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conducted by Ji et al. [54], who reported that plasma levels
of miR-208, which is produced exclusively in the heart,
increased in isoproterenol-induced myocardial injury,
Plasma levels of miR-208 show good correlation with
plasma levels of cardiac troponin I, a classic and gold-
standard marker of myocardial injury [55]. In addition to
miR-208, other skeletal muscle-enriched miRNAs, such as
miR-1, miR-133a/b, and miR-499, have been evaluated.

As far as we know, only the study by Ji et al. [54] has
demonstrated a relationship between circulating miRNA
levels and drug-induced cardiovascular injury. Thus, cir-
culating miRNAs as a biomarker of acute myocardial
infarction (AMI) are also described in this section to
explore their potential as biomarkers of drug-induced car-
diovascular toxicity. Cheng et al. [56] reported that serum
levels of circulating miR-1 were significantly increased in
patients with AMI and were positive correlated with serum
creatine kinase-MB levels. Moreover, they reported that
the levels of circulating miR-1 in urine were significantly
elevated in patients with AMI and showed a positive cor-
relation with serum troponin I levels [57]. In addition, a
time-course study using rats showed an obvious delay in
the increase of miR-1 levels in urine when compared with
that in blood, but the increase of miR-1 levels in urine was
sustained longer than that in blood. Consistently, serum
Jevels of miR-133, which belongs to the same cluster and is
cotranscribed with miR-1, have been found to be elevated
in humans after AMI [58-61]. Several additional studies
have shown that circulating levels of the myosin-related
miR-499 are elevated in patients after AMI [59, 60, 62].
Despite these encouraging results, the number of samples
in the aforementioned studies is insufficient to provide
clear proof of the diagnostic power of miRNA signatures
and their value for clinical testing of AMI patients. Oer-
lemans et al. [63] then examined the expression of several
miRNAs in the serum of 106 acute coronary syndrome
(ACS) patients and 226 patients who had chest pain but
were not diagnosed as having ACS. The expression levels
of the combined three miRNAs (miR-1, -21, and -499)
were significantly higher in the ACS patients than in the
non-ACS patients. Interestingly, the combination of these
three miRNAs resulted in a significantly greater area under
the receiver operating characteristic curve (AUC) of 0.94
than that of high-sensitivity troponin T (0.89). This sug-
gests that these three circulating miRNAs in blood are
strong biomarkers for detecting myocardial injury. How-
ever, almost all of the miRNAs described in this section,
especially in the second half, may not necessarily relate to
cardiovascular injury induced by drugs, because few
miRNA studies have investigated drug-induced cardio-
vascular toxicity. Therefore, it is necessary to investigate
circulating miRNAs as reliable biomarkers of cardiovas-
cular injury induced by drugs in humans.

I\ Adis

4 A Remaining Question in Methodology:
How to Normalize Circulating miRNAs

Detection of miRNAs by real-time quantitative polymerase
chain reaction (qPCR) has the advantages of being robust,
relatively inexpensive, and sensitive to even small
amounts, because of signal amplification [64]. Yet many
factors dictate the quality of real-time gPCR results, such
as differences in the quality of the starting materials and
RNA extraction or transcript efficiencies [65]. Thus, a
suitable normalizer is required to eliminate as much vari-
ation as possible to increase the accuracy of expression
measurements. Although small RNA molecules such as 58
and U6 are frequently used as reference genes, they may
change widely depending on pathological conditions [66],
thus suggesting that these small RNA molecules are not
suitable as internal controls in all studies. Synthetic spike-
in miRNAs, mainly C. elegans miRNAs without homology
to mammalian miRNAs, are also used for normalization,
but they cannot correct sample-to-sample variations and
are unstable in crude plasma [67]; thus, no housekeeping
miRNA/small RNA or universal normalizer has yet been
established. In addition, evidence reported in previous
studies suggests that the transcript levels of some house-
keeping genes vary considerably in response to changes in
experimental conditions and/or patient conditions [68, 69].

Fig. 1 Circulating microRNAs (miRNAs) as possible biomarkers of
liver and heart injury induced by drugs
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Wang et al. [70] reported that miR-103 was a suitable
reference gene for plasma miRNA analysis in an acet-
aminophen-induced liver injury model in rats. This sug-
gests that miR-103 is a suitable normalizer in miRNA
analysis using plasma/serum, although it will be necessary
to evaluate stability in various drug-induced injury models.
According to this view, it may be necessary to perform a
well-controlled analysis of circulating miRNAs in a large
cohort of patients and healthy volunteers. These studies
provide further evidence that miRNAs may be useful as
serum biomarkers for clinical use.

5 Conclusion

In this article, we discuss recent findings regarding the
possibility of circulating miRNA as a biomarker of liver
and cardiovascular toxicity (Fig. 1). Although the field of
miRNA-related toxicological studies is still in its infancy,
novel, reliable, and sensitive miRNA biomarkers that can
be used for assessment of tissue-specific toxicity will
continue to be discovered in the future, and it is hoped that
the disadvantages of circulating miRNAs as biomarkers
will be conquered, especially for use in clinical applica-
tions. Circulating miRNAs in biological fluids have great
potential to contribute to drug development and clinical
therapy.
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Cancer stem cells (CSCs) have been reported in many human tumors and are proposed
to drive tumor initiation and progression. CSCs share a variety of biological properties
with normal somatic stem cells such as the capacity for self-renewal, the propagation
of differentiated progeny, and the expression of specific cell surface markers and stem
cell genes. However, CSCs differ from normal stem cells in their chemoresistance and
tumorigenic and metastatic activities. Despite their potential clinical importance, the
regulation of CSCs at the molecular level is not well-understood. MicroRNAs (miRNAs) are
a class of endogenous non-coding RNAs that play an important role in the regulation of
several cellular, physiological, and developmental processes. Aberrant miRNA expression
is associated with many human diseases including cancer. miRNAs have been implicated
in the regulation of CSC properties; therefore, a better understanding of the modulation
of CSC gene expression by miRNAs could aid the identification of promising biomarkers
and therapeutic targets. In the present review, we summarize the major findings on
the regulation of CSCs by miRNAs and discuss recent advances that have improved
our understanding of the regulation of CSCs by miRNA networks and may lead to the

development of miRNA therapeutics specifically targeting CSCs.
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BACKGROUND

The CSC theory, which is based on the concept that cancer
might arise from a rare population of cells with stem cell prop-
erties, was proposed approximately 150 years ago (Cohnheim,
1875; Wicha et al., 2006). Recent technological developments
{(flow cytometry analysis and cell sorting) and the establishment
of new animal models have provided evidence supporting the
CSC theory. Moreover, CSCs are resistant to conventional treat-
ments and are therefore not only of academic interest, but may
also be an important consideration in clinical practice. Therefore,
a better understanding of the characteristics of CSCs and the
identification of therapeutic agents capable of targeting the CSC
population are critical issues. Cancer researchers have investigated
protein-coding genes and products, including surface markers
that are involved in the self-renewal and asymmetric cell division
of CSCs. Recently, in addition to alterations in protein-coding
genes, abnormalities in non-coding RNAs [miRNAs and long
intergenic non-coding RNAs] have been observed in various types
of cancers and have been shown to play important roles in the
regulation of CSC properties such as asymmetric cell division,
tumorigenicity, and drug resistance. In the present review, we
discuss the general features of CSCs and the role of miRNAs
in the regulation of CSC properties, and summarize the current
therapeutic strategies targeting miRNAs for CSC therapy.

