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sequencing results were consistently in agreement with the
DHPLC analysis (Fig. 2B and Supplementary Fig. S3). In
addition, quantitative MethyLight assays using fresh or for-
malin-fixed paraffin-embedded tissue samples further vali-
dated the DHPLC results (Supplementary Fig. S4A; Spear-
man test, P < 0.020). To understand if methylation changes
in these CGIs affect gene expression, the mRNA levels of SRF,
ZNF382, and GFRA1 were analyzed in matched tissue sam-
ples using qRT-PCR. The gqRT-PCR results showed that
mRNA expression of all three genes was inversely correlated
with the prevalence of methylation in their CGIs (Supple-
mentary Fig. S4B; Spearman test, P < 0.050).

Confirmation of gastric carcinoma metastasis-related
DNA methylation markers

Among the above 48 pairs of gastric carcinoma and SM
samples, 24 pairs were from patients with lymphatic and
distant metastasis, and 24 pairs were from sex-, age-,
location-, and gastric carcinoma differentiation grade-
matched patients without metastasis. Thus, the methyla-
tion states of these 15 CGIs were further analyzed to
determine if they are associated with gastric carcinoma
metastasis. DHPLC results showed that the methylation
states of the BMP3, GFRA1, SRF, and ZNF382 CGls were
significantly different between metastatic and nonmeta-
static gastric carcinoma samples. The proportion of meth-
ylated BMP3 and GFRA1 was lower in the metastatic
gastric carcinoma samples than the nonmetastatic gastric
carcinoma samples (median, 1.8% vs. 5.9%; 8.6% vs.
38.6%; Mann-Whitney U test, P < 0.040). The positive
rate of SRF and ZNF382 methylation was also lower in the
metastatic gastric carcinoma samples than the nonmeta-
static gastric carcinoma samples (4% vs. 33%; 54% vs.
79%, P = 0.020/0.066). Therefore, the relationship
between gastric carcinoma metastasis and methylation
of these four CGIs was tested in additional gastric carci-
noma and SM samples obtained from Chinese patients
(n =50-60). When these samples were taken together as a
discovery cohort, the relationship between gastric carci-
noma lymph/distant metastasis and the methylation
changes in GFRAI, SRF, and ZNF382 was statistically
significant (Table 2); however, such an association was
not observed for BMP3 (data not shown).

To investigate whether the methylation status of the three
potential biomarkers mentioned above had an impact on
overall survival, Kaplan-Meier analysis was performed on
each gene individually. Results showed that the overall
survival of patients with gastric carcinoma with GFRAI or
ZNF382 methylation-high (cutoff value: percentage of
methylated copies >26.4% for GFRA1 or 1.3% for ZNF382)

or SRF methylation-positive was elongated when compared
with methylation-low or methylation-negative patients in
the discovery cohort (log-rank test, P = 0.068, Fig. 3A; P =
0.010, Fig. 3B; P=0.001, Fig. 3C, respectively). Substratifica-
tion analysis revealed that SRF methylation was only corre-
lated with overall survival in patients with noncardiac gastric
carcinomas (P < 0.033) but not with cardiac gastric carcino-
mas (P = 0.146). Therefore, only patients with noncardiac
gastric carcinoma were included in the survival analysis in the
following SRF methylation validation cohorts.

The predictive value of these methylation markers for
gastric carcinoma metastasis was further confirmed using
three independent validation cohorts in China (n = 222),
Japan (n = 129), and Korea (n = 153). Because the pro-
portion of both methylated and unmethylated alleles of
CGIs can be quantitatively and simultaneously determined
using DHPLC, this method was consistently used to detect
the methylation levels within these CGIs in freshly-frozen
gastric samples from Chinese and Japanese patients. How-
ever, MethyLight was used to analyze the paraffin-embed-
ded samples from the Korean patients, as fresh samples were
not available. Results from these cohorts showed that the
methylation-positive rates of GFRA1, SRF, and ZNF382
were inversely and significantly correlated with pTNM stage
and lymph metastasis in all three cohorts (Table 3). The
Kaplan-Meier analysis also showed that the overall survival
of patients with gastric carcinoma with higher methylation
levels of GFRA1 and SRF CGls was consistently longer than
those without methylation of these two genes across all
three validation cohorts (Fig. 3A and B). However, corre-
lation between ZNF382 methylation and overall survival of
patients with gastric carcinoma was not statistically signif-
icant in all three validation cohorts (Fig. 3C). These results
indicate that ZNF382 methylation may be a weak gastric
carcinoma metastasis biomarker when compared with
GFRA1 and SRF methylation.

