- Otake Y, Saito Y, Sakamoto T, et al. New closure technique for large mucosal defects after endoscopic submucosal dissection of colorectal tumors (with video). Gastrointest Endosc 2012;75: 663-7.
- Sakamoto N, Beppu K, Matsumoto K, et al. "Loop Clip," a new closure device for large mucosal defects after EMR and ESD. Endoscopy 2008;40(Suppl 2):E97-8.
- Fujii T, Ono A, Fu Kl. A novel endoscopic suturing technique using a specially designed so-called "8-ring" in combination with resolution clips (with videos). Gastrointest Endosc 2007;66:1215-20.
- Matsuda T, Fujii T, Emura F, et al. Complete closure of a large defect after EMR of a lateral spreading colorectal tumor when using a twochannel colonoscope. Gastrointest Endosc 2004;60:836-8.
- Takimoto K, Toyonaga T, Matsuyama K. Endoscopic tissue shielding to prevent delayed perforation associated with endoscopic submucosal dissection for duodenal neoplasms. Endoscopy 2012;44 (Suppl 2):E414-5.

- 12. Williamson A, Hoggart B. Pain: a review of three commonly used pain rating scales. J Clin Nurs 2005;14:798-804.
- Takeuchi J, Suzuki H, Murata M, et al. Clinical evaluation of application of polyglycolic acid sheet and fibrin glue spray for partial glossectomy.
 J Oral Maxillofac Surg 2013;71:e126-31.
- Hiura Y, Takiguchi S, Yamamoto K, et al. Use of fibrin glue sealant with polyglycolic acid sheets to prevent pancreatic fistula formation after laparoscopic-assisted gastrectomy. Surg Today 2012;43:527-33.
- Ueda K, Tanaka T, Hayashi M, et al. Mesh-based pneumostasis contributes to preserving gas exchange capacity and promoting rehabilitation after lung resection. J Surg Res 2011;167:e71-5.
- Uemura K, Murakami Y, Hayashidani Y, et al. Combination of polyglycolic acid felt and fibrin glue for prevention of pancreatic fistula following pancreaticoduodenectomy. Hepatogastroenterology 2009;56:1538-41.
- Hanaoka N, Uedo N, Ishihara R, et al. Clinical features and outcomes of delayed perforation after endoscopic submucosal dissection for early gastric cancer. Endoscopy 2010;42:1112-5.

Endoscopedia

GIE now has a blog! Keep up with GIE news by following us at www.endoscopedia.com.

An effective technique for delivery of polyglycolic acid sheet after endoscopic submucosal dissection of the esophagus: the clip and pull method

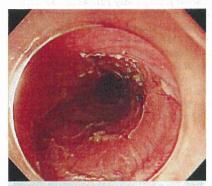


Fig. 1 After en bloc endoscopic submucosal dissection of two lesions that were more than 3 cm in diameter, an artificial ulcer extended more than three-quarters of the circumference and was 8 cm in longitudinal length.

Endoscopic submucosal dissection (ESD) is currently accepted as an established method of treatment for esophageal superficial neoplasms, although it is associated with some complications [1]. Polyglycolic acid (PGA) sheet (Neoveil; Gunze Co., Kyoto, Japan) is an absorbable reinforcement material that has been used for reinforcing the surgical suture to prevent leakage [2]. It has also been reported to be effective in shielding the artificial ulcer after ESD thus preventing perforation or bleeding [3,4]. However, shielding artificial ulcers is technically difficult especially in the esophagus due to its narrowness. This report describes a novel technique that enables rapid and easy shielding of the esophageal artificial ulcer. A 69-year-old man underwent ESD for two large neighboring lesions in the middle part of the esophagus. Because the post-ESD artificial ulcer extended to over three-quarters of the circumference and was over 8cm in longitudinal length (Fig. 1), we decided to shield it with a large PGA sheet using a novel delivery and deployment technique - the "clip and pull method" (Fig. 2 and Fig. 3). After successful deployment of the PGA sheet over the artificial ulcer, the procedure was completed by spraying the area with fibrin glue (Beriplast P combi-set; CSL Behring Pharma, Tokyo, Japan), resulting in an artificial ulcer that was totally shielded in PGA sheet (> Fig. 4).

The patient recovered well after curative ESD without any complications, including

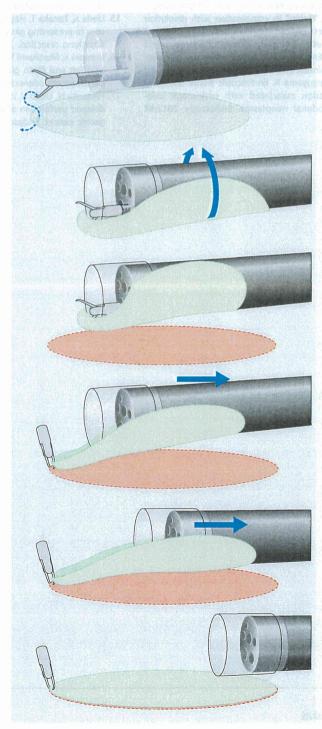


Fig. 2 Schema of the "clip and pull method." At first, the size of the artificial ulcer was measured and a sheet of polyglycolic acid (PGA) of the same size was prepared. Prior to insertion of the endoscope, a clip was placed inside the transparent attachment. A pinhole was made in the PGA sheet and the sheet was hooked to an arm of the clip. The PGA sheet was then wrapped around the endoscope. The endoscope, wrapped with the PGA sheet. was transorally inserted to the location of the artificial ulcer. The clip was then closed, anchoring the anal side of the PGA sheet to the anal side of the artificial ulcer. The endoscope was then simply pulled while firmly and carefully pressing the PGA sheet to the esophageal wall to deploy the PGA sheet over the ulcer.

bleeding or perforation, and was discharged on the 7th day. Although he underwent balloon dilation at follow-up endoscopy on the 22nd day after ESD because an endoscope did not pass through a mild stricture, he had not complained of any symptoms of dysphagia until the followup endoscopy. The artificial ulcer had

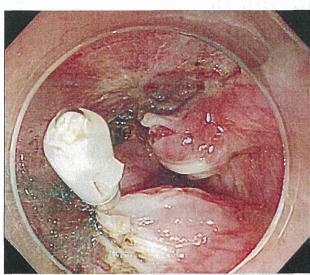


Fig. 3 Clipping the anal side mucosa of the artificial ulcer and the anal edge of the polyglycolic acid (PGA) sheet together to anchor the PGA sheet.