BIOGENESIS AND FUNCTIONS OF miRNAs
miRNAs are 21-25 nucleotides long, non-coding RNAs that
regulate gene expression at the post-transcriptional level by
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binding to the 3’-untranslated regions (3'UTRs) or the open read-
ing frames of target genes, leading to the degradation of target
mRNAs or repression of mRNA translation (loric and Croce,
2012). miRNAs are transcribed for the most part by RNA poly-
merase II as long primary transcripts characterized by hairpin
structures (pri-miRNA), and are processed in the nucleus by
RNase III Drosha into 70-100 nucleotide long precursor miRNAs
(pre-miRNAs) in combination with cofactors such as DGCRS,
an evolutionarily conserved protein that interacts with proline-
rich peptides through its WW domain (Gregory et al., 2004; Lee
etal., 2004) (Figure 1). DGCRS is located on chromosome region
22q11.2, whose heterozygous deletion results in the most com-
mon human genetic deletion syndrome, known as DiGeorge syn-
drome. The clinical symptoms of the disease are highly variable
and in approximately 75% of patients, congenital heart defects
are observed (Shiohama et al., 2003; Yamagishi and Srivastava,
2003). The product of pri-miRNA cleavage, the pre-miRNA, is
exported to the cytoplasm by exportin-5, a member of the Ran-
dependent nuclear transport receptor family (Lee et al,, 2004)
and further cleaved in a complex composed of RNase III Dicer
and the transactivating response RNA- binding protein (TRBP)
into 2 miRNA:miRNA* complex. While one of the two strands is
selected as a guide strand, the complementary strand (miRNA*)
is usually degraded (lorio and Croce, 2012). miRNA* was origi-
nally considered to have no function and to be degraded; however,
recent evidence suggests that it can be used as a functional strand
and may play significant biological roles (Uchino et al,, 2013; Yang
et al., 2013).
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FIGURE 1 | miRNA biogenesis and function. miRNAs are transcribed by
RNA polymerase Il or lll as pri-miRNA, and are processed in the nucleus by
Drosha-DGCR8 into pre-miRNAs. The product of pri-miRNA cleavage, the
pre-miRNA, is exported to the cytoplasm by exportin-5 and further cleaved in
a complex composed of Dicer and TRBP The functional strand of mature

.
Transcriptional activation
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miRNA is incorporated into the RNA-induced silencing complex (RISC), which
contains GW182 and Argonaute protein. As a part of this complex, the
mature miRNA regulates gene expression by binding to partially
complementary sequences in the 3'UTRs of target mRNAs, leading to mRNA
degradation or translation inhibition.

The mature miRNA is incorporated into a complex known as
the RNA-induced silencing complex (RISC), which contains the
GW182 and Argonaute proteins. As a part of this complex, the
mature miRNA regulates gene expression by binding to partially
complementary sequences in the 3'UTRs of target mRNAs, lead-
ing to mRNA degradation or translation inhibition (Iorio and
Croce, 2012). Several studies have reported that miRNAs also
bind to the 5’UTR or the open reading frame (Orom et al., 2008;
Mandke et al., 2012) and can promote the translation of their tar-
get genes under growth arrest conditions (Vasudevan et al., 2007).
Recently, Nishi et al. showed that TNRC6A, a human GW182
paralog, shuttles Ago2 into the nucleus and the colocalization
of Ago2-TNRC6A with miRNAs mediates gene silencing (Nishi
et al,, 2013).

MICRORNAs REGULATE PLURIPOTENCY AND
DIFFERENTIATION

The discovery of two miRNAs, lin-4 and let-7, in Caenorhabditis
elegans suggested that miRNAs are important regulators of
embryonic development and stem cell functions in mammals
(Lee et al., 1993; Pasquinelli et al,, 2000; Reinhart et al,, 2000).
The function of miRNAs in mouse and human embryonic stem
cells (ESCs) has been investigated using cells lacking Dicerl and
DGCRS, which are critical for miRNA biogenesis. Deletion of
Dicer1 leads to embryonic lethality in mice (Bernstein et al., 2003)
and DGCRS8-deficient mouse ESCs show alterations in the regu-
lation of the cell cycle and differentiation that are associated with
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failure to silence stemness markers, such as Oct4, RexI, Sox2, and
Nanog, as well as delayed expression of differentiation markers
(Wang et al., 2007).

In a comparative transcriptome analysis, Dicerl-deficient
mouse ESCs lacking miRNAs showed a significant increase
in transcripts containing a GCACUU motif in the 3'UTR
(Sinkkonen et al, 2008). This sequence is complementary to
the AAGUGC seed sequence of the miR-290-295 cluster (miR-
290, miR-291a, miR-292, miR-291b, miR-294, and miR-295) and
the miR-302/367 cluster (miR-302a, miR-302b, miR-302¢, miR-
302d, and miR-367) in mouse ESCs. Using a similar approach,
novel stem cell-specific miRNAs were initially identified in human
ESCs. These miRNAs include two clusters: miR-302/367 and the
miR-371 cluster (miR-372 and miR-373). The expression of the
miR-371 cluster is downregulated before that of the miR-302/367
cluster, suggesting a temporal hierarchy in the duration of specific
miRNA activity (Stadler et al., 2010; Kim et al,, 2011). Members
of the miR-302 family rescue the proliferation defects of DGCR8-
mutant mouse ESCs (Wang et al., 2008) and reprogram human
skin cancer cells into a pluripotent ESC-like state (Lin et al., 2008).

The Let-7 family is another critical regulator of ESC differenti-
ation. Mature let-7 family members are essentially absent in ESCs
and accumulate only upon ESC differentiation (Viswanathan
et al,, 2008). Melton et al. reported that whereas transfection
of let-7¢ into wild-type cells had no effect on the expression
of pluripotency genes, let-7¢ rescued the differentiation defect
in DGCR8™/~ cells by downregulating Oct4, Sox2, and Nanog
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(Melton et al,, 2010). Lin-28, a marker of undifferentiated ESCs,
is also used to induce pluripotent stem cells (Yu et al., 2007b). A
negative feedback loop between Lin-28 and let-7 family members
precisely controls the levels of these miRNAs. Although Lin-28
regulates the expression of let-7 miRNAs by binding to the pre-
cursors and blocking their maturation, the let-7 family is highly
expressed and targets Lin-28 mRNA in mouse differentiated cells
and embryonic carcinoma cells (Yu et al, 2007b) (Figure2).
Members of the miR-34 family of miRNAs are direct targets of p53
and function as tumor suppressors, inhibiting reprogramming
through the repression of pluripotency genes such as Nanog, Sox2,
and N-myc (Choi et al., 2011) (Figure 2). Since the cell cycle regu-
lator p21 also represses reprogramming efficiency, these findings
suggest that p53 represses pluripotency via two distinct mecha-
nisms. Evidence that let-7 and miR-34 family members are tumor
suppressor miRNAs (Tukamizawa et al, 2004; Johnson et al,
2005; Tazawa et al,, 2007) suggests that stem cell-specific miRNAs
play important roles in tumor initiation and development.

miRNA REGULATION IN CANCER

miRNAs play a crucial role in the progression of human cancer,
and expression profiling in human malignancies has identified

/ Normal development -

Stem cells

Differentiated celis

¢

Ve Cancer development

/ Cancer stem cells Differentiated cancer cells |

FIGURE 2 | miRNA in stem cells and cancer stem cells. Stem
celi-specific miRNAs play important roles in tumor initiation and
development. During normal development, pluripotent stem cells become
more restricted to specific cell lineages. Progenitor cells are committed to
generating different cell types, whereas fully differentiated cells have a low
potential for self-renewal. The expression levels of miR-34 and let-7 family
members increase during differentiation. During cancer development, CSC
properties are regulated by the balance between miRNA expression and
the expression of miRNA target genes.
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signatures associated with cancer development, progression,
and prognosis (Liu et al, 2012; Volinia and Croce, 2013).
Chromosomal regions coding for oncogenic miRNAs that are
involved in the negative regulation of a tumnor suppressor gene
can be amplified in association with cancer development. This
amplification would result in the upregulation of oncogenic miR-
NAs and silencing of tumor suppressor genes (He et al,, 2005).
On the other hand, miRNAs targeting oncogenes are often located
in fragile site, where deletions or mutations can occur, leading to
the reduction or loss of miRNAs and the overexpression of their
target oncogenes. Dysregulation of miRNA expression affects pro-
cesses associated with cancer progression such as the induction
of anti-apoptotic activity, drug resistance, tissue invasion, and
metastasis (Cimmino et al., 2005; Tavazoie et al., 2008; To et al,,
2008). Recent evidence suggests that miRNAs are involved in
tumor initiation through the regulation of CSC properties such as
self-renewal ability, tumorigenicity and drug-resistance (Yu et al.,
20073; Shimono et al,, 2009; Song et al., 2013a,b).