In addition, after adjustment for age, sex, differentiation,
location, pTINM stage, and vascular embolus, GFRAI or SRF
methylation was still an adequate prognostic indicator in
multivariate analysis among all patients in these validation
cohorts (HR, 0.543 or 0.395; 95% confidence interval, CI,
0.304-0.938 or 0.165-0.945; n = 300 or 452).

Substratification analysis showed that the overall survival
of patients with stage I and II gastric carcinoma with
methylated SRF was significantly elongated when compa-
red with SRF methylation-negative patients in all four
cohorts (HR, 0.357; 95%CI, 0.164-0.778; n=198). Similar
difference was also observed for GFRA1 or ZNF382 meth-
ylation-high, but not statistically significant (HR, 0.608 or
0.498; 95% CI, 0.336-1.099 or 0.243-1.023; n = 173 or

Figure 3. Kaplan-Meier survival curves of patients with gastric carcinoma (GC) with different GFRA?, SRF, and ZNF382 methylation states. A-C, GFRAT and
ZNF382 methylation-high and SRF methylation-positive in gastric carcinoma or SM tissues were good survival factors with statistical significance for
patients with gastric carcinoma in the Chinese-discovery cohorts, Chinese, Japanese, and Korean validation cohorts. D, synergistic analysis of three
methylation markers. Distribution of the number of patients with methylation changes in one to three genes (GFRAT, SRF, and ZNF382) in metastatic and
nonmetastatic gastric carcinoma groups. The number of patients with one or more differentially methylated genes in nonmetastatic gastric carcinomas
was significantly higher than that in metastatic gastric carcinomas (left). The greater the number of genes associated with differential methylation, the longer

the overall survival of patients with gastric carcinoma (right).
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167). Among patients with gastric carcinoma from Korea
whose histologic types of gastric carcinomas were available,
GFRA1 methylation-high was significantly associated with
low risk of metastasis of both intestinal- and diffuse-types of
gastric carcinomas (positive rate: 82.4% and 76.5% for
nonmetastatic gastric carcinomas; 43.2% and 43.1% for
metastatic gastric carcinomas, P < 0.05). GFRAI methyla-
tion-high was also significantly correlated with longer over-
all survival of patients with diffuse-type gastric carcinoma
(HR, 0.482; 95% CI, 0.247-0.938; n = 67). However,
ZNF382 methylation-high was significantly associated with
low risk of metastasis of intestinal-type gastric carcinomas
(93.8% vs. 62.5%, P = 0.036), but not diffuse-type gastric
carcinomas.

Synergic analysis of three methylation markers

To investigate if a combination of the methylation markers
(GFRA1, SRF, and ZNF382) has a synergistic effect on pre-
dicting gastric carcinoma metastasis, the merged data were
reanalyzed in the above 4 patient cohorts. As expected, the
number of patients with one or more methylated genes
among the three-gene panel was significantly decreased in
gastric carcinoma samples with lymph/distant metastasis (Fig.
3D left; linear-trend test, P < 0.00001; one gene vs. two genes,
P = 0.046). The sensitivity and specificity of 2 to 3 positive
methylation changes of 3 genes for detection of nonmetastatic
gastric carcinomas were 60% and 67%, respectively. The
positive and negative predictive values were 57% and 69%.
In addition, multivariate analysis also showed that the num-
ber of combined methylation changes of GFRA1, SRF, and
ZNF382 was an independent predictor of overall survival for
patients with gastric carcinoma (n = 246) after adjusting for
the pTNM stage, gastric carcinoma location, differentiation,
vascular embolus, age, and sex (HR, 0.734; 95% CI, 0.562—
0.958; Fig. 3D, right). The pTNM stage and gastric carcinoma
location were also independent survival factors (HR, 3.608;
95% CI, 2.648-4.917 and 2.723; 95% CI, 1.608-4.613,
respectively). These results suggest that using a combination
of this three-gene panel may function as a synergic biomarker
set for predicting gastric carcinoma prognosis.