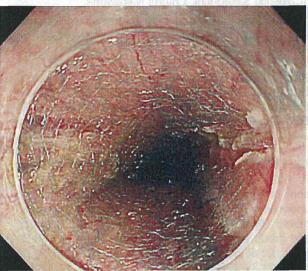


Fig. 4 After using the "clip and pull method," the polyglycolic acid sheet shielded the whole artificial ulcer, which was more than three-quarters of the circumferential extension.

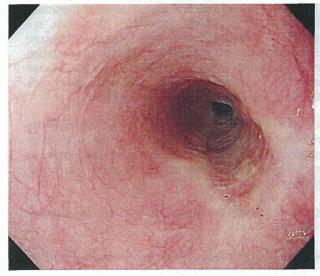


Fig. 5 The follow-up endoscopy revealed re-epithelialized artificial ulcer with little reduction in size of the ulcer bed.

been re-epithelialized with little reduction in the size of the ulcer bed (**Fig. 5**). This simple and effective method can be useful in shielding esophageal artificial

ulcers in order to prevent complications including bleeding, perforation, and, potentially, postoperative stricture.

Endoscopy_UCTN_Code_TTT_1AO_2AG

Competing interests: None

Satoshi Ono^{1,2}, Yosuke Tsuji², Mitsuhiro Fujishiro^{2,3}, Shinya Kodashima², Nobutake Yamamichi², Kazuhiko Koike²

- ¹ Center for Epidemiology and Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- ² Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- ³ Department of Endoscopy and Endoscopic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan

References

- 1 Ono S, Fujishiro M, Koike K. Endoscopic submucosal dissection for superficial esophageal neoplasms. World J Gastrointest Endosc 2012; 4: 162 166
- 2 Nakamura T, Shimizu Y, Watanabe S et al. New bioabsorbable pledgets and nonwoven fabrics made from polyglycolide (PGA) for pulmonary surgery: clinical experience Thorac Cardiovasc Surg 1990; 38: 81-85
- 3 Takimoto K, Toyonaga T, Matsuyama K. Endoscopic tissue shielding to prevent delayed perforation associated with endoscopic submucosal dissection for duodenal neoplasms. Endoscopy 2012; 44 (Suppl. 02): E414–415
- 4 Tsuji Y, Ohata K, Gunji T et al. Endoscopic tissue shielding method with polyglycolic acid sheets and fibrin glue to cover wounds after colorectal endoscopic submucosal dissection (with video). Gastrointest Endosc 2013. [Epub ahead of print] doi: 10.1016/j. gie.2013.08.041

Bibliography

DOI http://dx.doi.org/ 10.1055/s-0033-1359125 Endoscopy 2014; 46: E44–E45 © Georg Thieme Verlag KG Stuttgart · New York ISSN 0013-726X

Corresponding author

Satoshi Ono, MD, PhD

Center for Epidemiology and Preventive Medicine Graduate School of Medicine The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo Japan Fax: +81-3-58008806 satoshi-tky@umin.ac.jp

Online Submissions: http://www.wjgnet.com/esps/bpgoffice@wjgnet.com doi:10.3748/wjg.v20.i17.5045 World J Gastroenterol 2014 May 7; 20(17): 5045-5050 ISSN 1007-9327 (print) ISSN 2219-2840 (online) © 2014 Baishideng Publishing Group Co., Limited. All rights reserved.

BRIEF ARTICLE

Evaluation of preferable insertion routes for esophagogastroduodenoscopy using ultrathin endoscopes

Satoshi Ono, Keiko Niimi, Mitsuhiro Fujishiro, Yu Takahashi, Yoshiki Sakaguchi, Chiemi Nakayama, Chihiro Minatsuki, Rie Matsuda, Itsuko Hirayama-Asada, Yosuke Tsuji, Satoshi Mochizuki, Shinya Kodashima, Nobutake Yamamichi, Atsuko Ozeki, Lumine Matsumoto, Yumiko Ohike, Tsutomu Yamazaki, Kazuhiko Koike

Satoshi Ono, Atsuko Ozeki, Lumine Matsumoto, Yumiko Ohike, Tsutomu Yamazaki, Center for Epidemiology and Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan

Keiko Niimi, Mitsuhiro Fujishiro, Department of Endoscopy and Endoscopic Surgery, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan

Satoshi Ono, Keiko Niimi, Mitsuhiro Fujishiro, Yu Takahashi, Yoshiki Sakaguchi, Chiemi Nakayama, Chihiro Minatsuki, Rie Matsuda, Itsuko Hirayama-Asada, Yosuke Tsuji, Satoshi Mochizuki, Shinya Kodashima, Nobutake Yamamichi, Kazuhiko Koike, Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan

Author contributions: Ono S, Niimi K and Fujishiro M designed the study protocol and analyzed the data; Ono S drafted the article; Niimi K, Fujishiro M, Takahashi Y, Sakaguchi Y, Nakayama C, Minatsuki C, Matsuda R, Hirayama-Asada I, Tsuji Y, Mochizuki S, Kodashima S, Yamamichi N, Ozeki A, Matsumoto L and Ohike Y made critical revisions of the article for important intellectual content; Yamazaki T and Koike K made final approval of the article.

