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ORIGINAL ARTICLE
Comprehensive analysis of genetic alterations and their prognostic
impacts in adult acute myeloid leukemia patients

R Kihara'?’, Y Nagata®*%’, H Kiyoi', T Kato', E Yamamoto', K Suzuki', F Chen', N Asou?, S Ohtake®, S Miyawaki®, Y Miyazaki’, T Sakura®,
Y Ozawa®, N Usui'®, H Kanamori'", T Kiguchi'?, K Imai'3, N Uike'®, F Kimura'®, K Kitamura'®, C Nakaseko'”, M Onizuka'®, A Takeshita'®,
F Ishida®®, H Suzushima?', Y Kato®?, H Miwa®?, Y Shiraishi®*, K Chiba®*, H Tanaka®’, S Miyano®*%°, S Ogawa>* and T Naoe'-?

To clarify the cooperative roles of recurrently identified mutations and to establish a more precise risk classification system in acute
myeloid leukemia (AML), we comprehensively analyzed mutations in 51 genes, as well as cytogenetics and 11 chimeric transcripts,
in 197 adult patients with de novo AML who were registered in the Japan Adult Leukemia Study Group AML201 study. We identified
a total of 505 mutations in 44 genes, while only five genes, FLT3, NPM1, CEBPA, DNMT3A and KIT, were mutated in more than 10% of
the patients. Although several cooperative and exclusive mutation patterns were observed, the accumulated mutation number
was higher in cytogenetically normal AML and lower in AML with RUNXT-RUNXTT1 and CBFB-MYH11, indicating a strong potential of
these translocations for the initiation of AML. Furthermore, we evaluated the prognostic impacts of each sole mutation and the
combinations of mutations and/or cytogenetics, and demonstrated that AML patients could be clearly stratified into five risk groups
for overall survival by including the mutation status of DNMT3A, MLL-PTD and TP53 genes in the risk classification system of

the European LeukemiaNet. These results indicate that the prognosis of AML could be stratified by the major mutation status

in combination with cytogenetics.

Leukemia (2014) 28 1586-1595; doi:10.1038/leu.2014.55

Keywords: acute myeloid leukemia; gene mutations; prognosis; risk factor

INTRODUCTION

Acute myeloid leukemia (AML) is a clinically and genetically
heterogeneous disease.'? Although about 80% of younger
adults with AML achieve complete remission (CR) with induction
chemotherapy, more than half of the CR patients relapse, even
if they receive intensive consolidation therapies. Allogeneic
hematopoietic stem cell transplantation (allo-SCT) is applied
to the patients who have risk factors for relapse, and it has
been demonstrated by meta-analysis that allo-SCT at the first
CR improves the long-term prognosis of the cytogenetically
intermediate- and  adverse-risk groups®  Cytogenetic-risk
classification for AML is well established and commonly used as
criteria for the application of allo-SCT at the first CR, whereas there

cytogenetically normal (CN)-AML* Recent advances and the
accumulation of information on the prognostic relevance of
recurrent genetic alterations have made more detailed risk
stratification possible in AML patients>'® The European
LeukemiaNet (ELN) has recommended a novel risk classification
system on the basis of the cytogenetic and genetic status.” In this
system, CN-AML is stratified into two risk groups according to the
mutation status of FLT3, NPM1 and CEBPA: patients with NPM1
mutation but not FLT3-ITD and those with CEBPA mutation are
included in the favorable-risk (FR) group, and patients with FLT3-
ITD and those with neither NPMT mutation nor FLT3-ITD are
categorized into the intermediate-I-risk (IR-I) group. Long-term
prognosis according to the ELN classification system was

is clinical heterogeneity in the intermediate-risk group, particularly retrospectively evaluated in well-established cohorts, and it has
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been demonstrated that the ELN system is useful for further risk
stratification of younger adult patients with CN-AML2%?' However,
it has been reported that another genetic status, such as mutations
in epigenetic modifier-encoding genes, could more precisely
distinguish the prognosis in each ELN-risk group.>*? In addition,
the prognostic impacts of recently identified mutations in
spliceosome and cohesin complex genes on AML remain unclear.

