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Fig. 10. RUNX2 suppresses ADR-mediated induction of TAp73. U20S cells were transfected as described in Fig. 9. Twenty-four hours after
transfection, cells were treated with 0.5 um of ADR or left untreated. Twenty-four hours after treatment, whole cell lysates and total RNA
were prepared and analyzed by (A) immunoblotting and (B) RT-PCR, respectively.

described previously [19] using the primary antibodies:
mouse monoclonal anti-p53 (DO-1; Santa Cruz Biotechnol-
ogy, Santa Cruz, CA, USA), mouse monoclonal anti-p73
(Ab-4; NeoMarkers, Fremont, CA, USA), mouse monoclo-
nal anti-yH2AX (2F3; BioLegend, San Diego, CA, USA),
rabbit polyclonal anti-p21"VA*! (Santa Cruz Biotechnol-
ogy), rabbit polyclonal anti-phospho-p53 at Ser-15 (Cell
Signaling Technology, Beverly, MA, USA), rabbit poly-
clonal anti-RUNX2 (Cell Signaling Technology), rabbit
polyclonal anti-E2F-1  (Cell Signaling Technology),
rabbit polyclonal anti-PARP (Cell Signaling Technology),
rabbit polyclonal anti-caspase-9 (Cell Signaling Technol-
ogy) and rabbit polyclonal anti-Actin (20-33; Sigma, St
Louis, MO, USA) antibodies. Immunoreactive bands were
visualized by an enhanced chemiluminescence system (ECL;
GE Healthcare, Little Chalfont, UK) in accordance with
the manufacturer’s instructions.

Immunoprecipitation

For immunoprecipitation, cells were exposed to 0.5 um of
ADR for 24 h and then lysed in lysis buffer containing
50 mm Tris-HCI (pH 7.5), 150 mm NaCl, 2.7 mm KCl, 1%
Triton X-100 and protease inhibitor mixture (Sigma). Equal

amounts of cell lysates (500 pg of protein) were first precle-
ared with 30 pL of protein G-Sepharose beads for 1 h at
4 °C and then incubated with monoclonal anti-p73 antibody
overnight at 4 °C followed by the incubation with 30 pL of
protein G-Sepharose beads for 2 h at 4 °C. The beads were
extensively washed with lysis buffer and the immunoprecipi-
tates were eluted by boiling in SDS-sample buffer. The
bound proteins were separated by 10% SDS/PAGE.

siRNA interference

Cells were transfected with control siRNA or with siRNA
directed against RUNX2 (10 nwm) using Lipofectamine 2000
transfection reagent in accordance with the manufacturer’s
recommendations. Twenty-four hours after transfection,
cells were treated with 0.5 um of ADR or left untreated.
Twenty-four hours after treatment, total RNA was pre-
pared and analyzed for the expression level of RUNX2 by
RT-PCR.

Luciferase reporter assay

Cells were seeded at a density of 5 x 10* cells per 12-well
plate and allowed to attach overnight. Cells were then
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Fig. 11. RUNX2 inhibits ADR-mediated upregulation of TAp73 in
H1299 cells. H1299 cells were transiently transfected with the
empty plasmid or with the expression plasmid for RUNX2. Twenty-
four hours after transfection, cells were treated with 0.5 um of
ADR or left untreated. Twenty-four hours after treatment, total
RNA was prepared and subjected to RT-PCR.

transfected with the constant amount of TAp73a expres-
sion plasmid (25 ng), 100 ng of luciferase reporter plasmid
carrying p53/p73-responsible human BAX or NOXA pro-
moter and 10 ng of renilla luciferase expression plasmid,
together with or without increasing amounts of the expres-
sion plasmid for RUNX2. Equal DNA concentration in
each experiment (500 ng per well) was maintained by add-
ing the appropriate amounts of the empty plasmid to the
DNA mixture. Forty-eight hours after transfection, cell
lysates were prepared and their luciferase activities were
measured in accordance with the protocol for the dual-
luciferase system (Promega, Madison, WI, USA). The
resultant firefly luciferase values were normalized by those
of renilla luciferase. The experiments were performed in
parallel and repeated at least three times.