Supported by Grant-in-Aid for Young Scientists (B) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Correspondence to: Satoshi Ono, MD, PhD, Assistant professor, Center for Epidemiology and Preventive Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyoku, Tokyo 113-8655, Japan. satoshi-tky@umin.ac.jp

Telephone: +81-3-38155411 Fax: +81-3-58008806
Received: September 20, 2013 Revised: December 13, 2013

Accepted: January 19, 2014 Published online: May 7, 2014

Abstract

AIM: To evaluate the discomfort associated with esophagogastroduodenoscopy (EGD) using an ultrathin endoscope through different insertion routes.

METHODS: This study (January 2012-March 2013) included 1971 consecutive patients [male/female (M/F),

1158/813, 57.5 ± 11.9 years] who visited a single institute for annual health checkups. Transnasal EGD was performed in 1394 patients and transoral EGD in 577. EGD-associated discomfort was assessed using a visual analog scale score (VAS score: 0-10).

RESULTS: Multivariate analysis revealed gender (M νs F: $4.02 \pm 2.15 \ \nu s$ 5.06 ± 2.43) as the only independent predictor of the VAS score in 180 patients who underwent EGD for the first time; whereas it revealed gender (M νs F $3.60 \pm 2.20 \ \nu s$ 4.84 ± 2.37), operator, age group (A: < 39 years; B: 40-49 years; C: 50-59 years; D: 60-69 years; E: > 70 years; A/B/C/D/E: $4.99 \pm 2.32/4.34 \pm 2.49/4.19 \pm 2.31/3.99 \pm 2.27/3.63 \pm 2.31$), and type of insertion as independent predictors in the remaining patients. Subanalysis for gender, age group, and insertion route revealed that the VAS score decreased with age regardless of gender and insertion route, was high in female patients regardless of age and insertion route, and was low in males aged over 60 years who underwent transoral insertion.

CONCLUSION: Although comprehensive analysis revealed that the insertion route may not be an independent predictor of the VAS score, transoral insertion may reduce EGD-associated discomfort in elderly patients.

© 2014 Baishideng Publishing Group Co., Limited. All rights reserved.

Key words: Esophagogastroduodenoscopy; Ultrathin endoscope; Visual analog scale

Core tip: To evaluate the effects of insertion route for unsedated surveillance esophagogastroduodenoscopy (EGD), this retrospective study included 1971 consecutive patients who visited a single institute for annual health checkups. EGD-associated discomfort was as-

5045

sessed using a visual analog scale (VAS). Statistical analysis using VAS revealed that the VAS score decreased with age regardless of gender and insertion route, was high in females regardless of age and insertion route, and was low in males aged over 60 years who underwent transoral insertion.

Ono S, Niimi K, Fujishiro M, Takahashi Y, Sakaguchi Y, Nakayama C, Minatsuki C, Matsuda R, Hirayama-Asada I, Tsuji Y, Mochizuki S, Kodashima S, Yamamichi N, Ozeki A, Matsumoto L, Ohike Y, Yamazaki T, Koike K. Evaluation of preferable insertion routes for esophagogastroduodenoscopy using ultrathin endoscopes. *World J Gastroenterol* 2014; 20(17): 5045-5050 Available from: URL: http://www.wjgnet.com/1007-9327/full/v20/i17/5045.htm DOI: http://dx.doi.org/10.3748/wjg.v20. i17.5045

INTRODUCTION

Recently, because of the development of endoscopic treatment, the importance of early detection of gastro-intestinal neoplasms has become extremely important^[1-5]. In addition, gastrointestinal endoscopic technology has advanced considerably with improved resolution and image enhancement^[6-10]. Inevitably, the importance of surveillance esophagogastroduodenoscopy (EGD) in detecting upper gastrointestinal neoplasms has become noticeable, particularly for superficial squamous cell carcinomas and early gastric cancers.

On the other hand, remarkable breakthrough in technology has led to the development of endoscopes of smaller diameter with high-resolution pictures. Ultrathin endoscopes have enabled us to perform surveillance EGD through transnasal insertion, and their role in minimally invasive EGD has been reported from various institutes^[11-19]. Therefore, transnasal EGD has been accepted as a preferable choice for surveillance EGD, particularly among younger patients.

However, transnasal insertion sometimes cannot be performed because of various reasons such as pain or nasal hemorrhage, resulting in a switch to transoral insertion using the same ultrathin endoscope in daily clinical practice. Our previous study revealed that elderly patients prefer transoral EGD to transnasal EGD^[20]. Although patients are reluctant to undergo EGD because of uncomfortable insertion, even if an annual check-up is recommended, a preferable choice of ultrathin endoscope insertion route in patients with different profiles has not been evaluated.

Therefore, this study aimed to evaluate preferable insertion routes during unsedated EGD using an ultrathin endoscope in patients with different profiles.