The Japan Adult Leukemia Study Group (JALSG) conducted six
phase lli trials for adult de novo AML from 1987 (AML87, AML8S9,
AML92, AML95, AMLS7 and AML201).%* In the JALSG AML201
study, we prospectively compared a standard dose of idarubicin
(IDR) with a higher dose of daunorubicin (HiDNR) in combination
with cytarabine (Ara-C) as induction therapy, and three courses
of high-dose Ara-C (HiDAC) with four courses of conventional
standard-dose multiagents as consolidation therapy in CR
patients.***> We demonstrated that HiDNR was equivalent to
IDR, as induction therapy and HiDAC was of benefit only to
patients with core-binding factor (CBF)-AML as consolidation
therapy. Although the CR rate remained at 75-80% during the six
JALSG studies, 7-year overall survival (OS) was improved to 48% in
the AML201 study from 29% in the AML87 study. Allo-SCT was
conducted in only 7.1% of registered patients in the AML87 study,
whereas 45.8% of registered patients received allo-SCT not only at
the first CR but also after relapse or primary induction failure in the
AML201 study, indicating that active application of allo-SCT even
after relapse or primary induction failure might contribute to the
improvement of OS. These results collectively suggested that a
novel risk stratification system for decision making of allo-SCT at
the first CR is required.

In this study, we comprehensively analyzed mutations in 51
genes that have been recurrently identified in myeloid neoplasm
as well as cytogenetics, and evaluated the association of genetic
status with prognostic and clinical features in patients who were
registered in the AML201 study.

PATIENTS AND METHODS
Patients and samples

The study population included 197 newly diagnosed de novo AML patients,
except for those with acute promyelocytic leukemia, who were registered
in the JALSG AML201 study (UMIN Clinical Trials Registry CO00000157,
http://www.umin.ac.jp/ctrj/). The diagnosis of AML was on the basis of the
French-American-British (FAB) classification.”® Median follow-up time was
32.5 months. The age distribution is presented in Table 1. In the AML201
study, patients were randomly assigned to receive either IDR or HiDNR for
induction therapy, and those who achieved CR were again randomized to
receive either four courses of conventional consolidation therapy or three
courses of HIDAC therapy.2** Of the 197 patients, 98 and 99 patients were
assigned to IDR and HiDNR arms for induction therapy, respectively. CR
was achieved in 161 of 197 (81.7%) patients, and 80 and 77 patients were
assigned to HiDAC and conventional consolidation therapies, respectively
(Table 1).

High molecular weight DNA and total RNA were extracted from bone
marrow samples using standard methods.>”~

Cytogenetic G-banding analysis was performed by standard methods.
We also examined 11 chimeric gene transcripts (Major: BCR-ABL1, Minor:
BCR-ABL1, PML-RARA, RUNXT-RUNX1T1, CBFB-MYH11, DEK-NUP214, NUP98-
HOXA9, MLL-MLLT1, MLL-MLLT2, MLL-MLLT3and MLL-MLLT4) by reverse
transcriptase-mediated quantitative PCR as previously reported.®°

Morphological diagnosis, the FAB classification and karyotypes were
reviewed and confirmed by the central review committees of the JALSG
using the BM samples obtained at diagnosis.

We obtained informed consent from all patients to use their samples for
banking and molecular analysis, and approval was obtained from the
ethics committees of the participating institutes.

Screening for mutations in 51 genes

A custom-made oligonucleotide probe library was designed to capture the
exons of 51 genes that have been recurrently identified in myeloid neoplasm
(Supplementary Table 1). Captured and enriched exons were subjected to

© 2014 Macmillan Publishers Limited
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Table 1. Characteristics of the 197 patients
Characteristics Number (%)
Age (year)
15-19 6 3.0
20-29 32 16.2
30-39 35 17.8
40-49 33 16.8
50-59 69 35.0
60-64 22 1.2
FAB subtype
MO 7 3.6
M1 36 183
M2 89 452
M4 34 17.3
M4Eo 9 4.6
M5 21 10.7
M6 1 0.51
Cytogenetic-risk group
Favorable 55 279
RUNXT-RUNXTT1 41 20.8
CBFB-MYH11 14 7.1
Intermediate 100 50.8
Normal cytogenetics 72 36.5
Unfavorable 23 11.7
Complex karyotype 16 8.1
£(11q23) excluding 3 1.5
t(9;11) and t(11;19)
£(9;22) 2 1.0
-7 1 0.5
Not determined 19 9.6
Induction therapy
IDR + Ara-C 98 49.7
DNR + Ara-C 99 50.3
Achieving CR 161 81.7
Consolidation therapy
High-dose Ara-C 80 51.0
Multiagent CT 77 49.0
Abbreviation: IDR, idarubicin. The study population included 197 newly
diagnosed de novo AML patients except for acute promyelocytic leukemia,
and equally assigned to induction and consolidation arms. Nine patients
showed the M4Eo FAB type, and all of them harbored the CBFB-MYH11
transcript.