€sCs
Accumulating lines of evidence suggest that CSCs share a variety
of biological properties with normal somatic stem cells such as the
capacity for self-renewal, the propagation of differentiated pro-
genitors, and the expression of specific stem cell genes (Colmont
et al,, 2012). However, CSCs differ from normal stem cells in
their chemoresistance and tumorigenic and metastatic activities
(Colmont et al., 2012 and Table 1). In addition, recently glyco-
sylation patterns are found to be different between normal stem
cells and CSCs (Karsten and Goletz, 2013). The CSC theory is
generally accepted in the field of cancer research, not only in basic
research but also with regard to cancer drug discovery.

Normal stem cells and CSCs act via common signaling path-
ways that regulate self-renewal activity, including Wnt, Notch,

Table 1| Representative cell surface markers for human CSCs.

Cancer type CSC marker References
AML CD34%/CD38~ Bonnet and Dick, 1997
Breast CD44*/CD24~ low Al-Hajj et al., 2003
ALDH1 Ginastier et al., 2007
Glioma CD133 Singh et al., 2003, 2004
Colon CD133 O'prien et al., 2007;
Ricci-Vitiani et al., 2007
CD44/EpCAM/CD166  Dalerba et al., 2007
Metastatic Colon CD133+/CD26+ Pang et al., 2010
Melanoma CD20 Fang et al., 2005
CD271 Boiko et al., 2010
Pancreatic ESA/CD44/CD24 Hermann et al, 2007
Metastatic Pancreatic  CD133/CXCR4 Lietal, 2007a
Prostate CD44/a281/CD133 Collins et al., 2005
Lung CD133 Eramo et al., 2008
Hepatic EpCAM/AFP Yamashita et al., 2010
Gastric CD44 Takaishi et al., 2008

AML, acute myelogenous leukemia; ALDH, aldehyde dehydrogenase; EpCAM,
epithelial cell adhesion molecule; CXCRA4, CXC chemokine receptor 4, AFF, alpha-
fetoprotein.
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and Sonic Hedgehog, and dysregulation of these pathways plays
a role in tumor initiation and development (Reya et al,, 2001).
Jamieson et al. showed that aberrations in the Wnt/p-catenin
pathway enhance self-renewal activity during leukemia stem cell
propagation (Jamieson ¢t al,, 2004). Korkaya et al. reported that
the Wnt/B-catenin pathway is involved in the regulation of nor-
mal and malignant mammary stem/progenitor cell populations
(Korkaya et al., 2009). Several studies have shown that the Notch
pathway is activated in breast, glioblastoma, and colon CSCs
(Hoey et al, 2009; Taketo, 2011). Alterations in Hedgehog signal-
ing have been reported in colon, breast, and glioblastoma CSCs
(Liu et gL, 2006; Varnat et al., 2009; Takezaki et al., 2011).

The development of fluorescent antibodies, flow cytometry,
and cell sorting techniques enabled the identification of cell popu-
lations possessing CSC properties. Furthermore, the development
of severely immunodeficient mouse strains facilitated the evalua-
tion of tumor formation ability. These methods have enabled the
identification and isolation of CSCs from various cancers (Bonnet
and Dick, 1997; Al-Fajj et al,, 2003; Collins et al,, 2005; Fang et al.,
2005; Ginestier et al,, 2007; Hermann et al., 2007; Li et al., 2007a;
Eramo et al.,, 2008; Takaishi et al., 2009; Boiko et al., 2010; Pang
et al., 2010; Yamashita et al., 2010) (Table 1). In this review, we
discuss the major findings of recent studies highlighting the roles
of certain “CSC-specific” miRNAs in representative cancer types
(Table 2). From these discussions, we present an emerging theme
that several miRNAs may exert a functional role in the regulation
of the key biological properties of CSCs.

LEUKEMIA STEM CELLS

Through an integrated approach that combined miRNA expres-
sion analysis and bioinformatic prediction of mRNA targets,
distinct miRNA signatures were shown to fine-tune each step
of hematopoiesis, including the reconstitution potential of
hematopoietic stem cells (Arnold et al,, 2011). The miR-17-92
cluster functions as an oncogenic miRNA by enhancing the for-
mation of Myc-driven B-cell lymphomas in a mouse model (He
et al., 2005). Single miRNAs function as oncogenes. The overex-
pression of miR-155 in early B-cells leads to polyclonal expansion
of the pro-B-cell compartment (Costinean et al., 2006), and retro-
viral expression of miR-155 in immature mouse hematopoietic
cells resulted in the expansion of granulocyte/monocyte popu-
lations displaying pathological features characteristic of myeloid
neoplasia without progression to acute myeloid leukemia (AML)
(O’connell et al., 2008). Recently, dysregulation of single miRNAs
was shown to contribute to hematological malighancies, includ-
ing AML and myelodysplastic syndrome (Han et al,, 2010; Song
et al., 20132). Han et al. reported that miR-29a regulates early
hematopoiesis and induces AML by converting myeloid progen-
itors into self-renewing leukemia stem cells via targeting several
tumor suppressors and cell cycle regulators (Flan et al., 2010).
miR-22-induced inhibition of the ten-eleven-translocation gene
2 (TET2) tumor suppressor increased the methylation of TET2
target genes, such as Aim2, Hal, Ight2, and Sp140, and resulted in
positive effects on hematopoietic stem cell self-renewal and trans-
formation. This has led to the suggestion that mir-22 is associated
with myelodysplastic syndrome and hematological malignancies
(Song et al., 2013a).
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BREAST CSCs

The first solid tumor CSCs were identified in and isolated
from breast tumors in 2003 (Al-Hajj et al, 2003). Al-Hajj et
al. described a CD441/CD24~/19% cell population that had a
markedly high tumor-initiating capacity, In 2007, Yu et al. iden-
tified let-7 as a master regulator of breast CSC properties (Yu
et al,, 2007a). In breast CSCs, reduced let-7 expression con-
trols self-renewal and differentiation through RAS and HMGA2,
respectively (Figure 2). Since HMGA?2 plays a role in the control
of differentiation and proliferation of both human and mouse
ESCs (Li et al, 2007b), these findings also suggest that let-7
is involved in the growth and differentiation of ESCs beyond
tumorigenesis.

Epithelial-to-mesenchymal transition (EMT) is an evolution-
arily conserved process that occurs during embryonic develop-
ment in many species of mammals (Liu et al., 2006). Since the
EMT program is often activated during tumor invasion and
metastasis, the genetic controls and biochemical mechanisms
underlying the acquisition of invasiveness and the subsequent sys-
temic spread of cancer cells have been areas of intensive research.
The EMT phenotype is characterized by the downregulation of
epithelial markers such as E-cadherin, the expression of mes-
enchymal markers such as N-cadherin and vimentin, the loss of
cell-cell contact and cell polarity, and the acquisition of cell inva-
sive capabilities. Mani et al. reported that EMT is also associated
with the acquisition of CSC properties (Mani et al., 2008). A
CD44/CD247/"% cell population purified from cancer tissues
shows the features of an EMT phenotype, and human cancer cells
induced to undergo EMT exhibit a CD44¥/CD247/1°% antigen
phenotype and high tumorigenicity.