TUNEL assay

TUNEL assay was performed by using an In Situ Cell
Detection Kit (Roche Applied Science, Mannheim, Ger-
many) in accordance with the manufacturer’s protocol. In
brief, cells were washed twice in PBS, fixed in freshly pre-
pared 4% paraformaldehyde for 1 h at room temperature,
permeabilized with 0.1% Triton X-100 in 0.1% sodium

T. Ozaki et al.

citrate for 2 min at room temperature, and then incubated
with the enzyme solution in a humidified atmosphere for
1 h at 37 °C in the dark. After the reaction, cells were
washed in PBS three times and fluorescent images were
taken using a confocal microscope.

Statistical analysis

Statistical significance was determined by two-sided paired
Student’s #-test. P < 0.05 was considered statistically signifi-
cant.
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The MYC transcription factor plays a crucial role in the regulation of cell cycle
progression, apoptosis, angiogenesis, and cellular transformation. Due to its
oncogenic activities and overexpression in a majority of human cancers, it is an
interesting target for novel drug therapies. MYC binding to the E-box (5-CAC-
GTGT-3') sequence at gene promoters contributes to more than 4000 MYC-depen-
dent transcripts. Owing to its importance in MYC regulation, we designed a
novel sequence-specific DNA-binding pyrrole-imidazole (Pl) polyamide, Myc-5,
that recognizes the E-box consensus sequence. Bioinformatics analysis revealed
that the Myc-5 binding sequence appeared in 5- MYC binding E-box sequences
at the elF4G1, CCND1, and CDK4 gene promoters. Furthermore, ChIP coupled with
detection by quantitative PCR indicated that Myc-5 has the ability to inhibit MYC
binding at the target gene promoters and thus cause downregulation at the
mRNA level and protein expression of its target genes in human Burkitt's lym-
phoma model cell line, P493.6, carrying an inducible MYC repression system and
the K562 (human chronic myelogenous leukemia) cell line. Single i.v. injection of
Myc-5 at 7.5 mg/kg dose caused significant tumor growth inhibition in a MYC-
dependent tumor xenograft model without evidence of toxicity. We report here
a compelling rationale for the identification of a Pl polyamide that inhibits a part
of E-box-mediated MYC downstream gene expression and is a model for showing
that phenotype-associated MYC downstream gene targets consequently inhibit
MYC-dependent tumor growth.

T he transcription factor c-MYC possesses an exclusive and
extensive set of biological actions that underlie its role as
a salient oncogene and therefore could be the key to anticancer
drug development. The ¢-MYC proto-oncogene belongs to the
family of MYC genes that includes B-MYC, L-MYC, N-
MYC, and S-MYC.” Among them. ¢-MYC (here after
referred as MYC) is found in almost all proliferating cells and
expression of N- and L-MYC is more constrained to specific
cell types.” MYC is a basic helix-loop-helix leucine zipper
transcription factor that binds DNA in a sequence-specific
manner'” and activates the transcription of genes whose prod-
ucts are involved in crucial aspects of cancer biology such as
cell proliferation. cell growth, apoptosis, and differentiation.”
The biological activities of MYC depends on its ability to
heterodimerize with its protein partner, MAX, to bind the
enhancer box (E-box) sequence and stimulate transcription of
a number of its downstream genes.*> The MAX:MAX

© 2015 The Awuthors. Cancer Science published by Wiley Publishing Asia Pty Ltd
on behalf of Japanese Cancer Association.
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homodimer or MAD:MAX heterodimer is supposed to antago-
nize the functions of MYC by binding to the same core E-box
sequences.'®

MYC targets approximately 10-15% of all cellular promot-
ers in human cells, which is higher than any other typical tran-
scription  factor.”” Target genes of MYC identified in
mammalian cells include genes involved in cell cycle, ribo-
somal biogenesis, protein synthesis, and mitochondrial func-
tion.”">* Among the direct target genes of MYC, those with
E-box binding sites include ODC, ECA39, elF4E, CDC25,
CAD, CDK4. eIF4G1, and CCND1.”'® MYC has been known
to play a crucial role in malignant transformation."" Several
attempts have been made using small molecule inhibitors to
inhibit MYC binding at gene promoters.‘”‘m Pyrrole—imidaz-
ole (PI) polyamides are a class of sequence-specific DNA-
binding small molecules that have been shown to be effective
inhibitors of transcription factors by disrupting essential

Cancer Sci | 2015
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MYC downstream inhibitor through E-box.