MATERIALS AND METHODS

This study was conducted at the Center for Epidemiology and Preventive Medicine in the University of To-

Table 1 Profiles of all patients

	Patients who underwent 1st EGD	Patients who underwent 2 nd or subsequent EGD	<i>P</i> ∨alue
Gender	the carry magnification as a second	No. 1965 September 1964 Appendix	NS
Male	98	1060	
Female	82	731	
Operator			NS
a	128	1144	
b	49	599	
С	0	28	
d	2	16	
e	1	4	
Age group (yr)	49.3 ± 13.254	58.3 ± 11.5	< 0.05
< 39	39	115	
40-49	45	320	
50-59	29	464	
60-69	13	588	
> 70		304	
Insertion route			< 0.05
Transnasal	139	1255	
Transoral	41	536	
VAS score	4.50 ± 2.33	4.11 ± 2.35	< 0.05
Examination time (s)			NS
	306.0 ± 60.0	302.1 ± 61.8	
Type of scope			NS
a	78	690	
b	66	739	
c	19	162	
d	8	69	
e	4	36	
f	3	67	
g	2	28	

EGD: Esophagogastroduodenoscopy; VAS: Visual analog scale score; NS: Not significant.

kyo Hospital from January 2012 to March 2013. After excluding patients with invalid data, the study included patients who had an endoscopic procedure including biopsy, patients with a past history of upper gastrointestinal tract surgery, or patients with a change of insertion route because of nasal hemorrhage or intolerable pain; 1971 consecutive patients who underwent EGD with the use of ultrathin endoscopes during a medical checkup were enrolled. The profiles of these patients are shown in Table 1.

Each patient was allowed to choose their insertion route. Pre-EGD preparation for both insertion routes included an oral administration of dimethicone (Gascon drop; Kissei Pharmaceutical Co., LTD.; Nagano, Japan) and pronase (PronaseMS; Kaken Pharmaceutical Co., LTD.; Tokyo, Japan). For local anesthesia, oral administration of a viscous gel of 2% lidocaine hydrochloride and modified spray method was provided for both transoral and transnasal insertion routes. The modified spray method involved spraying 0.05% naphazoline nitrate into each nostril, followed by an injection with a viscous gel of 2% lidocaine hydrochloride. Conscious sedation was not performed in any patient. For transoral insertion, a thin-type mouthpiece and tongue depressor (Endo-leader; Top Corp.; Tokyo, Japan) was used [21].

All EGDs were performed by well-trained endos-

WJG | www.wjgnet.com

Table 2 Univariate and multivariate analyses against the visual analog scale scores in patients who underwent $\mathbf{1}^{st}$ esophagogastroduodenoscopy

Patients who underwent 1" EGD	VAS score	Univariate	Multivariate
Gender	and the second section	P < 0.05	P < 0.05
Male	4.02 ± 2.15		
Female	5.06 ± 2.42		
Operator		NS	NS
a	4.47 ± 2.30		
b	4.51 ± 2.49		
c	_19		
d	6		
e	4		
Age group		NS	NS
< 39	4.93 ± 2.12		
40-49	4.44 ± 2.54		
50-59	4.11 ± 2.33		
60-69	4.34 ± 2.18		
> 70	4.54 ± 2.93		
Insertion route		NS	NS
Transnasal	4.50 ± 2.26		
Transoral	4.46 ± 2.59		
Examination time (s)		P < 0.05	NS
	$r^2 = 0.0336$		
Type of scope		NS	NS
a	4.60 ± 2.36		
b	4.76 ± 2.33		
c	3.95 ± 2.41		
d	3.13 ± 1.64		
e	5.25 ± 2.75		
f	2.33 ± 1.53		
g	4		

EGD: Esophagogastroduodenoscopy; VAS: Visual analog scale score; NS: Not significant.

copists who has performed more than 1000 EGDs respectively and were certified by the Japanese Gastroenterological Endoscopy Society. Seven types of ultrathin endoscopes were used in this study: GIF-XP260N and GIF-XP260NS (Olympus Corp, Tokyo, Japan), EG580NW, EG-530NW, and EG-530N (Fujifilm Holdings Corp, Tokyo, Japan), and EG16-K10 and prototype EG17-K10 (Hoya Corp, Tokyo, Japan). The Prototype EG17-K10 was used as a part of collaborative effort by the University of Tokyo Hospital and Hoya Corporation. These endoscopes are indicated as a, b, c, d, e, f, and g, respectively, in the tables.

Each patient rated EGD-associated discomfort on a visual analog scale (VAS) score of 0-10, with ten being rated as maximum discomfort^[22-24]. These questions were part of examination routines and the feedback was used to improve our clinical practice. This study was conducted as a retrospective chart review of consecutive patients and was approved by the Ethics committee.

The parameters, such as gender, age group, previous experience with EGD, insertion route, operator, examination time, and the VAS score, were evaluated. Age groups were defined as A, B, C, D, and E in patients aged below 40 years, 40-49 years, 50-59 years, 60-69 years, and over 70 years, respectively. Statistical analyses were performed using the student's t-test for numerical variables, the Chisquare test for categorical variables, and the Jonckheere-

Table 3 Univariate and multivariate analyses against the visual analog scale scores in patients who underwent $2^{\rm nd}$ or subsequent esophagogastroduodenoscopy