Recently, two studies reported the clinical relevance of CSCs in
breast cancer specimens (Giordano et al,, 2013; Yuetal., 2013). In
early breast cancer patients, the presence of CD441/CD24~/low
cells in bone marrow was indicative of a poor prognosis
(Giordano et al, 2013). Circulating tumor cells (CTCs) in breast
cancer patients also showed the EMT phenotype (Yu et al,, 2013).
Progressive disease patients undergoing therapy had a higher
number of mesenchymal marker positive CTCs than epithelial
marker positive CTCs. These results suggest that the CSC phe-
notype is clinically important not only as a therapeutic target
but also as a potential biomarker for the prognostic evaluation
of patients undergoing cancer treatment.

A molecular link between EMT and the miR-200 family is
provided by the zinc-finger E-box-binding homeobox protein
encoding genes (ZEBI/ZEB2) (Gregory et al., 2008; Park et al.,
2008). The miR-200 family consists of five members that are clas-
sified into two clusters: miR—200a, miR—200b, and miR—429
on human chromosome 1; and miR—200c and miR—141 on
human chromosome 12 (Gregory et al.,, 2008). Expression of the
miR-200 family strongly inhibits the EMT phenotype induced
by TGF-B, and a reciprocal feedback loop between the miR-
200 family and the ZEB family of transcription factors tightly
regulates both EMT and mesenchymal-to-epithelial transition
(Burk et al., 2008). MiR-200 family members are downregulated
in normal human and mouse mammary stem cells and breast
CSCs, and miR-200c inhibits the formation of mammary ducts
from mammary stem cells and tumor formation from breast
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Table 2 | The regulatory roles of miRNAs in CSCs.

Cancer Type miRNA Target gene Role of miRNA in CSC properties References
Leukemia (AML and MDS) "~ miR-22 TET2 Promotion of self-renewal Song et al., 2013a
Breast Let-7 RAS and HMGAZ2 Inhibition of self-renewal and de-differentiation Yu et al., 2007a
miR-200 family ZEB1/ZEB2 Inhibition of EMT - Gragory et al, 2008
BMI-1 Inhibition of self-renewal Shirmono et al., 2009
Suzi12 Inhibition of mammosphere formation {liopoulos et al., 2010
miR-22 TET family (TET1 -3} Suppression of miR-200 family expression Song et al, 2013b
Brain miR-9/9%, miR-17 CAMTAT Promotion of CD133* cell proliferation Schraivogel et al., 2011
miR-128 BMI-1 Inhibition of self-renewal Godlewski et al., 2008
miR-199b-6p HEST Réduction of the CD133™ cell fraction Garzia et al,, 2009
Colon miR-193 PLAU and K-RAS Inhibition of tumorigenicity and invasiveness topoulos et al.. 2011
miR-451 MIF and COX-2 Inhibition of self-renewal and tumorigenicity Ritarte et al., 2011
miR-34a NOTCH 1 Suppression of asymmetric cell division Buetal, 2013
Prostate miR-34a CD44 Inhibition of self-renewal and metastasis Liu st al, 201
miR-320 B-catenin Inhibition of Wnt/B-catenin pathway Hsieh et al., 2013

AML, acute myelogenous leukemia; MDS, myelodysplastic syndrome.

CSCs (Shimono et al., 2009). Members of the miR-200 family
also modulate the self-renewal ability of CSCs by targeting B-
lymphoma Mo-MLV insertion region 1 homolog (BMI-1) and
SUZ12, a subunit of a polycomb repressor complex (Iliopoulos
et al, 2010). BMI-1 regulates the self-renewal and differentia-
tion of several types of stem cells, including hematopoietic, brain,
and mammary stem cells (Molofsky et al., 2003; Park et al,
2003; Pietersen et al., 2008). Therefore, modulation of the activ-
ity of the miR-200 family using conventional therapy could be a
promising approach to improve the effectiveness of breast cancer
treatments.

Normal human and mouse mammary stem cells can be iso-
lated and characterized on the basis of their aldehyde dehydro-
genase (ALDH) activities (Ginestier et al.,, 2007). Using ALDH
activity, Ibara et al. determined that miR-205 and miR-22 were
highly expressed in mouse mammary progenitor cells (Ibarra
et ak., 2007). MiR-22 was recently shown to be an epigenetic mod-
ifier that promotes stemness and metastasis in breast cancer by
directly targeting enzymes in the TET family, which regulate DNA
demethylation (Song et al., 2013b). The TET family is involved
in the demethylation of the miR-200 promoter, and miR-22 pro-
motes CSC properties such as EMT and a metastatic phenotype
through the suppression of the miR-200 family. This provides the
first evidence that chromatin-remodeling systems with opposing
effects on cell fate (self-renewal vs. differentiation) are regulated
by opposing sets of miRNAs.

BRAIN CSCs

The pentaspan membrane glycoprotein CD133, also known as
Prominin-1, was first identified as a marker of hematopoietic
stem cells and progenitor cells, and was subsequently used to
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detect malignancies (Miraglia et al, 1997; Yin et al, 1997). In
solid cancers, CD133 was first used to identify CSCs in different
types of human brain tumors including glioblastoma, medul-
loblastoma, and ependymomas (Singh et al., 2003, 2004; Yu
et al., 2010). In these studies, patient tumor cells were separated
based on the expression of CD133. The CD133" cell popula-
tion is highly tumorigenic in vivo, whereas CD133™ cells do not
form tumors even at high numbers (Singh et al., 2003, 2004; Yu
et al, 2010). CD1337" cells are also resistant to radiation and
chemotherapy. These findings led to the hypothesis that glioblas-
tomas are maintained by CSCs, and that this treatment-resistant
subpopulation is a promising target for effective therapies. CD133
has been instrumental for the identification of CSCs in colorec-
tal (Ricci-Vitiani et al, 2007) and pancreatic (Hermann et al,,
2007) carcinomas. CD133 itself is a marker of normal neural stem
cells in both humans (Uchida et al., 2000) and mice (Lee et al.,
2005).

In cancer cells, the deacetylase HDAC6 directly interacts with
and regulates the intracellular localization of CD133 (Mak et al.,
2012). CD133 forms a stable protein complex with HDAC6 and
B-catenin, which leads to the activation of f-catenin signaling
targets in different types of cancer. CD133 is also associated
with phosphoinositide 3-kinase (PI3K) 85kDa regulatory sub-
unit (p85) in glioma stem cells (GSCs) (Wei et al., 2013). The
PI3K pathway is a key regulator of tumorigenesis in glioblastoma
and other cancers (Godlewski et al,, 2010). Therefore, activa-
tion of the PI3K/Akt pathway by the physical interaction between
CD133 and p85 promotes tumorigenicity in GSCs. The function
of CD133 in brain tumors should be fully characterized in the
near future, which may shed light on the role of CDI133 as a
functional marker of GSCs.
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Schraivogel et al. reported that miR-9, miR-9* (miR-9/9%),
miR-17, and miR-106b are highly abundant in the CD133% cell
population in glioblastoma cell lines. Among the upregulated
miRNAs in the CD133" cell population, inhibition of miR-9/9*
or miR-17 leads to reduced neurosphere formation and stim-
ulates cell differentiation. Functional analysis of these miRNAs
showed that miR-9/9* and miR-17 target calmodulin-binding
transcription activator 1 (CAMTAI), a putative transcription
factor of the anti-proliferative cardiac hormone natriuretic pep-
tide A (NPPA). Clinical studies also demonstrated that CAMTAI
and NPPA expression is correlated with patient survival. These
findings could provide a basis for the design of novel treatment
strategies for glioblastoma (Schraivogel et al,, 2011).