protein-DNA interactions."*2” Our group and others have
designed PI polyamides to specifically target critical regulatory
proteins, including MMP-9, transforming growth factor-B1,
vascular endothelial growth factor, hypoxia-inducible factor 1-
o, androgen receptor, epidermal growth factor receptor,
proslalc-sPccitic antigen, and lectin-type oxidized LDL recep-
tor-1.119212% Recently, we have demonstrated that E-Box
recognizing Pl polyamide, Myc-6 was found to significantly
suppress malignant phenotypes of human osteosarcoma MGG63
cells both in vitro and in vivo, showing the potential of PI
polyamides in cancer thcrupy.(m

In the present study, we developed an E-box-binding PI poly-
amide, Myc-5 (target sequence 5-WCWCGWGW-3', where
W = A or T) to inhibit MYC target genes. Myc-5 showed inhi-
bition of MYC-driven cell growth by downregulation of a sub-
group of MYC downstream genes, including e/F4GI and
CCNDI, at an early stage of transcription. In animal tumor
model studies, Myc-5 inhibits tumor growth by inhibiting cell
proliferation and inducing apoptosis in tumor tissue. Collec-
tively, our results establish a transcriptional regulation at an
early stage of MYC regulatory proteins by using PI polyamides
and provide a novel antitumor agent targeting MYC function.

Materials and Methods

Cell culture. The human Burkitt's lymphoma model cell line,
P493.6, carrying Tet-repressible ¢-MYC system and chronic
myeloid leukemia cell line K562, were used in this study. To
suppress MYC expression, P493.6 cells were treated with
0.1 pg/mL tetracycline for 3 days before treatment with Myc-
5. The P493.6 cell line was kindly provided by C. Grandori
(Fred Hutchinson Cancer Research Center, Seattle, WA, USA)
and K562 cells were obtained from the Riken cell bank (Iba-
raki, Japan).

Synthesis of Pl polyamides targeting the E-box consensus
sequence. Myc-5 was designed to target the E-box consensus
sequence and mismatch Pl polyamide was designed to target
by exchanging the CG dinucleotide with GC in the center of

@ Myc-5

www.wileyonlinelibrary.com/journal/cas

the E-box (Fig. la,c). Fluorescein isothiocyanate-conjugated
Myc-5 was also synthesized for nuclear localization experi-
ments (Fig. Ib). All of the PI polyamides were synthesized
according to previously established methods. "

Electrophoretic mobility shift assay and surface plasmon reso-
nance. FITC-labeled matching hairpin oligonucleotide (46 base
pair) corresponding to elF4G1l gene promoters having E-box
consensus binding sites and mismatch promoter were synthe-
sized (Table S1) for EMSA. Results were visualized by lumi-
nescent image analyzer LAS3000 (Fujifilm, Tokyo, Japan).
The kinetic measurements of the polyamides’ binding curves
to the biotin-labeled double-stranded DNA (having the E-box
consensus sequence) and data processing were carried out on a
Biacore 2000 system as described previously.*®

Quantitative real-time PCR. Total RNA was extracted and
digested with DNase I using the RNeasy kit according to the
manufacturer’s protocol (Qiagen, Valencia, CA, USA). The pri-
mer sequences are listed in Table S2. Relative gene expression
was determined by normalizing the gene expression of each tar-
get gene to GAPDH.

Conventional ChIP followed by real-time PCR. The status of
polyamide binding at the target promoter region (Table S3)
was detected using a ChIP assay kit (Upstate Biotechnology,
Upstate Biotechnology. Inc., Lake Placid. NY, USA) follow-
ing the manufacturer’s protocol. ChIP DNA was further
analyzed by quantitative PCR using primers encompassing
the regions of interest on the elF4GI[, CCNDI, and CDK4
promoters.

Tumorigenicity studies in SCID mice. Seven-week-old SCID
mice were housed under specific pathogen-free conditions.
Experiments were approved by the committee for laboratory
animal welfare and ethics of Nihon University School of Med-
icine (Tokyo, Japan). The effect of Myc-5 on the xenograft
model was examined as follows. P493.6 cells (1 x 1()7) were
inoculated s.c. into the flank of mice and they were divided
into three treatment groups: control group (PBS i.v.; n = 8); a
Myc-5 treated group (7.5 mg/kg i.v., single dose; n = 8); and
a doxycycline treated group (0.01% doxycycline in regular

o
5'-WCWCGWGW-3' o w2 2 N
/O O@B @B Dp o NN R R ]
N2 H {2
@5 @O0 Ac . NQN H”an,QN* N(-)N )
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H H N7 &
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curved lines represent hairpin junctions. B,
B-alanine; Dp, diaminomethylene propylamide; W,
AorT.
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drinking water; n = 5). Doxycycline induces repression of  are known to be direct transcriptional targets of MYC. Based
P493.6 xenograft tumor growth in a MYC-dependent manner. on compilations by Fernandez et al.®” we found that 105
The treatment was started on day 7 after cell inoculation and  genes harbor the Myc-5 binding site (WCWCGWGW) in their
mice were killed after 30 days of treatment. E-box consensus sequence (Table S4). These genes can be