sequencing on an lllumina HiSeq (llumina, San Diego, CA, USA)*'—3

Sequence variation annotation was performed using known polymorphism
databases, followed by mutation characterization. Each predicted variant
sequence was confirmed by Sanger sequencing. Internal tandem duplication
of the FLT3 gene (FLT3-ITD) and partial tandem duplication of the MLL gene
(MLL-PTD) were examined as previously reported.®3*

Statistical analysis

Differences in continuous variables were analyzed by the unpaired t-test or
the Mann-Whitney U-test for distribution between two groups. Analysis of
frequencies was performed using Fisher's exact test for 2 x 2 tables or
Pearson’s 4° test for larger tables. A multivariate analysis to identify risk
factors for achieving CR was performed by the logistic regression model.
Survival probabilities were estimated by the Kaplan-Meier method, and
differences in the survival distributions were evaluated using the log-rank
test. OS was defined as the time from the date of entry into the AML201
study to death due to any cause or last follow-up. Disease-free survival
(DFS) was defined as the time from the day of achieving CR to relapse,
death due to any cause or last follow-up. Patients undergoing SCT were
not censored at the time of transplantation. The prognostic significance
of the clinical variables was assessed using the Cox proportional
hazards model. These statistical analyses were performed with Prism 5
(GraphPad Software, La Jolla, CA, USA) and JMP Pro10 (SAS Institute Japan,
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Tokyo, Japan). For all analyses, the P-values were two-tailed, and a P-value
of less than 0.05 was considered statistically significant.

RESULTS

Cytogenetic analysis

Cytogenetic analysis revealed a normal karyotype in 72 (36.5%)
patients and an abnormal karyotype in 106 (53.8%) patients,
including 41 AML with t(8;21) (g22;q22); RUNXT-RUNX1T1 and
14 AML with inv(16) (p13q22); CBFB-MYH11. However, karyotypes
could not be determined in 19 (9.6%) patients because we could
not obtain sufficient mitotic cells. On the basis of the G-banding
karyotype and chimeric transcript analyses, patients were assigned
to favorable- (n=55, 27.9%), intermediate- (n=100, 50.8%)
and adverse-risk (n =23, 11.7%) groups according to the refined
MRC criteria (Table 1).*

Frequencies of mutations

We identified mutations in 44 of 51 genes analyzed in the 197
AML patients. However, there were only five genes (FLT3, NPM1,
CEBPA, DNMT3A and KIT) that were mutated in more than 10% of
the patients (Figure 1a and Supplementary Table 1). Each position
and type of mutation is presented in Supplementary Figure 1.
As germ-line controls were available in a limited number of
patients, we could not completely confirm that all identified
mutations were somatic mutations. Therefore, there is a possibility
that a part of identified mutations might be rare SNPs. FLT3
mutation was the most frequently identified (50 patients, 25.4%),
followed by NPMT (38 patients, 19.2%), DNMT3A (32 patients,
16.2%), CEBPA (31 patients, 15.7%) and KIT mutations (28 patients,
14.2%). Of the 50 patients with FLT3 mutations, 36 (18.3%) and 17
(8.6%) patients harbored FLT3-ITD and FLT3-KDM, respectively, and
three patients harbored both mutations. Of the 31 patients with
CEBPA mutations, 19 (9.6%) and 12 (6.1%) patients harbored
double CEBPA (CEBPA-D) mutations and a single CEBPA (CEBPA-S)
mutation, respectively. Of the 28 patients with KIT mutations,
4, 2 and 23 patients harbored mutations in exon 8, exons 10-11
and exon 17 of the KIT gene, respectively, and one patient
harbored mutations in both exons 10-11 and exon 17.

Although mutations in the 51 analyzed genes were not
identified in 14 (7.1%) patients, 183 (92.9%) patients harbored
one or more mutations; one mutation in 36, two mutations in 56,
three mutations in 40, four mutations in 27, five mutations in 17,
six mutations in five and seven mutations in two patients. The
mean mutation number per patient was 2.56 £ 0.11 in all patients,
whereas it was significantly higher in patients with a normal
karyotype (3.18 £ 0.16) than in those with an aberrant karyotype
(2.10£0.15) (P<0.0001). Furthermore, mean mutation numbers
per patient in AML with RUNXT-RUNX1TT (1.68 £0.17) and CBFB-
MYH11 (1.57 £0.20) were significantly lower than that in all
samples (P=0.0008 and 0.0123, respectively) (Figure 1b).

The mean mutation number per patient aged 60-64 years
(3.18+£041) tended to be higher, although there was no
significant difference between the mean mutation number and
age (Supplementary Figure 2).