GFRA1, SRF, and ZNF382 expression changes in gastric
carcinogenesis

The protein expression of the three genes in the paired
gastric carcinoma and SM samples in both regular tissue
sections and tissue microarray (TMA) were analyzed using
the IHC assay as described in the Supplementary Materials
and Methods (22). IHC analysis revealed that GFRA1 expres-
sion was predominantly observed in the cytoplasm of stromal
cells, especially in the vessel cells in gastric carcinomas (Sup-
plementary Fig. S5A). Among 38 pairs of I[HC-informative
cases, the proportion of gastric carcinomas with strong
GFRAL1 staining was significantly higher than SMs (24/38 vs.
12/38, P < 0.01). Among 28 pairs of informative cases, the
proportion of gastric carcinomas with strong ZNF382 stain-
ing in epithelial cells was lower than SMs (4/28 vs. 11/28, P <
0.07; Supplementary Fig. S5B). Statistically significant asso-
ciation was not observed between GFRA1 (or ZNF382)

staining and clinical parameters, such as invasion, lymph
metastasis, embolus, differentiation, and overall survival. SRF
staining was only observed in the nucleus of some stromal
fibroblasts and smooth muscle cells in both regular gastric
carcinoma and SM sections (Supplementary Fig. S5C). There-
fore, SRF expression was not further examined using TMA.

Discussion

Over a 4-year period, a comprehensive epigenetic bio-
marker discovery and validation study involving over 500
patient samples from three large academic medical centers
in China, Japan, and Korea had been conducted. The
biomarker discovery effort started off with a genome-wide
analysis of differentially methylated genes between meta-
static and nonmetastatic gastric carcinomas in a small
number of patient samples. The microarray-based methyl-
ation profiling identified a large number of gastric carcino-
ma-specific and metastasis-specific candidate genes that
were differentially methylated. From the list of differentially
methylated genes, a step-by-step elimination process iden-
tified a 15-gene panel associated with gastric carcinoma/
metastasis-specific DNA methylation changes. The 15 genes
were validated using multiple independent methods from a
discovery cohort of gastric carcinoma patient samples.
Finally, a methylation biomarker-set consisting of GFRAI,
SRF, and ZNF382 was validated for the prediction of gastric
carcinoma metastasis and patients’ overall survival in four
cohorts from China, Japan, and Korea. This novel epigenetic
biomarker set may be used in the decision-making process
for personalized postoperational therapy. To our knowl-
edge, this s the first such study which specifically focuses on
the metastasis of gastric cancer.

A large number of genome-wide DNA methylation stud-
ies have been reported for many different tumor types in
recent years (6, 10, 11). However, most of the studies failed
to perform large-scale and in-depth follow-up studies to
validate the candidate genes discovered through the
genome-wide analyses. As a result, few methylation markers
have been developed from the large number of DNA meth-
ylation studies published so far. The present study repre-
sents the most comprehensive and quantitative character-
ization of DNA methylation biomarkers in gastric carcino-
ma to date. Moreover, the three methylation biomarkers
associated with gastric carcinoma metastasis and patients’
survival were validated not only in multiple cohorts but also
in freshly-frozen and paraffin-embedded samples using
several independent methods such as DHPLC and Methy-
Light. The vigorous testing performed in this study ensures
the high reliability and feasibility of these novel biomarkers
in different clinical settings.