In vivo nuclear localization. For in vivo nuclear localization  classified into a wide range of functional classes. Here we
analysis by fluorescence microscopy, tumor-bearing mice were  focused on genes related to translation and proliferation.
injected with FITC-labeled Myc-5 (0.15 mg) into the lateral  Among the ten top MYC-regulated genes we chose two prolif-
tail vein of the animals. Tumor tissues, along with adjacent eration genes (CDK4 and CCNDI) and a translation gene
normal tissues, were collected 5 days after the injection for  (e/F4G1). The selected genes have been well characterized by
analysis using propidium iodide as a nuclear dye to identify  previous researchers and are also well known direct targets of
nucleated cells. MYC.©®10-28) :

Statistical analysis. Results are shown as mean £ SD. Each DNA-binding affinity and specificity of designed Myc-5 Pl poly-
experiment was carried out independently three times. The  amide. The EMSA and surface plasmon resonance (SPR) assay
level of significance (**P < 0.05 and ***P < 0.001) was are used to determine the binding affinity and specificity of PI
determined using Student’s #-test. polyamide to its target DNA. The EMSA results demonstrated

Additional supplementary materials and methods detailing that a clear mobility band shift (Fig. 2a,b) was detected when
cell viability assay, detection of nuclear localization by confo-  Myc-5 was incubated with eIlF4G1 gene promoter oligonucleo-
cal microscopy, histopathology, Western blot analysis, micro-  tide, whereas no shift was detected for the mismatch PI poly-
array analyses, and references can be found in Documents S1  amide (Fig. 2a, lane 4) or elF4G1 mismatch gene promoter
and S2. (Fig. 2a, lane 5) in which the core recognition sequence, CAC-
GTG, was replaced by CAGCTG. Increasing concentrations of
Myc-5, but not of the mismatch PI polyamide, bound to the
elF4G1 promoter oligo (Fig. 2b, lanes 2-5), suggesting that

Identification of MYC target genes that harbor Myc-5 consen-  Myc-5 can specifically bind to sequences of their target
sus sequence. E-boxes are present in many genes, but not all  gene-promoters. To further confirm binding of the E-box to

Results
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Fig. 2. Myc-5 binding at the target gene promoters. (a) EMSA of e/F4GT gene match and mismatch promoter and with Myc-5 and mismatch
pyrrole-imidazole (Pl) polyamide. (b) EMSA of e/F4GT gene promoter with Myc-5 and mismatch Pl polyamide. FITC-labeled hairpin oligonucleo-
tide was incubated at 37°C for 60 min in Myc-5 or mismatch Pl polyamide. (c) Typical surface plasmon resonance sensograms for the interaction
between Pl polyamides and the hairpin duplex with 5'-biotin labeled and immobilized E-box (CACGTG) sequences. (d, e) Remarkable differences
in binding kinetics were observed: fast on/off kinetics for Myc-5 (d), and slower kinetics for the mismatch PI polyamide (e).
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the target gene promoter, we used a biosensor-SPR assay to
explore the interaction of Myc-5 with biotinylated hairpin

duplexes having WCWCGWGW  sequences (Fig. 2¢). The
kinetic profile of Myc-5 revealed a relatively fast “on-rate™
and slow “off-rate” in  binding with a Kp of

4.81 4+ 279 x 10°% M. The mismatch PI polyamide showed
slow “on-rate” and fast “off-rate” with Kp was calculated at
5.1 £ 0.54 x 1077, In summary, these results confirm that the
presence of the E-box in the DNA sequence has a pronounced
influence on the binding of Myc-5 and yields a 654-times
higher affinity than the mismatch PI polyamide (Fig. 2d.e,
Table S5).