MiR-124 and miR-128 are the most highly expressed miRNAs
in the adult brain and are preferentially expressed in neurons
(Smirnova et al., 2005). Patients with high-grade glioma show
significant downregulation of miR-128 expression. Functional
analyses showed that miR-128 expression inhibits glioma cell pro-
liferation in vitro and glioma xenograft growth in vivo (Godlewski
et al., 2008). In addition, miR-128 specifically inhibits the self-
renewal capacity of GSCs by directly targeting BMI-1, a polycomb
family transcriptional repressor required for postnatal mainte-
nance of neural stem cells in the peripheral and central nervous
system (Molofsky et al.,, 2003). Since BMI-1 maintains neural
stem cells in an undifferentiated self-renewing state, the regula-
tion of BMI-1 by miR-128 may contribute to normal stem cell
regulation.

Another study showed that miR-199b-5p downregulation was
associated with metastatic spread in medulloblastoma. In medul-
loblastoma cells, miR-199b-5p directly targets HESI, a transcrip-
tion factor of the Notch signaling pathway (Garzia et al., 2009).
During brain development, Notch functions as a critical regula-
tor of cell fate, by which gliogenesis can only occur when Notch
signaling specifically represses the neuronal pathway in progen-
itor cells (Karamboulas and Ailles, 2013). MiR-199b-5p blocks
Notch signaling, inhibiting the self-renewal capacity of medul-
loblastoma cells by reducing the CD133" subpopulation (Garzia
et al., 2009). Recently, miR-34a was shown to regulate Notch sig-
naling by targeting Noich-1 and Notch-2 in medulloblastoma cells
(Li et al, 2009). Therefore, miR-199b-5p and miR-34a are impor-
tant for the self-renewal potential of GSCs via the Notch signaling
pathway.

COLON €SCs

CD133 was initially used to identify and isolate colon CSCs
(O’brien et al., 2007; Ricci-Vitiani et al., 2007), which was fol-
lowed by the identification of CD44, epithelial surface antigen
(EpCAM), and CD166 as alternative colon CSC markers (Dalerba
et al., 2007). CD166 is a mesenchymal stem cell marker whose
expression is correlated with poor prognosis in colon cancer
patients (Weichert et al., 2004). Compared to CD44~ /EpCAM™
cells, CD44*/EpCAMM8! cells from primary tumors show high
tumorigenic activity in NOD/SCID mice. Moreover, CD166™
cells in the CD44T/EpCAMPER cell fraction contribute to the
tumorigenic activity of colon CSCs. In addition to CD133, CD44,
EpCAM, and CD166, the expression of leucine-rich repeat-
containing G-protein-coupled receptor 5 (Lgr5) varies among
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colorectal cancer (CRC) cases and is significantly correlated with
tymphatic and vascular invasion, lymph node metastasis, and
drug resistance (Vermeulen et al., 2008; Merlos-Suarez et al., 2011;
Kobayashi et al., 2012).

Iiopoulos et al. reported that the expression of miR-193a is
inversely correlated with K-RAS and plasminogen activator uroki-
nase (PLAU) expression in human colon adenocarcinomas, and
that miR-193 expression inhibits tumorigenicity and invasiveness
by directly targeting K-RAS and PLAU, respectively (Iliopoulos
etal, 2011). MiR-451 is another regulator of CSC properties such
as self-renewal, tumorigenicity, and drug resistance. In spheroid
cell culture, downregulation of miR-451 induces the upregulation
of macrophage migration inhibitory factor (MIF) and COX-2,
resulting in the acquisition of self-renewal and tumorigenic prop-
erties (Bitarte et al., 2011). MIF and Cox-2 are involved in the
activation of the Wnt pathway, which is functionally essential for
the maintenance of colon CSCs (Vermeulen et al., 2010), suggest-
ing that miR-451 could regulate the properties of colon CSCs by
suppressing the Wnt pathway.

Notch signaling is frequently activated in CRCs, and is dysreg-
ulated directly by epigenetic and genetic changes and indirectly
by synergistic interactions with the Wnt pathway, which is also
activated in CRC (Taketo, 2011). Notch signaling promotes the
self-renewal activity of intestine and colon stem cells (Taketo,
2011). Therefore, colon CSCs in CRC are thought to arise from,
or at least share common properties with, normal colon stem
cells (Clevers, 2011; O’brien et al,, 2012). Bu et al. reported
that miR-34a determines whether colon CSCs undergo symmet-
ric or asymmetric division, and that inhibition of asymmetric
cell division suppresses tumorigenicity (Bu et al., 2013). MiR-34a
inhibits Notch signaling by directly targeting Notch receptors (Li
et al., 2009), suggesting that the upregulation of miR-34a weak-
ens Notch signaling and promotes the generation of daughter
cells (non-CSCs), whereas low miR-34a levels promote Notch
signaling and lead to the maintenance of CSCs. This study also
demonstrated that the expression level of miR-34a correlates
more closely with the differentiation of daughter cells than the
presence of Numb, which also suppresses Notch signaling by
promoting the degradation of membrane-bound Notch and its
intracellular domain (Bu et al., 2013).

PROSTATE CSCs
In prostate cancer (PCa), P integrin, CD133, and CD44 were
initially used to identify and isolate CSCs (Collins et al., 2005;
Patrawala et al., 2006, 2007). Patrawala et al. reported that CD44 %
PCa cells have higher proliferative, tumorigenic, and metastatic
potentials than CD44™~ PCa cells (Patrawala et al, 2006), and
showed that androgen receptor (AR)-negative CD44™" PCa cells
differentiate into AR-positive CD44~ PCa cells. Consistent with
this report, prostate-specific antigen (PSA)-negative or -low PCa
cells that are resistant to androgen ablation have a highly tumori-
genic phenotype (Qin et al, 2012). In addition, PSA™/'W PCa
cells generate PSA™ PCa cells through asymmetric cell division,
and highly tumorigenic PSA™/1°% PCa cells are characterized by
an ALDHT/CD44% /0,B; integrin® phenotype (Qin et al,, 2012).
Liu et al. reported that miR-34a is downregulated in CD44™"
PCa cells purified from xenografts and primary tumors, and
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that miR-34a directly regulates the expression of CD44 at the
post-transcriptional level by binding to its 3'UTR (Liu et al,
2011). Expression of miR-34a in CD44™ PCa cells inhibits tumor
migration and metastasis in a xenograft model (Liu et al,, 2011),
and miR-34a inhibits Notch and AR signaling in PCa cells (Li
et al.,, 2009; Kashat et al.,, 2012), suggesting that miR-34a sup-
presses the self-renewal activity of CSCs in PCa cells.

Another miRNA that regulates CSC properties is miR-320,
which acts by directly targeting 3-catenin in PCa cells (Fisieh et al,,
2013). miR-320 and B-catenin expression is inversely correlated
in CD44" PCa cells. Furthermore, gene expression profiling of
miR-320-overexpressing PCa cells showed a significant decrease
in downstream target genes of the Wnt/B-catenin pathway and
CSC markers (Hsich et al., 2013).