It has been previously reported that 2,540 of 17,800
tested genes are differentially expressed between 80 pairs
of gastric carcinoma and SM samples. Furthermore, it was
found that there are four times as many upregulated genesin
gastric carcinomas than there are downregulated genes
(1,983 vs. 557; GSE27342; ref. 23). Therefore, the frequent
DNA hypomethylation in the promoter and exon-1 regions
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Table 3. Comparison of SRF, ZNF382, and GFRAT methylation-positive rates in patients with gastric carcinoma with various clinicopathological

characteristics in the Chinese, Japanese, and Korean validation cohorts®

Clinicopathological

Positive rate of SRF methylation (%)

Positive rate of ZNF382 methylation-high (%)

Positive rate of GFRAT methylation-high (%)

features Chinese Japanese Korean Chinese Japanese Korean Chinese Japanese Korean
Cutoff value® None None None >3.2 >31.4 >2.7 >39.5 >35.3 None
Age

<60 31/101 (30.7)  11/47 (23.4) 24/77 (31.2) 16/62 (25.8) 8/41 (19.5) 40/65 (61.5)  12/44 (27.3) 19/41 (46.3) 34/74 (45.9)

>60 34/121 (28.1)  12/31 (38.7) 21/75 (28.0) 20/67 (29.9) 27/88 (30.7) 43/62 (69.4)  21/53 (39.6) 40/88 (45.5) 33/79 (58.2)
Sex

Male 47/164 (28.7)  12/48 (25.0) 30/112 (26.8)  30/102 (29.4) 27/89 (30.3) 57/91 (62.6)  23/67 (34.3) 40/89 (44.9)  56/106 (52.8)

Female 18/58 (31.0)  11/30 (36.7) 15/40 (37.5) 6/27 (22.2) 8/40 (20.0) 26/36 (72.2)  10/30 (33.3) 19/40 (47.5) 24/47 (51.1)
Location

Cardiac 20/67 (29.9) 414 (28.6) 5/14 (35.7) 14/40 (35.0) NA 16/21 (76.2)  12/32 (37.5) NA 11/26 (42.3)

Noncardiac 45/155 (29.0)  19/64 (29.7)  40/138 (29.0) 22/88 (25.0) NA 67/106 (63.2) 21/67 (31.3) NA 69/127 (54.3)
Differentiation

Well/moderate 19/54 (35.2) 4/15 (26.7) 20/67 (29.9) 11/30 (36.7) 10/31 (32.3) 35/48 (72.9)  14/29 (48.3) 17/31 (54.8) 49/96 (51.0)

Poor 42/157 (26.8)  19/63 (30.2) 25/84 (29.8) 25/94 (26.6) 22/92 (23.9) 46/77 (59.7)  19/65 (29.2) 39/92 (42.4) 31/57 (57.6)
Vascular embolus

No 52/155 (33.5)  19/63 (30.2) 11/34 (32.4) 21/63 (33.3) NA 21/31 (67.7) 0/3 (0.0 NA 23/34 (67.6)

Yes 11/62 (17.7°  4/15(26.7)  34/118(28.8) 14/60 (23.3) NA 61/95 (64.2)  33/94 (35.1) NA 57/119 (47.9)¢°
PTNM stage

-1l 19/52 (36.5) 10/17 (58.8) 32/85 (37.6) 17/33 (51.5) 17/35 (48.6) 53/78 (67.9)  22/36 (61.1) 24/35 (68.6) 52/84 (61.9)

-1V 44167 (26.3)  13/61 (21.3)° 13/67 (19.4)  19/96 (19.8)° 14/78 (17.9)" 30/49 (61.2) 10/59 (16.9)°  30/78 (38.5)°  28/69 (40.6)°
Local invasion

T 16/35 (45.7)  13/33(39.4)  35/109 (32.1) 9/18 (50.0)  22/62 (35.5)°  57/85 (67.1)  12/21(57.1) 35/62 (56.5)  58/100 (58.0)

Ts 33/133 (24.8)  10/36 (27.8) 9/38 (23.7) 18/77 (23.4) 11/59 (18.6) 22/35 (62.9) 16/58 (27.6) 21/59 (35.6) 21/44 (47.7)