Myc-5 inhibited cell prollferatlon and localized into nucleus in
P493.6 and K562 cell lines. P493.6 and K562 cells were incu-
bated with different concentrations (1-10 pM) of Myc-5 and
mismatch PI polyamide and viability was determined at 24,
48, and 72 h after treatment, respectively. As shown in Figure

www.wileyonlinelibrary.com/journal/cas

S1, cell viability was significantly reduced (P < 0.001 vs con-
trol) in both cell lines treated with Myc-5 in a time- and con-
centration-dependent manner. Nuclear localization of Myc-5
was determined by FITC-conjugated Myc-5 using laser confo-
cal fluorescence microscopy. Green fluorescence indicates the
presence of Myc-5 and red fluorescence depicts the cell nuclei,
indicating that Myc-5 localizes into nuclei within 2 h (Fig.
S2a.c.d). In contrast, cells incubated with FITC solution (con-
trol) at the same concentration did not localize into nuclei
(Fig. S2b) in either cell line.

Myc-5 attenuates MYC binding at the gene promoter, causing
downregulation of MYC target genes. Myc-5 inhibited target
gene expression at protein and mRNA levels (Fig. 3a,b).
Cells treated with Myc-5 at 10 pM concentration for 72 h
caused statistically significant suppression of elF4Gl mRNA
compared with control or mismatch Pl polyamide treated
cells in both systems. The CCNDI mRNA was unaffected in

P493.6 cells
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Fig. 3.

Myc-5 downregulates mRNA expression and protein expression of target genes. (a, b) Expression of target genes was detected by quan-

titative real-time PCR after 72 h of treatment with control, Myc-5 (1, 5, and 10 uM concentration), or mismatch Pl polyamide (MM) at 10 uM con-
centration and normalized with GAPDH in P493.6 (a) and K562 (b) cells. Data are shown as mean values with error bars representing =+SD.
Statistical significance was calculated by Student’s t-test. **P < 0.05, ***P < 0.001 when compared to control. (c, d) P493.6 and K562 cells were
treated with Myc-5 (1, 5, and 10 uM) or mismatch Pl polyamide (10 uM; MM) for 72 h. f-actin was used as the loading control. The relative band
intensities in P493.6 and K562 cells were determined by dividing the intensity of the band by f-actin followed by normalization to the control.

Tet, tetracycline.
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all treated and untreated groups of P493.6 cells; however, its
expression was significantly (P < 0.001) downregulated in
the K562 cell line compared to control and mismatch PI
polyamide treated groups. The mRNA expression correlated
well with protein expression in the Myc-5 administration
using both cell systems (Fig. 3c.d). To investigate whether
target gene expression is directly regulated by Myc-5, we
used ChIP assays of the E-box and exonic region (Figs 4a.b,
S3a). The exonic region was taken as an arbitrary negative
control region during the analysis. The ChIP analysis
revealed that, compared to control, the Myc-5 and tetracy-
cline groups significantly inhibited binding of MYC to the
E-box region in P493.6 cells (Figs 4c,S3b) at the elF4Gl
and CDK4 gene promoters. In contrast, the E-box and con-
trol regions (exon) of CCNDI gene promoter showed
restrained enrichment in all treated groups (Fig. 4d). Simi-
larly, MYC was specifically enriched near the E-box site at
the elF4G1, CCNDI1, and CDK4 gene promoters but not in
the Myc-5 treated group in K562 cells (Figs 4e,f,S3c). More-
over, our microarray analysis results showed (Fig. S4a,b) that
differentially expressed genes in K562 cells (29 upregulated
and 21 downregulated) and P943.6 cells (20 genes upregulat-
ed and 20 downregulated) were identified by unpaired two-
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class significance analysis of microarray with 0% false dis-
covery rate. Among the top 50 modulated genes, five were
carrying the Myc-5 consensus sequence in their promoter, as
identified from Table S4.