THERAPEUTIC APPROACHES TO TARGET CSCs

The development of therapies against CSCs has resulted in the
establishment of a new generation of cancer therapeutics, which
is particularly important in the treatment of intractable cancers.
Since CSCs are molecularly distinct from non-CSCs and bulk
tumor cells, a high-throughput screening approach was used to
identify small compounds that eliminate or reduce levels of CSCs
(Gupta et al., 2009; Sachlos et al., 2012). Gupta et al. identified
salinomycin as a selective inhibitor of breast CSCs (Gupta et al.,
2009) by screening a library of 16,000 natural and commercial
chemical compounds in a search for small compounds capable of
killing breast CSCs. Although the precise molecular mechanisms
underlying the elimination of CSCs by salinomycin are not fully
understood, several studies have improved our understanding of
the mechanisms and pharmacological action of salinomycin in
human CSCs (Fuchs et al,, 2010; Lu et al, 2011; Tang et al,,
2011). Systemic salinomycin therapy induces a marked regres-
sion of subcutaneous thoracal metastases of breast cancer, and
combination therapy of salinomycin with erlotinib resulted in sig-
nificant tumor regression in metastatic squamous cell carcinoma
(Naujokat and Steinbart, 2012).

High-throughput screening using neoplastic and normal
human pluripotent stem cells (hPSC) showed that among 590
compounds, only thioridazine significantly promoted differentia-
tion of neoplastic hPSCs but not of normal hPSCs (Sachlos et al.,
2012). Thioridazine acts through dopamine receptors (dopamine
receptor1-5) (Seeman and Lee, 1975), indicating that its selective
interference with human CSCs is mediated by dopamine receptor
antagonism.

The development of therapies against CSCs is challenging
because both bulk cancer cells and CSCs must be eliminated. As
CSCs are molecularly distinct from bulk tumor cells, they can
be targeted by exploiting their molecular differences as described
above (Tables1, 2). One of the most promising approaches
is the cell based delivery of miRNAs or miRNA inhibitors.
Several studies demonstrated that miRNAs are secreted through
“exosomes,” which are small endosome-derived vesicles (30—
100nm) secreted from different cell types, such as dendritic
cells, hepatocyte, and tumor cells (Mittelbrunn et al,, 2011; Luga
et al., 2012; Ramakrishnaiah et al,, 2013). The exosome secreted
from mesenchymal stem cells (MSC) is selectively transferred
to the glioblastoma multiforme (GBM) (Munoz et al., 2013).
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Since miR-9 is involved in the upregulation of p-glycoprotein,
Munoz et al. developed an MSC derived exosome containing anti-
miR-9 that efficiently suppressed p-glycoprotein expression in the
temozolomide-resistant GBM.

The glycosylation pattern of CSC markers on CSCs is differ-
ent from normal stem cells (Karsten and Goletz, 2013). Some
CSC markers such as CD44 and CD133 are also expressed in
normal stem and progenitor cells (Karsten and Goletz, 2013),
which might have negative implications for the development
of CSC-targeted delivery. This problem could be addressed by
the development of liposomes or nanoparticles conjugated to
antibodies against CSC specific glycans that permit the selective
delivery of CSC suppressive miRNAs or small molecules.

Recent studies have shown that several dietary compounds can
directly or indirectly affect the properties of CSCs (Li et al., 2011).
Therefore, natural dietary compounds have received increasing
attention in cancer chemoprevention, and several natural com-
pounds that induce the elimination or differentiation of breast
CSCs have been identified (Kakarala et al., 2010; Li et al,, 2010;
Hagiwara et al., 2012). Resveratrol is a non-toxic natural product
that is found in grapes, berries, peanuts and red wine (Aziz et al,,
2003). Nowadays, resveratrol is widely consumed as a nutritional
supplement (Prasad, 2012}, and its multifaceted biological effects
include anti-mutagenic and anti-cancer properties (Prasad, 2012;
Patel et al., 2013). Hagiwara et al. found that resveratrol enhances
miRNA functions through the upregulation of Ago2 expression,
which leads to the suppression of CSC properties (Hagiwara
et al,, 2012). These results suggest that the identification of non-
toxic natural compounds capable of suppressing the properties of
CSCs through the regulation of miRNA expression is a promising
approach to support conventional chemotherapy.

CONCLUSIONS

Accumulating lines of evidence have shown that the heterogene-
ity and plasticity of cancer cells is reflected in the transition
from a non-CSC to a CSC phenotype. Therefore, clinical oncol-
ogists and cancer researchers need to determine which cancer
cells have the potential to contribute to tumor initiation and pro-
gression, including therapeutic resistance and metastasis. Several
studies reviewed here have shown that miRNAs can function
as tumor suppressors or oncogenes and play important roles in
various aspects of CSC properties. In this regard, miRNAs are
considered to be functional markers of CSCs. Therefore, a more
detailed understanding of the function of miRNAs in CSC biology
may improve cancer treatments and possibly lead to the clini-
cal application of miRNAs in cancer diagnosis, treatment, and
prognosis. '
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SUMMARY

Cancer is believed to arise primarily through accu-
mulation of genetic mutations. Although induced
pluripotent stem cell (iPSC) generation does not
require changes in genomic sequence, iPSCs ac-
quire unlimited growth potential, a characteristic
shared with cancer cells. Here, we describe a murine
system in which reprogramming factor expression
in vivo can be controlled temporally with doxycycline
(Dox). Notably, transient expression of reprogram-
ming factors in vivo results in tumor development
in various tissues consisting of undifferentiated
dysplastic cells exhibiting global changes in DNA
methylation patterns. The Dox-withdrawn  tumors
arising in the kidney share a number of characteris-
tics with Wilms tumor, a common pediatric kidney
cancer. We also demonstrate that iPSCs derived
from Dox-withdrawn kidney tumor cells give rise to
nonneoplastic kidney cells in mice, proving that
they have not undergone irreversible genetic trans-
formation. These findings suggest that epigenetic
regulation associated with iPSC derivation may drive
development of particular types of cancer.

INTRODUCTION

Induced pluripotent stem cells (PSCs) can be established from
differentiated somatic cells by the forced induction of four
transcription factors: Oct3/4, Kif4, Sox2, and c-Myc (Takahashi
et al., 2007; Takahashi and Yamanaka, 2006; Maherali et al.,
2007; Okita et al., 2007; Wernig et al., 2007; Wolljen et al,,
2009). To achieve somatic cell reprogramming, multiple cellular

CrossMark

processes act synergistically in a sequential manner (Brambrink
et al,, 2008; Polo st al., 2012; Samavarchi-Tehrani et al., 2010).
Despite extensive studies, the precise mechanism of somatic
cell reprogramming still remains unclear (Rais et al., 2013). It is
known that non-iPSC-like colonies often appear at the interme-
diate stage of cellular reprogramming in vitro. In additjon, there
are several reports describing partial iPSCs that deviate suc-
cessful reprogramming (Fussner et al., 2011; Mikkelsen et al.,
2008; Sridharan et al.,, 2009). However, the characteristics of
such failed reprogramming states are largely unknown, and no
study has elucidated the failed reprogramming state from cell
fypes other than fibroblasts.

The process of IPSC derivation shares many characteristics
with cancer development. During reprogramming, somatic
differentiated cells acquire the properties of self-renewal along
with unlimited proliferation and exhibit global alterations of the
transcriptional program, which are also critical events during
carcinogenesis (Ben-Porath et al., 2008). The metabolic switch
to glycolysis that occurs during somatic cell reprogramming is
similarly observed in cancer development (Folmes et al., 2011).
Such similarities suggest that reprogramming processes and
cancer development may be partly promoted by overlapping
mechanisms (Hong et al., 2009). Practically, the forced induction
of the critical reprogramming factor Oct3/4 in adult somatic cells
results in dysplastic growth in epithelial tissues through the
inhibition of cellular differentiation in a manner similar to that in
embryonic cells (Hochedlinger et al., 2005). These studies pro-
vided a possible link between transcription-factor-mediated
reprogramming and cancer development.