Genetic alterations found in AML have been conceptually
grouped into class | mutation, which causes constitutive activation
of intracellular signals that contribute to the growth and survival,
and class Il mutation that blocks differentiation and/or enhance
self-renewal by altered transcription factors. 3" Recently, it has
been suggested that mutations that modify the epigenetic status
generate a new class because of their overlap mutations both with
class | and class I mutations.'>>® In this study, Class Il mutations
(NPM1, CEBPA, RUNXT and GATAZ2 mutations, and RUNXT-RUNXTT1
and CBFB-MYH11) were the most frequently identified (138/197;
70.1%), followed by Class | mutations (FLT3, KIT, N/KRAS, PTPNT11,
JAK1/3 and TP53 mutations) (116/197; 58.9%) and mutations that
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modify the epigenetic status (ASXL1, ATRX, EZH2, TET2, PBRM1,
DNMT3A, IDH1/2, KDM6A, MLL and DOTIL mutations) (91/197;
46.2%). Furthermore, mutations of NOTCH family genes (NOTCH1
and NOTCH2), cohesin complex genes (STAG2, SMC1A, SMC3 and
RAD21), BCOR family genes (BCOR and BCORLT), NCOR family
genes (NCOR1, NCOR2 and DIS3) and spliceosome genes (SF387,
U2AF1, SRSF2 and ZRSR2) were identified in 19 (9.6%), 22 (11.2%),
17 (8.6%), 22 (11.2%) and 9 patients (4.6%), respectively
(Figure 1c).

Association between gene mutations and cytogenetics

The prevalence of each gene mutation differed among the
cytogenetic-risk groups. KIT mutations were preferentially identi-
fied in the favorable cytogenetic-risk group. FLT3-ITD, NPMI,
CEBPA and DNMT3A mutations were preferentially identified in the
intermediate-risk group, particularly in patients with a normal
karyotype. BCORLT and TP53 mutations were preferentially
identified in the poor-risk group; in particular, TP53 mutations
were frequent in patients with a complex karyotype. In addition,
PHF6 mutations were also frequently identified in patients with a
complex karyotype (Figure 2 and Supplementary Table 2).

Overlap mutations

Several patterns of overlap mutations were identified in this
comprehensive mutation analysis (Supplementary Figures 3 and 4).
Significantly overlapped mutations were observed between FLT3
mutations and NPM1, DNMT3A and MLL-PTD mutations; NPM1
mutations and DNMT3A, IDH1 and IDH2 mutations; CEBPA
mutations and TET2 mutations; ASXLT mutations and spliceosome
gene mutations; DIS3 mutations and MLL mutations; DNMT3A
mutations and PTPNT1 mutations; GATA2 mutations and CEBPA-D
mutations; K/NRAS mutations and WTT mutations and BCOR/
BCORL1 mutations; RUNXT mutations and U2AF1, MLL-PTD, BCOR/
BCORLT and PHF6 mutations; SF387 mutations and NRAS muta-
tions; and TET2 mutations and STAG2 mutations. In contrast,
mutually exclusive mutations were observed between FLT3
mutations and KIT, K/NRAS and CEBPA-D mutations; NPMT
mutations and CEBPA-D and RUNXT mutations; and CEBPA
mutations and IDH1/2 mutations.

According to the conceptual classification of the mutated
genes, overlap mutations between Class |, Class Il and epigenetic
modifying gene mutations were frequently observed. However,
these major mutations widely coexisted with other family gene
mutations, such as the cohesin complex, BCOR family and
spliceosome gene mutations (Figure 1d). Although biological
functions of mutated genes have not been fully clarified, we also
present frequencies and associations of mutated genes according
to the provisional gene function in the Supplementary Figure 5.

Association of gene mutations with clinical characteristics
Several associations between mutations and clinical characteristics
were observed. DNMT3A mutations and MLL-PTD were more
frequently identified in patients over 50 years old than in those
less than 50 years old (P=0.0064 and P=0.0121, respectively),
whereas the other mutations were not significantly associated
with age (Supplementary Table 3).

Several mutations were associated with the white blood cell
count at diagnosis. FLT3-ITD, NPM1, DNMT3A and NOTCHI
mutations were significantly associated with the high white blood
cell count. In contrast, ASXLT and IDHT mutations were associated
with a lower white blood cell count (Supplementary Table 4).