Myc-5 retards growth in animal tumor models. To investigate
whether the in vitro efficacy of Myc-5 can also be recapitu-
lated in vivo, therapeutic animal studies were carried out using
P493.6 s.c. xenografts. Mice were inoculated s.c. with P493.6
(high MYC expressing) cells. One week after inoculating the
cells, when the tumor volumes reached approximately
100 mm®, mice were split into three groups and treated with
either saline, doxycycline, or 7.5 mg/kg Myc-5 injected i.v.
into the lateral tail vein of animals at day 7 (single dose;
Fig. 5a). Myc-5 was formulated based on previous xenograft
studies with PI polyamide.?*?%3% Growth curve data indicated
that Myc-5 (7.5 mg/kg) and doxycycline treated groups had a
significantly smaller tumor volume during the growth phase
(P < 0.001 vs control; Fig. 5b) by the end of the study. Repre-
sentative images of each group of mice are shown in Fig. 5b
(inset). All mice with Myc-5 treatment continued to gain
weight at an equal rate throughout the treatment period (Fig.
5c). The average tumor weight results further confirmed inhibi-
tion of tumor growth as Myc-5 and doxycycline treated groups
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Fig. 4.

In vivo binding of Myc-5 to the E-box at its target gene promoter. (a, b) Schematic depiction of the Myc-5 target gene promoter with

MYC binding site (underline) indicated. (c-f) ChIP assay of Myc-5 target genes in the P493.6 (¢, d) and K562 (e, f) cell systems. Labeled regions (E-
box and exon) of each gene were quantitatively amplified by real-time PCR. Data are representative of three independent experiments. Tet, tet-

racycline.
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Myc-5 blocks the growth of P493.6 xenografts. (a) Schematic diagram of the xenograft model illustrating timing of tumor implantation

and treatment. Eight-week-old SCID mice were s.c. injected with P493.6 cells. (b) Tumor growth chart showing the effect of treatment in vivo.
Myc-5 (7.5 mg/kg) and doxycycline significantly slowed tumor growth (P < 0.001) at the termination point in comparison to the control group.
Representative picture shows each group of mice (inset). (c) Mean body weight for each treatment group plotted as function of day after post-
injection. (e) Comparisons of excised tumor weights for three different treatment groups at the end of study. Data in (b, d, e) are shown as the
mean = SD. Statistical significance was calculated by Student’s t-test. ***P < 0.001. (e) FITC-labeled Myc-5 localizes to nucleus of P493.6 xeno-
graft leaving normal tissue unaffected (separated by white line). N: Normal tissue, T: tumor tissue.

were found to be significantly lower (P < 0.001 vs control:
Fig. 5d) at the termination of the study.

Myc-5 localizes into tumor and causes decreased cell prolifera-
tion and induced apoptosis in P493.6 tumor xenografts. To cval-
uate in vivo nuclear localization, single i.v. injection of FITC-
conjugated Myc-5 was given to P493.6 cell-derived xenografts.
Twenty-four hours after injection, animals were killed and
tumor tissues were obtained. The tumor-derived tissues were
found to display strong and characteristic nuclear staining
(Fig. Se). In contrast, adjacent normal tissues were found to be
devoid of nuclear fluorescence (Fig. 5e). Myc-5 was found
throughout the tumor, indicating its capacity to enter the tumor
through the vascular system. To assess the activity of Myc-5,
tumors were harvested from all treatment groups and examined
by histopathology. Microscopic analysis of H&E  staining
showed that Myc-5 and doxycycline treated tumors showed
areas with necrosis, cellular debris. and swollen cells with cyto-
plasmic vacuoles as compared with the vehicle-treated control
(Fig. 6a; left). In order to investigate the mechanism underlying
Myc-5-mediated tumor growth inhibition in P493.6 xenografts,
immunohistochemical analyses were carried out for BrdU
uptake, and TUNEL reaction assay. BrdU-positive nuclei were
detected in a small number of cells in Myc-5 treated tumor as
compared to control group (Fig 6a; middle). In contrast, a large
number of cells stained positively for TUNEL in Myc-5 or
doxycycline treated group (Fig. 6a; right) compared to the con-
trol group. Quantitative data were consistent with the expres-
sion pattern of BrdU and TUNEL staining assays (Fig. 6b).
Quantification of BrdU-positive cells in the control group were
significantly (P < 0.001) reduced (approximately 83% and 76%
reductions in Myc-5 and doxycycline groups, respectively)
compared to treated groups. The TUNEL analysis showed that
the number of apoptotic cells was significantly higher

© 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd
on behalf of Japanese Cancer Association.

(P < 0.001; approximately 38% and 30% higher in Myc-5 and
doxycycline groups. respectively) in treated groups. Overall,
we found that Myc-5 is well tolerated. inhibits tumor growth,
and induces apoptosis in P493.6 xenograft mouse models.