To elucidate the involvement of failed reprogramming in can-
cer development, in the present study, we generated an in vivo
reprogramming mouse system using reprogramming factor-
inducible -alleles and examined the effects of reprogramming
factor expression in somatic cells in vivo. We show that failed
reprogramming-associated cells behave similarly to cancer cells
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Figure 1. Reprogramming of Somatic Cells In Vivo
{A) Generation of four-factor-inducible ESCs. TetOP, tetracycline-dependent promoter.
(B) Generation of chimeric mice using OSKM-inducible ESCs. mCherry signals could be detected in various organs after Dox treatment for 3 days.
(C) Treatment of chimeric mice with Dox for 28 days resulted in the development of multiple tumors containing pluripotent stem cells. (a) A representative
macroscopic image of the cut surface of the kidney tumor. (b) A histological section of the kidney tumor showing the differentiation of tumor cells into three
germ layers, indicating teratoma formation. The blue, red, and black arrows represent neuronal, cartilage, and glandular epithelial components, respectively.
Scale bar, 200 pm.

(legend continued on next page)
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and cause neoplasia resembling Wilms tumor, a childhood
blastoma in the kidney. Moreover, we demonstrate that altered
epigenetic regulations cause the abnormal growth of such failed
reprogramming-associated cancer cells,

RESULTS

In Wivo Reprogrammable Mouse

To establish the reprogrammable mouse system, we generated
embryonic stem cells (ESCs) in which reprogramming factors
can be induced under the control of doxycycline (Dox) (Fig-
ure 1A) (Carey et al., 2010; Stadtfeld st al,, 2010b). We used
-KH2 ESCs with the optimized reverse tetracycline-dependent
transactivator at the ROSA 26 locus (Beard ei al., 2006). A
polycistronic cassette encoding four reprogramming factors
(Oct3/4, Sox2, Kif4, and c-Myc) (Carey et al., 2010), followed
by ires-mCherry, was targeted into the Colfal gene locus
under the tetracycline-dependent promoter of KH2 ESCs
(Figure 1A).

Next, we generated chimeric’ mice via blastocyst injection
of four-factor (4F)-inducible ESCs. To confirm inducible ex-
pression of the reprogramming factors and mCherry in vivo,
Dox-containing water was provided to chimeric mice starting
at 4 weeks of age. On day 3 of Dox treatment, we could detect
the mCherry signal in various organs, including stomach, intes-
tine, liver, pancreas, kidney, gallbladder, and skin (Figure 1B).
We also confirmed the expression of reprogramming factors in
germline-transmitted mouse tissues by quantitative RT-PCR
(gRT-PCR) (Figure S1A available online).

Mouse embryonic fibroblasts (MEFs) containing these reprog-
ramming factor-inducible alleles could give rise to iPSCs after
Dox treatment in vitro (Figure S1B). We next asked whether
responding somatic cells could be reprogrammed in vivo. The
chimeric and germline-transmitted mice given Dox-containing
water (2 mg/ml) from 4 weeks of age became morbid within
7-10 days and a few days, respectively. A small proportion of
chimeric mice could be treated with Dox for 4 weeks, presum-
ably because of a lower contribution of ESCs in responding
tissues. Notably, mice treated with Dox for 4 weeks developed
multiple tumors in several organs, such as the kidney and
pancreas (Figure 1Ca), whereas tumor formation was never
observed in nontreated mice (n = 7, 7 months of age). Histolog-
ical analysis revealed that these tumors differentiated into three
different germ layers, indicating that they are teratomas (Fig-
ure 1Cb). When teratoma cells were cultured ex vivo in the
absence of Dox (no additional 4F expressions), iPSC-like cells
were established (Figure 1Da). Importantly, the teratoma-derived
iPSC-like cells contributed to adult chimeric mice when they
were injected into blastocysts (Figure 1Db). Therefore, we

conclude that somatic cells can be reprogrammed in vivo to
pluripotency in our reprogrammable mouse system.

Forced Expression of Reprogramming Factors In Vive
Leads to Hapid Expansion of Dysplastic Cells

We next examined the early changes after expression of
reprogramming factors in somatic cells in vivo. After treatment
of 4-week-old mice with Dox for 3-9 days, all mice developed
dysplastic lesions in epithelial tissues of various organs (Fig-
ure 1E), although there were variations in severity of the pheno-
type among chimeras. Dysplastic cells proliferated actively, as
revealed by Ki67 staining (Figure 1F). Abnormal proliferation
of somatic cells was observed as early as 3 days after Dox
treatment (Figure 51C), and by day 7, such dysplastic cell
growth was detected even for pancreatic and kidney cells,
which typically do not divide actively under physiological
conditions (Figures 1E and 1F). Immunofluorescent analysis of
Oct3/4 and the 2A peptide (forming transgene connections)
demonstrated that the dysplastic cells expressed repro-
gramming factors (Figure 1G). Collectively, the forced expres-
sion of reprogramming factors caused dysplastic cell expansion
of epithelial tissues in vivo. :

The Fate of Early Dysplastic Celis after Withdrawal

of Dox

To examine whether subsequent expansion of such dysplastic
cells depends on the continuous expression of reprogramming
factors, we withdrew Dox for 7 days after an initial 4- to 7-day
treatment (Figure 2A). Although Dox treatment for 4-7 days
caused active cell proliferation in a variety of tissues of all
mice, we did not observe any dysplastic cells in some mice
after withdrawal of Dox (Figure 2A; Table 1). Of particular
note, mice treated with Dox for periods less than 5 days before
withdrawal often revealed a lack of dysplastic cells (Table 1).
These data suggest that early dysplastic cell growth requires
continuous expression of reprogramming factors. We next
investigated the fate of eliminated dysplastic proliferating cells
after the withdrawal of Dox. Bromodeoxyuridine (BrdU) was
injected into mice during Dox treatment to label proliferating
cells caused by reprogramming factor expression during the
first 7 days (Hochedlinger et al., 2005), and then mice were
sacrificed after the withdrawal of Dox for 7 days, on dayi4.
Notably, BrdU-labeled cells were often observed in normal-
looking pancreatic and kidney tissues at day14 (Figure 2B).
Furthermore, BrdU-labeled cells in the pancreatic islets also
expressed insulin (Figure 2B). This suggests that the expanded
cells caused by the transient expression of reprogramming
factors were, at least in part, integrated into normal-looking
tissues after Dox withdrawal.

(D) Teratomas contain pluripotent stem cells. (a) Ex vivo teratoma culture gave rise to iPSC-like colonies without Dox exposure. (b) Teratoma-derived iPSCs

contributed to adult chimeric mice.

(E) Dysplastic cell expansion by the forced expression of reprogramming factors in vivo. The histology of various organs of mice treated with Dox for 3 to 9 days.
Scale bars, 200 um (intestine, skin, pancreas, stomach, and gall bladder) and 100 um (kidney).

(F) Ki67 immunostaining revealed active proliferation of the dysplastic cells in the pancreas and stomach. Scale bars, 200 pm.

(G) Immunofluorescent staining for Oct3/4 and 2A peptide in the intestine of an OSKM chimeric mouse treated with Dox for 7 days. The 2A antibody used here
recognizes both Oct3/4-P2A and Sox2-T2A. Dysplastic cells showed positive staining for both Oct3/4 and 2A. Scale bar, 50 um.

See also Figure 81,
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Figure 2. Transient Expression of Reprogramming Factors Causes Neoplasia

(A) Aschematic drawing of the experiment and histological sections of the pancreas taken on days 7 and 14. Dysplastic cell growth was induced by treatment with
Dox for 7 days (arrows on day 7). The pancreatic section taken on day 14 revealed normal histology. Scale bars, 200 um. .