Ty 15/52 (28.8) 0/9 (0.0 1/5 (20.0) 8/33 (24.2) 2/8 (25.0) 4/7 (567.1) 4/16 (25.0)" 3/8 (37.5) 1/9 (11.1)°
Lymph metastasis

Ng 14/42 (33.3) 7/9 (77.8) 17/44 (38.6) 18/32 (56.3) 15/28 (53.6) 38/46 (82.6)  22/33 (66.7) 21/28 (75.0) 35/50 (70.0)

Ny_g 51/180 (28.3)  16/69 (23.2° 28/108 (25.9) 18/97 (18.6)° 20/101 (19.8)°  45/81 (55.6)° 11/64 (17.2)° 38/101 (37.6)° 45/103 (43.7)°
Distant metastasis

Mo 65/222 (29.3)  19/55 (34.5)  40/134 (29.9) 36/129 (28.4)  35/129 (27.1) 59/88 (67.0)  33/97 (34.0)  59/129 (42.4)  68/118 (60.2)

My — 4/23 (17.4) 5/18 (27.8) — - 24/39 (61.5) — - 12/40 (30.0)°
(Total) 65/222 (29.3)  23/78 (29.5)  45/152 (29.6) 36/129 (28.4)  35/129 (27.1)  83/127 (65.4)  33/97 (34.0)  59/129 (45.7)  80/153 (52.3)

NOTE: Numbers underlined: highlighted the values between them a statistically significant difference was observed.
Abbreviations: GC, gastric carcinoma; NA, not available.
2The methylation states of three tested genes in frozen samples [from Chinese (SM) and Japanese (GC)] were analyzed by DHPLG; in fixed paraffin samples [from Korean (SM)], by
MethyLight. In addition, 33, 20, and 13 patients with preoperative chemotherapy were included in the Chinese validation cohort for SRF, GFRAT, and ZNF382 methylation,
respectively. Significant differences in the methylation-positive rates were not observed between patients with and without preoperative chemotherapy.

The cutoff value is calculated according to ROC curve (not shown) when more than half of samples are methylation-positive.

°y? test, P=0.020; %2 test, P = 0.042; °x? test, P = 0.003; "y test, P = 0.014; 9 test, P = 0.001; "x? test, P = 0.040; 'y test, pT1_, versus pTa_4, P = 0.018; x* test, pT_5 versus pTa_s,
P = 0.042; %2 test, pTy_, versus pTa_s, P = 0.040; 'x? test, pTy_p versus pTa_s, P = 0.019; Mrend test, P = 0.028; "trend test, P = 0.028; °trend test, P = 0.011; Px? test, P = 0.002.
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of the gastric carcinoma methylome observed in this study
may account for the prevalent increase in gene expression.
In fact, an increasing number of studies have reported
reactivation of proto-oncogenes by DNA hypomethylation
in several cancers (24-26).

Long-range epigenetic silencing and large epigenetic
structures have been reported in different cancers (27—
29). Differential long-range hypermethylation and hypo-
methylation trends may be related to cancer/tissue-specific
DNA methylation (11, 30). In the present study, it was
found that chromosomes 7, 8, and 20 seemed more favor-
able for long-range hypermethylation (or amplification of
methylated regions). In contrast, chromosomes 3, 4, 14, 15,
and 18 had an affinity for long-range hypomethylation (or
deletion of methylated regions). Further studies are war-
ranted to determine which of these long-range hypermethy-
lated and hypomethylated regions are gastric carcinoma-
specific changes and which are changes across cancer-types.