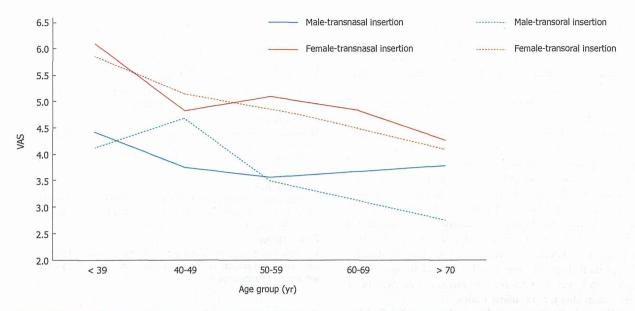
Patients who underwent 2 nd or subsequent EGD	∨AS score	Uni√ariate	Multi√ariate
Gender		P < 0.05	P < 0.05
Male	3.60 ± 2.20		
Female	4.84 ± 2.37		
Operator		P < 0.05	P < 0.05
a	3.95 ± 2.36		
Ъ	4.43 ± 2.34		
c	3.57 ± 2.04		
didinarin sasarri me	4.69 ± 2.06		
e	2.50 ± 1.00		
Age-group		P < 0.05	P < 0.05
< 39	4.99 ± 2.32		
40-49	4.34 ± 2.49		
50-59	4.19 ± 2.31		
60-69	3.99 ± 2.27		
> 70	3.63 ± 2.31		
Insertion route		P < 0.05	NS
Transnasal	4.19 ± 2.27		
Transoral	3.93 ± 2.53		
Examination time (s)		NS	NS
	$r^2 = 0.000843$		
Type of scope		NS	NS
a transfer than your	4.22 ± 2.35		
b	4.11 ± 2.36		
c	3.93 ± 2.29		
d	3.98 ± 2.48		
e	4.64 ± 2.11		
f	3.25 ± 2.24		
g	3.82 ± 2.57		

EGD: Esophagogastroduodenoscopy; VAS: Visual analog scale score; NS: Not significant.

Table 4 Jonckheere-Terpstra test of the visual analog scale score and age group in addition to gender and insertion route

Jonckheere-Terpstra test	<i>P</i> √alue				
Male-transnasal insertion	NS	NS	P < 0.05		
Female-transnasal insertion	NS				
Male-transoral insertion	NS $(P = 0.0833)$	P < 0.05			
Female-transorai insertion	P < 0.05				

NS: Not significant.


Terpstra test for trend analysis. Multivariate analyses were performed using a stepwise regression analysis. All analyses except for the Jonckheel-Terpstra test were performed using a JMP software (SAS Institute Inc., Cary, NC, United States). A P value < 0.05 was considered significant.

RESULTS

Of 1971 patients (male/female: 1158/813, mean age, 57.5 \pm 11.9 years, range, 25-89 years), 180 and 1791 patients underwent a 1st EGD and a 2nd or subsequent EGD, respectively. Patients who underwent 1st EGD were significantly younger than other patients. Furthermore, the number of patients receiving transnasal EGD and the

Ono S et al. A preferable insertion route for ultrathin endoscopes

Age group	< 39		40-49		50-59		60-69		> 70	
Male-transnasal insertion ($n = 769$)	4.41 ± 2.00 (n = 58)	4.37 ± 2.24	3.75 ± 2.19 ($n = 154$)	3.91 ± 2.30	3.56 ± 2.20 ($n = 207$)	3.54 ± 2.17	3.65 ± 2.04 $(n = 255)$	3.51 ± 2.15	3.77 ± 2.09 (n = 95)	3.27 ± 2.18 ₋
Male-transoral insertion (n = 291)	4.15 ± 3.21 (n = 58)	(n = 71)	4.68 ± 2.68 (n = 31)	(n = 185)	3.38 ± 2.04 ($n = 54$)	(n = 261)	$ \begin{array}{c} a \\ 3.15 \pm 2.36 \\ (n = 102) \end{array} $	(n = 357)	$ \begin{array}{c} a \\ 2.76 \pm 2.16 \\ (n = 91) \end{array} $	(n = 186)
and the second		il alouen	a		a din	PROBLEM TO SE	a	Darb of bt	a	a
Female-transnasal insertion ($n = 486$)	6.06 ± 2.09 ($n = 31$)	6.00 ± 2.09	4.84 ± 2.58 (n = 94)	4.93 ± 2.64	5.10 ± 2.12 ($n = 139$)	5.03 ± 2.23	4.84 ± 2.21 ($n = 161$)	4.74 ± 2.27	4.28 ± 2.35 (n = 61)	4.20 ± 2.41
Female-transoral insertion (n = 245)	5.85 ± 1.91 (n = 13)	(n = 44)	5.15 ± 2.79 ($n = 41$)		4.86 ± 2.45 (n = 64)	(n = 203) 4.50 ± 2.43 $(n = 70)$	4.50 ± 2.41 ($n = 70$)	(n = 231)	4.12 ± 2.49 (n = 57)	(n = 118)
		Tiel Hard T		Justina e mol		20.00		1 12 131 411	(aP <	0.05)

Figure 1 Visual analog scale score score and age groups in addition to gender and insertion route. P < 0.05 between male and female groups.

VAS score were significantly higher in those who underwent their 1st EGD than in other patients.

Although univariate analysis revealed a significantly higher VAS score in females than in males and a positive correlation with examination time, multivariate analysis revealed gender as the only independent predictor of the VAS score (Table 2).

For patients who underwent their 2nd or subsequent EGD, multivariate analysis revealed gender, operator, and age group as independent predictors of the VAS score. Although the VAS score for transnasal insertion was significantly higher than that for transoral insertion, multivariate analysis indicated that the insertion route may not be an independent predictor of the VAS score (Table 3).

For further evaluation, subanalysis performed by combining gender, age group, and insertion route (Figure 1) revealed that the VAS scores were significantly higher in females than in males, regardless of age group and insertion route. With regard to the insertion route, among the male patients aged over 60 years old, the VAS scores

were significantly lower in patients receiving transoral insertion than in those receiving transnasal insertion. The Jonckheere-Terpstra test revealed that the VAS scores decreased with age (Table 4). In particular, these scores markedly decreased with age in patients who underwent transoral insertion.

DISCUSSION

This study revealed the relationship between the profiles of patients and EGD-associated discomfort using an ultrathin endoscope. To minimize the discomfort during a surveillance EGD, it may be better to recommend transnasal insertion for younger patients and transoral insertion for elderly patients, particularly in males aged over 60 years.