Association of gene mutations with the CR rate

We analyzed the association of mutations with the CR rate. By
Fisher’s exact test, RUNXT-RUNXTTT or CBFB-MYH11, KIT, NPM1 and
CEBPA-D mutations were identified as favorable factors for

© 2014 Macmillan Publishers Limited
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Figure 1. Frequencies and associations of mutated genes. (a) Frequencies of analyzed gene mutations. Frequency of each mutated gene is
shown. Mutations were identified in 44 genes of 51 genes analyzed in 197 AML patients. Only five genes (FLT3, NPM1, CEBPA, DNMT3A and KIT)
were mutated in more than 10% of the patients. (b) Mutated gene numbers according to the cytogenetics. Mean mutation number  s.d. is
indicated by horizontal lines. Mean mutation number per one patient in patients with normal karyotype (3.18 + 0.16) was significantly higher
than in that with aberrant karyotype (2.10 £ 0.15) (P<0.0001). Those in AML with RUNXT-RUNX1T1 (1.68 £ 0.17) and CBFB-MYH11 (1.57 £ 0.20)
were significantly lower than that in all samples (P=0.0008 and P = 0.0123, respectively). That in AML with MLL-translocation tended to be
lower but not statistically significant (2.28+0.57, P=0.5854). (c) Frequencies of mutations according to the conceptual classification.
Mutations in Class I, Class Il and epigenetic modifying genes were frequently identified. (d) Association of mutated genes according to the
conceptual classification. Circos plot of mutated genes according to the function is shown.** Overlap mutations between Class |, Class Il and
epigenetic modifying genes mutations were frequently observed. These major mutations were widely coexistent with another family genes,
such as cohesin complex, BCOR family and spliceosome genes.

achieving CR, and TP53 mutation was an unfavorable factor; Figures 3 and 6). In the patients with RUNXT-RUNXTT1 or CBFB-
however, multivariate logistic regression analysis including all MYH11, NPM1 and CEBPA-D mutations, the CR rate (106/112;
analyzed mutations showed that only NPM1 (Hazard ratio (HR): 94.6%) was significantly higher than for those with the other
96.206, 95% Confidence interval (Cl): 2.247-411.9, P=0.0172) and genotypes (55/85; 64.7%) (P<0.0001).
TP53 (HR: 22.222, 95% Cl: 1.597-333.3, P=0.0172) mutations were
identified as favorable and unfavorable factors for achieving CR,
respectively (Table 2 and Supplementary Table 5). Prognostic impacts of mutations

Importantly, KIT mutations were closely associated with RUNX1- We next analyzed the prognostic impact of each mutation. By
RUNXTTT or CBFB-MYH11, whereas the other mutations that confer univariate analysis, FLT3-ITD (HR: 1.805, 95% Cl: 1.130-2.885,
the achievement of CR were mutually exclusive (Supplementary P=0.0135), DNMT3A (HR: 1.696, 95% Cl: 1.055-2.725, P=0.0291),
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! Unknown

Mutation status according to the cytogetics-risk groups. Identified mutations in analyzed AML patients are shown according to the

cytogenetic-risk groups. Pink boxes indicate single mutations and orange boxes indicate double mutations.

Table 2. Gene mutations affecting the CR achievement
Mutations CR rate (%) P-value
Positive  Negative

Fisher's exact test
NPM1 97 78 0.0041
CEBPA-D-Mt. 100 80 0.0273
KIT 96 79 0.0326
RUNXT-RUNXITT or CBFB-MYH11 91 78 0.0409
TP53 14 84 0.0002

Mutations HR (95% ClI) P-value

Multivariate analysis
Wild-NPM1 96.206 (2.247-411.9) <0.0001
TP53 mutation 22.222 (1.597-333.3) 0.0172

Abbreviations: Cl, confidence interval; CR, complete remission; HR, hazard
ratio. By the Fisher's exact test, RUNXT-RUNXTTT1 or CBFB-MYH11, KIT, NPM1
and CEBPA-D mutations were identified as the favorable factor for
achieving CR, and TP53 mutation was for the unfavorable factor. The
multivariate logistic regression analysis including all analyzed mutations
showed that only wild-NPM71 and TP53 mutation were identified as
unfavorable factors for achieving CR.
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TP53 (HR: 15.167, 95% Cl: 6.555-35.094, P<0.001), MLL-PTD
(HR: 3.782, 95% Cl: 1.948-7.346, P<0.001) and RUNXT (HR: 2.301,
95% Cl: 1.278-4.146, P=0.0055) mutations and the karyotypes
other than RUNXT-RUNX1T1 or CBFB-MYH11 (HR: 2.786, 95%
Cl: 1.608-4.831, P=0.0003) were identified as unfavorable
prognostic factors for OS (Table 3 and Supplementary Figure 7).
Multivariate Cox regression analysis with stepwise selection
showed that TP53 (HR: 14.803, 95% Cl: 6.259-35.009, P<0.001),
MLL-PTD (HR: 2.853, 95% Cl: 1.401-5.810, P=0.0039) and RUNX1
(HR: 1.965, 95% Cl: 1.054-3.663, P=0.0336) mutations and the
karyotypes other than RUNXT-RUNX1T1 or CBFB-MYH11 (HR: 2.353,
95% Cl: 1.342-4.132, P=0.0028) were independent poor prog-
nostic factors for OS (Table 3).