Most of the 15 aberrantly methylated genes identified in
gastric carcinomas are involved in cell proliferation, differ-
entiation, apoptosis, adhesion, and embryonic develop-
ment (Supplementary Table S2). Previous reports have
demonstrated that silencing of BMP3, BNIP3, CDKN2A,
HOXD10, TFPI2, and ZNF382 via methylation correlates
with both the development and progression of cancers
(12, 19, 31-34). Similar associations were also observed
in gastric carcinoma samples used in the present study.
Methylation changes of KCNH1, PSMD10, and SRF in
cancer tissues have not previously been reported. Further-
more, BNIP3, KCNH1,and ZNF382 methylation levels were
more than 3-times higher in the gastric carcinoma samples
than in SM and NorG samples. It is needed to study whether
methylation of these genes may affect their expression states
in gastric carcinogenesis. In addition, though TBX5 and
ELK1 methylation is not associated with gastric carcinoma
metastasis, the overall survival of patients with gastric
carcinoma with methylated TBX5 or ELK1 was longer than
those without methylation (P = 0.017 or 0.003; data not
shown). Because some methylation changes may occur in
both gastric carcinoma and SM samples from patients with
cancer, more gastric carcinoma-related methylation
changes could potentially be identified if the NorG samples
were used as the normal stomach reference.

Among three genes identified with gastric carcinoma
development- and metastasis-related methylation changes,
GFRA1 is a cell surface GDNF (glial cell line-derived neuro-
trophic factor)/neurturin receptor and a tyrosine kinase that
is normally expressed in the nervous system and kidney.
However, this gene is overexpressed in gut neural crest stem
cells and in many cancers (35-41). The present study
provides the first evidence that hypomethylation of GFRA1
CGIs may account for its overexpression in cancers. SRFis a
master regulator of myogenesis and multiple cellular pro-
cesses, including cell proliferation and migration. Further-
more, SRF is known to play important roles in the epithe-
lial-mesenchymal transition and experimental invasion
through cancer and stromal cells (42-48). The present study
shows, for the first time, that methylation in the exon-1

region of its CGIs may epigenetically inactivate SRF tran-
scription. Mostimportantly, we found that SRF methylation
was correlated with overall survival in patients with non-
cardiac gastric carcinoma, but not in patients with cardiac
gastric carcinoma. It is well known that H. pylori infection
increases risk of noncardiac gastric carcinoma, but not
cardiac gastric carcinoma (49). The incidence of cardiac
gastric carcinoma is also gradually increased in Western
countries coincided with a decrease in prevalence of
H. pylori infection (50). Therefore, whether H. pylori infec-
tion contributes to SRF methylation and its biologic sub-
sequence warrants future study.

GFRA1 and SRF are two crucial genes in the GDNF-
GFRA-RET-RAS-MEK-ERK-ELK-SRF pathway involved
in cell migration and cancer invasion (37, 41, 46-48).
Therefore, epigenetic alterations of GFRAI and SRF may
play important roles in gastric carcinoma metastasis
through modulating this important pathway. ZNF382 is
a candidate tumor suppressor gene, and its methylation is
associated with gastric carcinoma development (34). How-
ever, its link with cancer metastasis has not previously been
reported. In the present study, it was found that the meth-
ylation status of GFRA1, SRF, or ZNF382 was consistently
and significantly associated with gastric carcinoma metas-
tasis and patients’ overall survival in multiple cohorts from
different populations, suggesting that they may be used as
potential biomarkers for predicting gastric carcinoma
metastasis and prognosis. Most importantly; the combina-
tion of the three markers was not only identified as an
independent survival factor but also as a strong synergistic
biomarker set helping to distinguish metastatic gastric car-
cinomas from nonmetastatic gastric carcinomas. The TMA
analysis of GFRA1 and ZNF382 from 40 patients with gastric
carcinoma failed to demonstrate statistically significant
association of their protein expression with clinicopatho-
logical parameters and overall survival of these patients;
however, upregulation of GFRA1 protein and downregula-
tion of ZNF382 were indeed observed in the gastric carci-
nomas compared with SMs, which is in agreement with
hypo- and hypermethylation of GFRA1 and ZNF382
observed in gastric carcinomas. Our results suggest that
DNA methylation analysis might be a more suitable diag-
nostic tool than IHC for these genes. To further prove the
clinical utility of this marker panel on early prediction for
gastric carcinoma metastasis, a prospective follow-up study
among patients with nonmetastatic gastric carcinoma is
being conducted.