Although the reason why gender difference affected the VAS score in this study is not clear, higher VAS scores in females have previously been reported with regard to postoperative pain^[25]. Aubrun *et al*^[25] evaluated postoperative pain using VAS scores and morphine dos-

age and reported a significantly higher VAS score and dosage in females. The authors speculated that women had a lower pain threshold and less tolerance to experimental pain compared with men. Our study also supports their speculation.

With regard to the decreasing trend in the VAS score with age, we speculated that it may be due to weakening of the gag reflex. On the other hand, any discomfort associated with transnasal insertion to the hypopharynx primarily includes nasal pain rather than weakening of the gag reflex. We speculated that age is more strongly associated with weakening of the gag reflex than with nasal pain. In addition, male gender has been reported to be a risk factor for aspiration pneumonia in a systematic review^[26]. This report indicates that age-related weakening of the gag reflex is greater in males than in females. Nasal pain does not seem to be related to age, which results in lower VAS scores for transoral insertion in elderly individuals, particularly males.

The main limitation of this study is a lack of objectivity when assessing discomfort using the VAS score. EGD-associated discomfort also includes anxiety, abdominal fullness due to insufflation, and various other factors in addition to nasal pain and weakening of the gag reflex. However, it may be difficult to objectively evaluate each factor. In addition, the difference in discomfort associated with transnasal and transoral insertions may be limited to discomfort associated with insertion to the hypopharynx. With regard to this short route, the difference in discomfort associated with both insertion routes is primarily attributed to nasal pain and weakening of the gag reflex. Therefore, we used the VAS score as a relatively reliable and simple objective assessment method to compare these two insertion routes.

In conclusion, this study demonstrated age-related and gender-related discomfort associated with transoral and transnasal EGD using ultrathin endoscopes. Although further data collection is necessary, the appropriate choice of insertion route may easily convince patients who are reluctant to undergo surveillance EGD.

ACKNOWLEDGMENTS

We are grateful to Mr. Takeshi Shimamoto for his valuable comments and suggestions on statistical analysis. We would also like to thank Dr. Taku Mayahara and Dr. Takeshi Ono and the staff of Center for Epidemiology and Preventive Medicine of the University of Tokyo Hospital for their valuable opinions and information, which have helped us considerably throughout the study.

COMMENTS

Background

The importance of surveillance esophagogastroduodenoscopy (EGD) in detecting upper gastrointestinal neoplasms has become very evident in the context of clinical daily practice where the importance of detection of early stage gastrointestinal neoplasms has received more emphasis.

Research frontiers

Although the ultrathin endoscopes for transoral or transnasal insertion during

medical checkups has been accepted as a less invasive technique, because of the discomfort due to an uncomfortable insertion route, patients may become reluctant to undergo EGDs during annual health checkups.

Innovations and breakthroughs

The authors' study investigating discomfort that accompanies unsedated EGD using ultrathin endoscopes demonstrated a correlation between discomfort and insertion route with regard to gender and age group.

Applications

To decrease unsedated EGD-associated discomfort while using ultrathin endoscopes, transnasal insertion should be chosen except for elderly males. For elderly males aged over 60 years, transoral insertion may be preferred rather than transnasal insertion.

Terminology

An ultrathin endoscope is an endoscope with a tip diameter of approximately 6 mm. It enables transnasal insertion and is widely used for a medical checkup using EGD in Japan.

Peer review

This study demonstrated age-related and gender-related discomfort associated with transoral and transnasal EGD using ultrathin endoscopes. It's a good study with important clinical applications.

REFERENCES

- Ohkuwa M, Hosokawa K, Boku N, Ohtu A, Tajiri H, Yoshida S. New endoscopic treatment for intramucosal gastric tumors using an insulated-tip diathermic knife. *Endoscopy* 2001; 33: 221-226 [PMID: 11293753]
- Yahagi N, Fujishiro M, Kakushima N, Kobayashi K, Hashimoto T, Oka M, Omata M. Endoscopic submucosal dissection for early gastric cancer using the tip of an electrosurgical snare (thin type). Dig Endosc 2004; 16: 34-38
- Oda I, Gotoda T, Hamanaka H, Eguchi T, Saito Y, Matsudal T, Bhandari P, Emural F, Saito D, Ono H. Endoscopic submucosal dissection for early gastric cancer: technical feasibility, operation time and complications from a large consecutive series. *Dig Endosc* 2005; 17: 54-58
- 4 Oyama T, Tomori A, Hotta K, Morita S, Kominato K, Tanaka M, Miyata Y. Endoscopic submucosal dissection of early esophageal cancer. Clin Gastroenterol Hepatol 2005; 3: S67-S70 [PMID: 16013002]
- Fujishiro M, Yahagi N, Kakushima N, Kodashima S, Muraki Y, Ono S, Yamamichi N, Tateishi A, Shimizu Y, Oka M, Ogura K, Kawabe T, Ichinose M, Omata M. Endoscopic submucosal dissection of esophageal squamous cell neoplasms. Clin Gastroenterol Hepatol 2006; 4: 688-694 [PMID: 16713746 DOI: 10.1016/j.cgh.2006.03.024]
- Yoshida T, Inoue H, Usui S, Satodate H, Fukami N, Kudo SE. Narrow-band imaging system with magnifying endoscopy for superficial esophageal lesions. Gastrointest Endosc 2004; 59: 288-295 [PMID: 14745410]
- 7 Kuraoka K, Hoshino E, Tsuchida T, Fujisaki J, Takahashi H, Fujita R. Early esophageal cancer can be detected by screening endoscopy assisted with narrow-band imaging (NBI). Hepatogastroenterology 2009; 56: 63-66 [PMID: 19453030]
- 8 Yoshizawa M, Osawa H, Yamamoto H, Kita H, Nakano H, Satoh K, Shigemori M, Tsukui M, Sugano K. Diagnosis of elevated-type early gastric cancers by the optimal band imaging system. *Gastrointest Endosc* 2009; 69: 19-28 [PMID: 19111685 DOI: 10.1016/j.gie.2008.09.007]
- 9 Kodashima S, Fujishiro M. Novel image-enhanced endoscopy with i-scan technology. World J Gastroenterol 2010; 16: 1043-1049 [PMID: 20205272]
- Muto M, Minashi K, Yano T, Saito Y, Oda I, Nonaka S, Omori T, Sugiura H, Goda K, Kaise M, Inoue H, Ishikawa H, Ochiai A, Shimoda T, Watanabe H, Tajiri H, Saito D. Early detection of superficial squamous cell carcinoma in the head and neck region and esophagus by narrow band imaging: a multicenter randomized controlled trial. J Clin Oncol 2010; 28: 1566-1572 [PMID: 20177025 DOI: 10.1200/JCO.2009.25.4680]

