors predicting long-term survival with curative resection are poorly understood in pancreatic carcinoma. Qur
objective was to identify clinical and pathological features of five-year disease-free survivors after surgical resection

Methods: The clinical and pathological data from 147 patients who underwent a potentially curative resection for
pancreatic adenocarcinoma at our institution between 1988 and 2012 were retrospectively analyzed.

Results: Of 147 patients, 18 survived for more than five years after surgery without disease recurrence. A univariate
analyses demonstrated that: two or fewer lymph node metastases (P=0.014), a preoperative serum carbohydrate
antigen 19-9 (CA19-9) level of 40 U/mL or less (P=0.0018), an absence of intrapancreatic nerve invasion (P=0.028),
and undergoing an RO resection (P=0.011) were significantly associated with five-year survival. A logistic regression
model identified the following independent cancer-related predictors of five-year survivors: having two or fewer
lymph node metastases (odds ratio (OR): 6.02; 95% confidence interval (Cl): 1.08 to 112.98; P=0.0385), a
preoperative serum CA19-9 level of 40 U/mL or less (OR: 5.02; 95% Cl: 1.68 to 16.48; P=0.0036), and undergoing an

Conclusions: We conclude that number of lymph node metastases being two or less, a preoperative serum CA19-9
level of 40 U/mL or less, and undergoing an RO resection may be independent predictive factors to identify actual
five-year survivors after pancreatectomy for pancreatic adenocarcinoma.

Keywords: Pancreatic carcinoma, Five-year survivors, CA19-9, RO, Lymph node metastasis

Background
‘Pancreatic carcinoma is the fourth leading cause of death
from cancer and is responsible for 43,000 deaths per year
in the United States [1]. The prevalence of pancreatic can-
cer in Japan has also increased in the last decade to be-
come the fifth leading cause of cancer death in men, and
the sixth in women [2]. This malignancy is devastating,
with a five-year overall survival rate of approximately 5%
[1]. The only potentially curative treatment for pancreatic
cancer is surgical resection. However, only a small number
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of patients (between 15 and 20%) present with a resectable
tumor at the time of diagnosis [3]. Moreover, the progno-
sis even after potentially curative resection is considered
to be poor. The following characteristics have been repor-
ted to be significant prognostic factors for patient survival
after tumor resection: age [4], tumor size [4-6], lymph
node metastasis [4-6], surgical margin status [7-9], pre-
operative serum CA19-9 level [9-11], and tumor grade [7].
Clinical factors determining short-term survival after pan-
createctomy have been well studied, but prognostic factors
predicting long-term survival with curative resection are
poorly understood [12-14].

In the earlier studies, it was difficult to discuss fac-
tors related to five-year survival because of the high
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