In this cohort, mutations of NOTCH family, the cohesin complex,
BCOR family and spliceosome genes were frequently identified.
NOTCH family and BCOR family genes were not associated with
the CR rate, OS and DFS. Although mutations of cohesin complex
genes were not associated with the CR rate and DFS, the patients
harboring those mutations revealed better OS than those without
mutations (P=0.0274) (Figure 3). The CR rate and DFS of patients
with spliceosome gene mutations tended to be lower than for
those without mutations, although both differences were not
statistically significant: the CR was achieved in five of the nine
(55.6%) and 156 of the 188 (83.0%) patients (P=0.0601), and
3-year DFS were 0% and 38.9% (P=0.1117) in those with and
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without mutations, respectively (Supplementary Table 3 and
Supplementary Figure 8).

When the patients were stratified into the risk groups
recommended by ELN, that is, FR, IR-l, IR-Il and AR groups
included 92, 35, 42 and 28 patients, respectively. The ELN system
well stratified the long-term prognosis of adult AML patients,
whereas the OSs of IR-I and AR groups were the same in the
present cohort (Supplementary Figure 9). Therefore, we analyzed

Table 3. Unfavorable prognostic factors for overall survival (OS)
Mutations HR (95% Cl) P-value
Univariate analysis

TP53 15.167 (6.555-35.094) <0.0001
MLL-PTD 3.782 (1948-7.346) <0.0001
Non CBF 2.786 (1.608-4.831) 0.0003
RUNX1 2.301 (1.278-4.146) 0.0055
FLT3-ITD 1.805 (2.247-4119) 0.0135
DNMT3A 1.696 (1.055-2.725) 0.0291
Multivariate analysis
TP53 14.803 (6.259-35.009) <0.0001
MLL-PTD 2.853 (1.4017-5.810) 0.0039
Non CBF 2.353 (1.342-4.132) 0.0028
RUNX1 1.965 (1.054-3.663) 0.0336

Abbreviations: Cl, confidence interval; HR, hazard ratio. By the univariate
analysis, FLT3-ITD, DNMT3A, TP53, MLL-PTD and RUNXT mutations and the
karyotypes other than RUNXT-RUNX1T1 or CBFB-MYH11 were identified as
adverse prognostic factors for OS. Multivariate Cox regression analysis
with stepwise selection showed that TP53, MLL-PTD and RUNXT mutations
and the karyotypes other than RUNX1-RUNXIT1 or CBFB-MYH11 were
independent poor prognostic factors for OS.
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whether another mutations could further stratify the prognosis in
each ELN-risk group. MLL-PTD, GATA2 and TP53 mutations were
identified as further poor prognostic factors in IR-l, IR-Il and AR
groups, respectively. Furthermore, we identified that the DNMT3A
mutation was a poor prognostic factor in the FR group except for
the AML with t(8;21) (q22;q22); RUNXT-RUNXIT1 or inv(16)
(p13g22); CBFB-MYH11 (CBF-AML) (Figure 4).

In addition, we also evaluated two recently reported risk
stratification systems on the basis of genetic status in our
cohort.>* Patel et al’ reported a risk stratification system on
the basis of cytogenetics and genetic status According to their
system, our patients were clearly stratified into three risk groups,
although the patients in the intermediate cytogenetic risk
with a favorable mutational risk profile and those in the
favorable cytogenetic-risk profile showed the same probability
of OS (Supplementary Figure 10a). Grossmann et al.*’ reported
a prognostic model solely on the basis of molecular mutations.
Although our cohort did not include AML with PML-RARA, our
patients were clearly stratified into four risk groups. However, the
patients in the very favorable group and those in the favorable
group showed the same probability of OS (Supplementary
Figure 10b).