- Yagi J, Adachi K, Arima N, Tanaka S, Ose T, Azumi T, Sasaki H, Sato M, Kinoshita Y. A prospective randomized comparative study on the safety and tolerability of transnasal duodenoscopy. *Endoscopy* 2005; 37: 1226-1231 [PMID: 16329022 DOI: 10.1055/s-2005-921037]
- 12 Hayashi Y, Yamamoto Y, Suganuma T, Okada K, Nego M, Imada S, Imai M, Yoshimoto K, Ueki N, Hirasawa T, Uragami N, Tsuchida T, Fujisaki J, Hoshino E, Takahashi H, Igarashi M. Comparison of the diagnostic utility of the ultrathin endoscope and the conventional endoscope in early gastric cancer screening. *Dig Endosc* 2009; 21: 116-121 [PMID: 19691786 DOI: 10.1111/j.1443-1661.2009.00840.x]
- Toyoizumi H, Kaise M, Arakawa H, Yonezawa J, Yoshida Y, Kato M, Yoshimura N, Goda K, Tajiri H. Ultrathin endoscopy versus high-resolution endoscopy for diagnosing superficial gastric neoplasia. *Gastrointest Endosc* 2009; 70: 240-245 [PMID: 19386304 DOI: 10.1016/j.gie.2008.10.064]
- Yuki M, Amano Y, Komazawa Y, Fukuhara H, Shizuku T, Yamamoto S, Kinoshita Y. Unsedated transnasal small-caliber esophagogastroduodenoscopy in elderly and bedridden patients. World J Gastroenterol 2009; 15: 5586-5591 [PMID: 19938199]
- Abe K, Miyaoka M. Trial of transnasal esophagogastroduodenoscopy. Dig Endosc 2006; 18: 212-217
- Preiss C, Charton JP, Schumacher B, Neuhaus H. A randomized trial of unsedated transnasal small-caliber esophagogastroduodenoscopy (EGD) versus peroral small-caliber EGD versus conventional EGD. *Endoscopy* 2003; 35: 641-646 [PMID: 12929057 DOI: 10.1055/s-2003-41513]
- 17 Murata A, Akahoshi K, Sumida Y, Yamamoto H, Nakamura K, Nawata H. Prospective randomized trial of transnasal versus peroral endoscopy using an ultrathin videoendoscope in unsedated patients. J Gastroenterol Hepatol 2007; 22: 482-485 [PMID: 17376037 DOI: 10.1111/j.1440-1746.2006.04730.x]
- Frieling T, Schindler P, Kuhlbusch-Zicklam R, Heise J, Hülsdonk A, Kreysel C. Krefeld CONTRA study: conventional peroral Esophago-Gastro-Duodenoscopy (EGD) vs. transnasal EGD--a prospective and randomised study with independent evaluation of conscious sedation, endoscope diameter, and access path. Z Gastroenterol 2010; 48: 818-824 [PMID: 20687017 DOI: 10.1055/s-0029-1245275]

- 19 Nakata H, Enomoto S, Maekita T, Inoue I, Ueda K, Deguchi H, Shingaki N, Moribata K, Maeda Y, Mori Y, Iguchi M, Tamai H, Yamamichi N, Fujishiro M, Kato J, Ichinose M. Transnasal and standard transoral endoscopies in the screening of gastric mucosal neoplasias. World J Gastrointest Endosc 2011; 3: 162-170 [PMID: 21954413 DOI: 10.4253/wjge.v3.i8.162]
- 20 Ono S, Niimi K, Fujishiro M, Nakao T, Suzuki K, Ohike Y, Kodashima S, Yamamichi N, Yamazaki T, Koike K. Ultrathin endoscope flexibility can predict discomfort associated with unsedated transnasal esophagogastroduodenoscopy. World J Gastrointest Endosc 2013; 5: 346-351 [PMID: 23858379 DOI: 10.4253/wjge.v5.i7.346]
- 21 Kataoka H, Hayano J, Mizushima T, Tanaka M, Kubota E, Shimura T, Mizoshita T, Tanida S, Kamiya T, Nojiri S, Mukai S, Mizuno K, Joh T. Cardiovascular tolerance and autonomic nervous responses in unsedated upper gastrointestinal small-caliber endoscopy: a comparison between transnasal and peroral procedures with newly developed mouthpiece. *Dig Endosc* 2011; 23: 78-85 [PMID: 21198922 DOI: 10.1111/j.1443-1661.2010.01064.x]
- 22 Chapman CR, Casey KL, Dubner R, Foley KM, Gracely RH, Reading AE. Pain measurement: an overview. *Pain* 1985; 22: 1-31 [PMID: 4011282]
- 23 Grant S, Aitchison T, Henderson E, Christie J, Zare S, Mc-Murray J, Dargie H. A comparison of the reproducibility and the sensitivity to change of visual analogue scales, Borg scales, and Likert scales in normal subjects during submaximal exercise. Chest 1999; 116: 1208-1217 [PMID: 10559077 DOI: 10.1378/chest.116.5.1208]
- 24 Reips UD, Funke F. Interval-level measurement with visual analogue scales in Internet-based research: VAS Generator. Behav Res Methods 2008; 40: 699-704 [PMID: 18697664 DOI: 10.3758/BRM.40.3.699]
- 25 Aubrun F, Salvi N, Coriat P, Riou B. Sex- and age-related differences in morphine requirements for postoperative pain relief. *Anesthesiology* 2005; 103: 156-160 [PMID: 15983468]
- 26 van der Maarel-Wierink CD, Vanobbergen JN, Bronkhorst EM, Schols JM, de Baat C. Risk factors for aspiration pneumonia in frail older people: a systematic literature review. *J Am Med Dir Assoc* 2011; 12: 344-354 [PMID: 21450240 DOI: 10.1016/j.jamda.2010.12.099]