In conclusion, through a comprehensive and collabora-
tive epigenetic biomarker discovery effort, we have dem-
onstrated that the DNA methylation changes of GFRAI,
SRF, and ZNF382 were coordinately associated with gastric
carcinoma metastasis and overall patient survival, and this
three-gene panel has potential to be used as a synergistic
biomarker set capable of improving the prognosis and
treatment for patients with gastric carcinoma.
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Abstract Hereditary diffuse gastric cancer (HDGC),
characterized by susceptibility to gastric signet ring cell
carcinomas (SRCCs) and caused by CDHI germline
mutations, is rare in the Japanese. We present here a Jap-
anese family with HDGC identified by comparative geno-
mic hybridization (CGH) analysis. A 55-year-old woman
was treated with completion gastrectomy for multiple
SRCCs, and pathological examination revealed approxi-
mately 200 foci of SRCC with loss of E-cadherin expres-
sion. Her 30-year-old son had surveillance endoscopy and
was found to have multiple SRCCs. He underwent total
gastrectomy, and 32 foci of SRCC with loss of E-cadherin
expression were histologically found. Although no point
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mutations were detected in CDHI by sequencing, CGH
revealed a 275-kb deletion involving exons 7-16 of CDHI
in both patients. While only a few HDGCs have been
reported in East Asia, patients with multiple SRCC may
need to be offered appropriate genetic counseling and
testing in this area.

Keywords Hereditary diffuse gastric cancer -
Gastric cancer - E-cadherin - Comparative genomic
hybridization

Introduction

Hereditary diffuse gastric cancer (HDGC) is an autosomal
dominant disease associated with multiple signet ring cell
carcinomas (SRCCs) and is caused by a germline mutation
in the E-cadherin gene (CDHI). Guilford et al. [1] first
reported that HDGC is caused by truncating mutations of
CDHI in New Zealand Maori families with early-onset,
multiple SRCCs. In Western countries, inherited gastric
cancers (GCs) are thought to account for 1-3 % of all GCs
[2]. Clinically, approximately 25 % of families fulfilling
the criteria for the diagnosis of HDGC have inactivating
CDH] germline mutations [2, 3]. In contrast, in East Asian
countries, including Japan, Korea, and China, with high
incidences of GCs [4], HDGC has rarely been reported [5,
6]. Recently, Yamada et al. [7] reported two germline
alterations in the CDHI gene in two Japanese familial GCs.
However, HDGC is still rarely diagnosed in East Asian
countries, and it is still unknown whether HDGC is really
rare or overlooked because of the high incidence of coin-
cidental familial GC. We report here clinical characteristics
and genomic analysis of a Japanese HDGC family with a
CDH] germline mutation.
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Case reports

A 55-year-old female patient was referred to our hospital
for treatment of multiple SRCCs detected by endoscopic
examination during an annual health check. She had a past
history of intramucosal SRCC at the age of 34 and had
undergone distal gastrectomy with Billroth I reconstruction
in another hospital. She had no past history of other
malignancies, including lobular breast cancer. Family his-
tory of GC was noted, affecting the patient’s father and
paternal grandfather (Fig. 1). Esophagogastroduodeno-
scopy (EGD) in our hospital detected 10-12 small pale
mucosal patches, mainly in the greater curvature of the
remnant stomach (Fig. 2a), but no atrophic gastritis indic-
ative of Helicobacter pylori infection. The size of each
focus was endoscopically estimated as less than 10 mm. In
one of the largest lesions, narrow band imaging with
magnification showed a wavy-shaped irregular microvessel
pattern  suggesting undifferentiated adenocarcinoma
(Fig. 2b). All the biopsy specimens from six lesions dem-
onstrated SRCC. Completion gastrectomy was performed,
and the entire gastric mucosa was histologically examined.

Histopathological examination revealed approximately
200 SRCC foci, and their maximum size was 10 mm in
diameter (Fig. 2f). None of the lesions showed submucosal
invasion, and tumor cells were mostly confined to the upper
mucosal layer (Fig. 2c¢). Periodic acid-Schiff (PAS) stain-
ing highlighted intracytoplasmic mucin in SRCC (Fig. 2d).