On the other hand, KIT mutations were frequently identified in
CBF-AML, while they were not a poor prognostic factor for either
OS or DFS (Supplementary Figure 11a). According to the types of
KIT mutations, CBF-AML patients harboring mutations in exon
17 of the KIT gene showed worse prognosis than those harboring
the other types of KIT mutation, although this was not statistically
significant (Supplementary Figure 11b). Notably, in the CBF-AML
patients harboring KIT mutations, OS and DFS of those treated
with three courses of HIDAC consolidation therapy tended to be
better than those treated with four courses of conventional
standard-dose multiagent therapy (Supplementary Figure 11c).
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Prognostic impact of mutations in cohesin complex genes. Kaplan-Meier curves for OS and DFS according to the mutations in

cohesin complex genes are shown. (a) OS in the total patients, (b) DFS in the total patient, (c) OS in the patients with normal karyotype,
(d) DFS in the patients with normal karyotype. Although mutations of cohesin complex genes were not associated with the CR rate and DFS,
the patients harboring those mutations revealed better OS than those without mutations (P = 0.0274). In the patients with normal karyotype,
OS of the mutated patients tended to be better that that of unmutated patients, though statistical significance was not observed (P=0.1731).
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Figure 4. Mutations that could further stratify the ELN-risk groups into two risk groups. (@) DNMT3A mutation was a poor prognostic factor in
the FR group except for the AML with t(8;21) (q22;q22); RUNXT-RUNXTT1 or inv(16) (p13q22); CBFB-MYH11 (CBF-AML). (b) MLL-PTD was a poor
prognostic factor for the OS in the ELN IR-I group. (¢) GATA2 mutation was a poor prognostic factor for the OS in the ELN IR-ll group. (d) TP53
mutation was a poor prognostic factor for the OS in the ELN AR group.

In CBF-AML, the accumulated mutation number was lower than in
the other types of AML, although many kinds of mutation were
identified (Supplementary Figure 12). However, we could not
identify a gene that affects the prognosis of CBF-AML.

Taking these results together, we tried to modify the genetic
criteria for the ELN stratification system. When the CN-AML
patients with DNMT3A mutations of the FR group and the patients
with MLL-PTD of the IR-l group were included in the IR-I and the
AR group, respectively, we could more clearly stratified the
patients into four risk groups for OS than the original ELN system
(Figures 5a and b). Furthermore, as the prognosis of the patients
with TP53 mutations were very unfavorable as previously
reported,®® we could more clearly stratify the patients into five
risk groups for OS by classifying the TP53-mutated patients as the
very adverse-risk group (Figures 5¢ and d).

DISCUSSION

In this study, we comprehensively analyzed mutations of 51 genes
by the targeting sequence, and identified a total of 505 mutations
in 44 genes in 197 adult de novo AML patients except for APL.
The whole-genome and -exome analysis demonstrated recurrent
mutations in a total of 260 genes in 200 AML patients, suggesting
that another mutations might be accumulated in the presently
analyzed AML cells.** However, frequencies of most mutated
genes were reportedly less than 10%. In consistence, only five
genes (FLT3, NPM1, CEBPA, DNMT3A and KIT) were mutated in
more than 10% patients in our study, and each mutation
frequency was almost the same as previous reports.>'’'939
The frequency of KIT mutation was relatively higher in our study
than previous reports,>*® while this is caused by the higher
frequency of CBF-AML (28.0%) in the Japanese patients, in which
KIT mutations are frequently identified. Our study, therefore,
essentially includes major genetic regions, which may affect the
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pathogenesis and prognosis of AML. However, mutation analyses
were not thoroughly performed in all subtypes of AML, such as
acute erythroid leukemia and acute megakaryoblastic leukemia
because of their lower frequencies. Further analyses are required
to fully clarify the genetic alterations in AML.

The whole-genome and -exome analysis demonstrated that an
averacb;e of mutated genes in coding regions per sample was
5.24%° Of note was that there were significant differences in
mutated gene numbers among the types of cytogenetics and
mutations: the mean mutation numbers were higher in AML with
RUNXT-RUXI1TI1, and are lower in that with PML-RARA and MLL
translocations than that of all samples. As analyzed gene numbers
were limited, mean mutated gene number per sample
(2.56 £0.11) was low in our study; however, there were different
features from the previous report. In our study, higher mutation
number was observed in CN-AML (3.18 £ 0.16), and lower was in
CBF-AML. Furthermore, the mutation number in AML with MLL-
translocation tended to be lower (2.28 £ 0.57, P=0.5854). These
results collectively suggested that recurrent cytogenetic
abnormalities, such as RUNXT-RUNX1T1, CBFB-MYH11 and MLL-
translocation, have a strong potential for the initiation of AML, and
that most of accumulated mutations in AML with these
cytogenetics might be passenger mutations.