ORIGINAL ARTICLE

Scheduled second-look endoscopy is not recommended after endoscopic submucosal dissection for gastric neoplasms (the SAFE trial): a multicentre prospective randomised controlled non-inferiority trial

Satoshi Mochizuki, ¹ Noriya Uedo, ² Ichiro Oda, ³ Kazuhiro Kaneko, ⁴ Yorimasa Yamamoto, ⁵ Takeshi Yamashina, ² Haruhisa Suzuki, ³ Shinya Kodashima, ¹ Tomonori Yano, ⁴ Nobutake Yamamichi, ¹ Osamu Goto, ⁶ Takeshi Shimamoto, ⁷ Mitsuhiro Fujishiro, ^{1,8} Kazuhiko Koike, ¹ and The SAFE Trial Study Group

▶ Additional material is published online only. To view please visit the journal online (http://dx.doi.org/10.1136/qutjnl-2014-307552).

For numbered affiliations see end of article.

Correspondence to Dr Mitsuhiro Fujishiro, Department of Endoscopy and Endoscopic Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; mtfujish-kkr@umin.ac.jp

Received 26 April 2014 Revised 27 August 2014 Accepted 18 September 2014 Published Online First 9 October 2014

ABSTRACT

Objective To clarify the effectiveness of second-look endoscopy (SLE) at preventing bleeding after gastric endoscopic submucosal dissection (ESD).

Design A multicentre prospective randomised controlled non-inferiority trial was conducted at five referral institutions across Japan. Patients with a solitary gastric neoplasm were enrolled. Exclusion criteria were previous oesophagogastric surgery or radiation therapy; perforation and the administration of antithrombotics, steroids or non-steroidal anti-inflammatory drugs. Patients were assigned to the SLE group or the non-SLE group by a computer-generated random sequence after ESD and were treated perioperatively with a proton pump inhibitor. SLE was performed one day after ESD. The primary endpoint was post-ESD bleeding, defined as an endoscopically proven haemorrhage. The trial had the power to detect a non-inferiority criterion of 7% between the groups.

Results From February 2012 to February 2013, 130 and 132 patients were assigned to the SLE and the non-SLE groups, respectively. All patients were included in the intention-to-treat analysis of the primary endpoint. Post-ESD bleeding occurred in seven patients with (5.4%) SLE and five patients with (3.8%) non-SLE (risk difference —1.6% (95% CI —6.7 to 3.5); p_{non-inferiority}<0.001), meeting the non-inferiority criterion. All 12 patients with post-ESD bleeding and one patient with a delayed perforation were successfully managed with conservative treatment.

Conclusions SLE after gastric ESD is not routinely recommended because it does not contribute to the prevention of post-ESD bleeding for patients with an average bleeding risk.

Trial registration number UMIN-CTR000007170.

Significance of this study

What is already known on this subject?

- Endoscopic submucosal dissection (ESD) is accepted as a standard treatment for intramucosal gastric neoplasms.
- Post-ESD bleeding is a major complication that occurs in approximately 5% of patients.
- To reduce the incidence of post-ESD bleeding, a scheduled second-look endoscopy (SLE) is empirically performed after gastric ESD.

What are the new findings?

- ► The incidences of post-ESD bleeding were 5.4% and 3.8% in the SLE and non-SLE groups, respectively; therefore, non-inferiority of the non-SLE group compared with the SLE group was confirmed with an absolute risk difference of −1.6% (two-sided 95% Cl −6.7% to 3.5%, one-sided pnon-inferiority<0.001).</p>
- In a comparison between the groups with and without prophylactic coagulation during SLE, the proportion of patients with post-ESD bleeding was similar even when prophylactic coagulation was performed.
- Without performing SLEs after gastric ESD, we may save approximately 917 million yen per year in Japan alone.

How might it impact on clinical practice in the foreseeable future?

SLE after gastric ESD is not routinely recommended because it does not contribute to the prevention of post-ESD bleeding for patients with an average risk of bleeding.

To cite: Mochizuki S, Uedo N, Oda I, *et al. Gut* 2015;**64**:397–405.

INTRODUCTION

Gastric cancer is one of the most common cancers worldwide, and approximately half of the total number of gastric cancer cases occur in East Asia, which has the highest estimated mortality rate (28.1 per 100 000 men and 13.0 per 100 000

women). Early diagnosis and treatment are both considered to be effective strategies to reduce the mortality from gastric cancer in Japan, where the prevalence of early gastric cancer exceeds that of advanced cases. Endoscopic treatment of early