Ga Ca
Ga Ca
P/ Patient 1
58y
GaCa (55y)
1 > GaCa(34y)

Patient 2 29y
31y
Ga Ca (30vy)

Fig. 1 Pedigree chart. The presence of the deletion mutation (Fig. 4)
was confirmed in patients 1 and 2 in two generations

Immunohistochemistry was performed using anti-E-cad-
herin antibody (NCH-38; 1:100 dilution; DAKO, Glostrup,
Denmark) as previously described [8]. The results showed
loss of E-cadherin expression in SRCCs. (Fig. 2e). These
histopathological findings were exactly identical to the
findings in the HDGC cases reported by Guilford et al. [1].
No lymph node metastasis was observed.

Based on the pathological findings of the proband
(patient 1), we suspected that she might have HDGC.
Therefore, we performed surveillance endoscopy of two
sons of the proband. Neither son had a history of malig-
nancy. EGD for the 30-year-old elder son (Patient 2)
detected three tiny pale areas at the body-antrum junction
of the stomach (Fig. 3a, b). Apart from these tiny pale
patches, no other endoscopic findings were suggestive of
SRCC, but biopsy specimens obtained from each of the
three pale areas revealed SRCC. Based on these findings,
we clinically diagnosed HDGC in both patients, and total
gastrectomy was performed on patient 2. Histopathological
assessment of the entire gastric mucosa revealed a total of
32 SRCCs (Fig. 3f) along with loss of E-cadherin expres-
sion in SRCCs (Fig. 3¢, d, e). No apparent findings of
recurrence or distant metastasis have been noted on the
follow-up thus far. EGD in the younger son identified no
significant endoscopic findings.

The presence of a 275-kb deletion involving CDH1

In order to perform genetic analysis, genomic DNA was
extracted from peripheral leukocytes of patient 1, patient 2,
and a healthy volunteer. Genomic DNA was also extracted
from biopsy specimens obtained from the cancer site(s) in
the stomachs of both patients. All 16 exons of CDHI were
sequenced by PCR-direct sequencing from both directions
using previously reported primers [9]. Promoter methyla-
tion was analyzed by bisulfite modification and quantitative
real-time methylation specific PCR (MSP) as previously
described [10]. Primer sequences for the methylated DNA
were 5'-TCG TTT TGG GGA GGG GTT C-3' (forward)
and 5-CAA ATA AAC CCC GAA AAC ACC G-3'
(reverse), and those for the unmethylated DNA were
5'-GGA GGT ATT GTT TTT TGT ATT-3' (forward) and
5-AAC AAA CCA TCA ACT CCA-3' (reverse). However,
no CDHI mutation or aberrant methylation was detected in
peripheral lymphocytes or biopsy specimens of patient 1.
Array-comparative genomic hybridization (CGH) ana-
lysis was performed according to the manufacturer’s pro-
tocol using genomic DNA of peripheral leukocytes and
human reference DNA (Caucasian, male #5190-4370,
female #5190-4371, Agilent Technologies, Santa Clara,
CA). DNA was digested with Alul and Rsal, labeled with
Cy5 and Cy3, respectively, using a SureTag DNA
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Fig. 2 Clinicopathological findings in patient 1. a Conventional
endoscopy revealed pale lesions in the greater curvature of the
remnant stomach (arrow). b Magnifying endoscopy with narrow-band
imaging showed irregular microvessels. ¢ Histology of the tumor
showing SRCC proliferating in the upper layer of the fundic gland
mucosa. d Periodic acid-Schiff (PAS) staining highlighted
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Cardiac gland
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intracytoplasmic mucin in SRCC. e Immunohistochemistry for
E-cadherin. Although normal gastric epithelial cells showed clear
membrane staining, SRCCs showed loss of immunoreactivity.
f Gastrectomy mapping study. Approximately 200 SRCC foci were
observed in the resected specimen, predominantly near the greater
curvature