It has been reported that common mutations in AML, such as
DNMT3A, NPM1, CEBPA, IDH1/2 and RUNX1, were mutually
exclusive of the transcription-factor fusions, indicating the high
potential for leukemia initiation.'®'""34%4T Consistently, DNMT3A,
NPM1 and CEBPA mutations were not identified in CBF-AML,
but frequent in CN-AML. In addition, we identified that MLL-PTD
mutation was also exclusive of CBF-AML. In CBF-AML, KIT
mutations were preferentially identified, whereas several types
of mutations were also accumulated, suggesting that many
mutations could act as a driver mutation for the clonal
expansion of the initiating clone with RUNXT-RUNXTT1 and
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Risk stratification by modifying the ELN stratification system. When the CN-AML patients with DNMT3A mutations of the FR group

and the patients with MLL-PTD of the IR-l group were included in the IR-l and the AR group, respectively (a), we could more clearly stratify the
patients into four risk groups for OS than the original ELN system (b). When the patients with TP53 mutations were classified as the very
adverse-risk group (c), we could more clearly stratify the patients into five risk groups for OS (d).

CBFB-MYHT11. Further study is required to clarify which
combination is necessary for the clonal expansion, and whether
different combinations cause clinical and phenotypical varieties.

After the completion of genetic alterations in AML, the
most important issue is to clarify the prognostic impact of each
mutation and/or co-occurring mutations.”*? The recently
recommended ELN classification system is the first system that
includes both cytogenetics and mutation status. Several groups
reported that the ELN system clearly stratified the long-term
prognosis of AML patients. However, the prognosis of FR groups
except for the CBF-AML is still controversial. Paschka et al.*?
reported that the /DH1/2 mutation was a poor prognostic factor
in CN-AML with mutated NPM1 without FLT3-ITD. In contrast,
Patel et al® reported that the /DH1/2 mutation was a favorable
prognostic factor in AML with mutated NPM1 without FLT3-ITD.
Furthermore, it has been reported that the TET2 mutation was an
adverse prognostic factor in AML with mutated NPMT or CEBPA
without FLT3-ITD.?? In the present cohort, we could not observe
the statistically significant effects of I[DH7/2 and TET2 mutations on
the prognosis of CN-AML with mutated NPMT or CEBPA without
FLT3-ITD, while we identified that DNMT3A mutation is an adverse
prognostic factor in CN-AML with mutated NPM1 or CEBPA without
FLT3-ITD. In addition, we could not find the better prognostic
impact of the CEBPA double mutations on the FR group
recommended by the ELN in contrast to previous reports.>®**

Although different mutations might further stratify the prog-
nosis of AML with mutated NPMT or CEBPA without FLT3-ITD,
it was noteworthy that all mutations belonged to the class
modifying methylation status.>*®* These results collectively
suggested that the epigenetic deregulation might contribute the
pathogenesis of AML with mutated NPMT1 or CEBPA without FLT3-
ITD. Prospective and large-scale study is necessary to clarify what
genetic alterations influence the prognosis of AML with these
genotypes.

© 2014 Macmillan Publishers Limited

In this study, we demonstrated that the prognosis of adult AML
patients could be more clearly stratified by including the DNMT3A
and MLL-PTD mutation status than the original ELN system, and
that TP53 mutations have a very adverse effect on the prognosis of
AML patients. However, as most recurrently identified mutations
were observed less than 5% of AML, it is highly expected to refine
the genetic-based risk stratification system by much larger-scale
studies. In addition, it is also important to evaluate the prognostic
effects according to the functions of mutated genes rather than
each sole mutation.

In the JALSG AML201 study, patients were randomized to the
standard dose of IDR + Ara-C or HiDNR + Ara-C induction therapy,
and the CR patients were again randomized to three courses of
HIiDAC or four courses of conventional standard-dose multiagent
consolidation therapy. Therefore, we analyzed whether therapeu-
tic regimens affect the CR rate and long-term survivals according
to the mutation status and risk groups on the basis of the genetic
status, while we could not observe any significant differences
between therapeutic regimens and genetic status. Furthermore,
we could not demonstrate that allo-SCT could improve the
prognosis of the patients falling in the intermediate- and adverse-
risk groups because of the small number of patients who
underwent allo-SCT in the first CR in this cohort. It is, therefore,
required to evaluate whether therapeutic regimens and allo-SCT
affect the prognosis according to the genetic status.

In conclusion, we comprehensively analyzed 51 genes muta-
tions in 197 de novo adult AML patients who were registered to a
single prospective clinical study, and demonstrated that coopera-
tive and exclusive mutation patterns and their prognostic impacts.
Furthermore, we demonstrated that the prognosis of adult AML
patients could be more clearly stratified by including the DNMT3A,
MLL-PTD and TP53 mutation status than the original ELN
system. However, prognostic impacts of some mutation status
are different from the previous reports. We must refine the risk
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stratification system by considering all known-risk factors in a
large-scale and well-established cohort, although molecular
genetic status has a strong impact on the prognosis of AML
patients. We are now conducting a prospective large-scale study
to confirm the present results.
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