(B) Double immunofiuorescence for insulin and BrdU in the pancreas on day 14. For the pulse and chase experiment, BrdU was injected intraperitoneally every
day during Dox administration starting on day 2 (days 2-7), followed by withdrawal of Dox for 7 days. BrdU-positive cells were frequently observed in normal-
looking pancreatic isiet cells, which also expressed insulin. Scale bar, 100 um.

(C) Treatment of OSKM chimeric mice with Dox for 7 days, followed by the withdrawal of Dox for another 7 days. The macroscopic image shows the development
of bilateral kidney tumors on day 14. Representative histological images are shown for Dox-withdrawn tumors in the kidney, pancreas, and liver. Scale bars,
200 pm.

(legend continued on next page)
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Tabled. Transient Expression of Reprogramiming Factors Causes Tumor Development
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Prolonged Expression of Reprogramming Faciors
Leads to Transgene-Independent Tumor Formation
in Somatic Cells
In contrast to the reversion of early dysplastic proliferating cells
into normal-looking cells, mice that had been given Dox for
7 days often went on to develop tumors in muitiple responding
organs even after Dox withdrawal (Figure 2C; Table 1). The
developed tumors consisted of histologically undifferentiated
dysplastic cells, which were distinct from teratoma cells (Figures
2C and S2A). The dysplastic cells invaded the surrounding
tissues, which is one of the hallmarks of cancer cell growth
(Figure $2A). Dox-withdrawn tumor cells were negative for 2A
staining, affirming that they grew independent of transgene
expression (Figure $S2B). Dox-withdrawn kidney tumors were
similarly observed in elderly mice given Dox starting at 14 weeks
of age (13 out of 19 mice). When Dox-withdrawn kidney tumor
cells were transplanted into the subcutaneous tissues of immu-
nocompromised mice, they formed secondary tumors within
3 weeks without Dox administration (Figures 2D and $2C), re-
flecting the neoplastic potential of Dox-withdrawn tumor cells.
Reprogramming factors in our transgenic - system include
c-Myec, a well-known oncogene. To investigate the contribution
of c-Myc on the development of Dox-withdrawn tumors, we
generated three-factor-inducible chimeric mice, which express
Oct3/4, Sox2, and Kif4 (OKS), but not c-Mye, by the targeted
insertion of transgenes into the identical locus as 4F (OSKM)-
inducible mice (Figure 2E). Similar to 4F-induced mice, OKS
induction in vivo caused dysplastic cell growth in various
organs yet required longer periods of treatment (Figure 2E). After

3 weeks of induction of OKS followed by withdrawal for 7 days,"

these mice developed the Dox-withdrawn tumors consisting
of undifferentiated dysplastic cells in multiple organs (4 out of
8 mice; Figure 2E). Therefore, transgenic c-Myc is dispensable
for the development of Dox-withdrawn tumors.

Oct3/4 plays a critical role in cellular reprogramming, and
expression of three factors (Kif4, c-Myc, and Sox2) in the
absence of Oct3/4 is not sufficient for iPSC generation (Takaha-
shiand Yamanaka, 2006). To further demonstrate a link between

cellular reprogramming and Dox-withdrawn tumor development,
we generated chimeric mice in which Kif4, c-Myc, and Sox2
(KMS), but not Oct3/4, can be induced upon Dox treatment
(Figure 2F). Following Dox treatment for 7 days, we observed
dysplastic cell growth in the kidney of KMS-inducible mice
(three out of six mice; Figurs 2F). However, in sharp contrast to

'OSKM/OKS-induced mice, the withdrawal of Dox eliminated

the dysplastic cells in the kidney of KMS-induced mice (n = 17;
Figure 2F). A previous study demonstrated that ectopic ex-
pression of Oct3/4 alone can induce dysplastic growth whereas
the transgene withdrawal leads to complete reversion of such
dysplasia (Hochedlinger et al., 2005). Consistent with the
previous observation, the Oct3/4-single induction under the
same experimental condition failed to form Dox-withdrawn
tumors (n = 18; Figure S2D). Taken together, we conclude that
reprogramming pressure toward pluripotency driven by the
combination of reprogramming factors is associated with the
development of Dox-withdrawn tumors.

Loss of Cell ldentity and Gain of ESC-Related Gene
Expression in Dox-Withdrawn Tumors

To characterize Dox-withdrawn tumor cells, we examined gene
expression in kidney tumors that arose in OSKM-inducible
mice treated with the 7+/7— Dox regimen. In the KH2 system,
transgene expression in the kidney is induced exclusively in
the tubule cells (Beard et al., 2008). We observed decreased
expression of kidney tubule cell-specific genes in Dox-with-
drawn kidney tumors, indicating loss of kidney cell identity
(Figure 3A). A previous study dissected the gene expression
signature of ESCs into three functional modules: core pluripo-
tency factors, Polycomb complex factors, and Myc-related
factors (Kim et al., 2010). Notably, microarray analysis revealed
that the ESC-Core module is similarly activated in Dox-with-
drawn kidney tumors and ESCs (Figure 3B) (Ohta st al., 2013).
We also found that the Myc module displays similar activation
between Dox-withdrawn tumors and ESCs (Figure S3A). The
activation of ESC-Core and ESC-Myc modules was similarly
confirmed in transplanted secondary tumors (Figure S3B).

(D) Minced Dox-withdrawn tumor cells were injected in the subcutaneous tissues of immunocompromised mice. A histological section of one of the tumors
phenocopied the original Dox-withdrawn tumor. Scale bars, 200 pm (upper panel) and 100 pm (flower panel).

(E) A schematic drawing of the OKS transgene at the Col/7a7 locus. A histological section of the kidney on days 21 and 28. The expansion of dysplastic cells was
observed in the stomach and kidneys on day 21 (arrows). The dysplastic cell growth could be detected even after the withdrawal of Dox in OKS-induced mice

(day 28). Scale bars, 200 pm.

(F) A schematic drawing of the KMS transgene. A histological section of a kidney after the treatment with Dox for 7 days (day 7) and the withdrawal of Dox
for another 7 days (day 14). KMS induction leads to dysplastic growth in the kidney tubule cells (arrows for day 7). The inset shows a higher-magnification image.
No dysplastic cells were detectable in the kidneys of KMS-induced mice after the withdrawal of Dox (day 14). Scale bars, 200 um.

See also Figure S2.
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Figure 3. Loss of Cell identity and Gain of ESC-Related Gene Expression in the Dox-Withdrawn Tumors
(A) The results of the qRT-PCR analyses of Agp 7 and Lrp2. The expression levels of AgpT and Lrp2 were significantly downregulated in the Dox-withdrawn kidney
tumors: Data are presented as mean + SD. The mean level of normal kidney samples was set to 1.
(B) The microarray analyses revealed the activation of the ESC Core module in Dox-withdrawn kidney tumors.
{C) The resuits of the gRT-PCR analyses of pluripotency-related genes. Data are presented as mean = SD. The transcript level in ESCs was set to 1.
(D) Lgr5 as a candidate marker of Dox-withdrawn kidney tumor cells. Lgr5 was specifically expressed in Dox-withdrawn kidney tumors. Data are presented as
mean + SD. The mean level of kidney tumors was set to 1.
(E) A schematic drawing of the experimental protocol using chimeric mice with both reprogrammable alleles and the Lgr5-EGFP allele. Macroscopic images of
the Dox-withdrawn kidney tumor with the Lgr§-EGFP allele showing scattered EGFP signals in the kidney tumor. GFP immunostaining of kidney tumor sections
revealed that the GFP signals are detectable specifically in tumor cells. Scale bar, 100 um.

(legend continued on next page)
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