Discussion

In this study, we synthesized two B-alanine-linked polyamides of
different lengths: Myc-5 (AcPyPyPyImBImyPyBPyIlmBImBDp),
where Py is pyrrole, Im is imidazole, Ac is acetyl,  is B-alanine,
Dp is dimethylaminopropylamine, and y is y-turn to target the
8-bp site of S-WCWCGWGW-3'; and mismatch polyamide
(AcPyBImPyPylmyPyPylmPyBImBDp) to target the 8-bp site
5'-WCWGCWGW-3', flipping dinucleotide CG to GC at the
central portion (Fig. la,b). A search for Myc-5-binding sites
from the published database”” revealed that the Myc-5 con-
sensus sequence was flanking the E-box of genes involved in
apoptosis, cell cycle, nucleolar function, ribosomal proteins,
and translation initiation factors. Among them, we focused on
the el/F4G1, CCNDI, and CDK4 genes because they carry a
Myc-5 consensus sequence including a MYC binding site (E-
box) in the promoter region (Fig. S3d) and their transcription
is modulated by MYC.*!%* Using EMSA and Biacore analy-
ses. our results showed that Myc-5 binds specifically and with
high affinity (654 times; Table S5) to the elF4Gl, CCNDI,
and CDK4 gene promoters at the E-box region (Fig. 2). The
effective concentration of Myc-5 in the EMSA was higher than
the concentration for biological effect, which is consistent with
results obtained for other compounds:*!’ possibly, PI polyam-
ide accumulates in cells to effectively reach the intracellular
and intranuclear levels.®?’ The higher binding affinity of
Myc-5 in comparison to mismatch Pl polyamide might be
explained as the targeted PI polyamide has more aliphatic

Cancer Sci | 2015 | 6
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Fig. 6.

Histopathology of xenografts in nude mice and illustration of potential mechanism by Myc-5. (a) Tissue sample were analyzed qualita-

tively for morphological changes. Magnification, x10 (scale bar = 200 um); magnification, x40 (scale bar = 50 um). (b, ¢) Quantitative data of
immunohistochemical analysis of BrdU and TUNEL positive staining in each group. Data in (b, ¢) are shown as the mean =+ SD of three tumor
samples from an individual mouse in each group. Statistical significance was calculated by Student’s t-test. ***P < 0.001. (d) Schematic diagram
of the mechanism by which pyrrole-imidazole polyamide inhibits MYC/MAX interaction to the E-box. (I) MYC:MAX dimer binds to E-box and
activates MYC target gene expression. (Il) Myc-5 occupied the E-box by binding, thereby inhibiting the MYC/MAX interaction to the E-box, caus-

ing further suppression of target gene expression.

B-alanine unit, giving it more flexibility and optimizing the
positioning of the imidazole amino acids on binding to its tar-
geted sequence.®¥ In vivo binding of Myc-5 to their target
gene-promoter was confirmed by ChIP assay. Results of ChIP
indicated that MYC transcription factor bound E-box in the
control group whereas, in treated groups, Myc-5 inhibited
MYC binding on its target gene promoters. However, in the
P493.6 cell line, the CCNDI1 gene-promoter showed only a
background signal that was obtained at the E-box region as
well as in the control (exon) regions (Fig. 4d). These results
were consistent with previous reports of the absence of this
regulator in the B cell line.*

Myc-5 was used at the concentration of 10 uM based on
previous studies using PI polyamides.”'®?%% Myc-5 signifi-
cantly reduced mRNA and protein expression of MYC target
genes at this given concentration. The correlation between
MYC binding and mRNA expression of Myc-5 was established
by real-time mRNA expression analysis and Western blot
analysis. The e/F4G] gene has a downregulated expression
and might be a direct target of MYC in both systems, which
was also favored by EMSA and ChIP data. CCNDI mRNA
expression was downregulated in the K562 cell line with Myc-
5 treatment in a dose-dependent manner. which is known to
exert positive growth effects and to be regulated by MYC.7®
The mRNA expression of CDK4, a positive growth controller
of MYC,*® was unaffected by Myc-3 treatment as the Myc-3
binding site (E-box#2) has no role in MYC-dependent gene
regulation.®® We analyzed the CDK4 promoter region for
putative MYC binding sites. Our sequence analysis revealed
the presence of four E-box sequences. which could be recog-
nized by MYC (Fig. S2). Among them, only E-box#2 is a
putative binding site for Myc-5 as it contains the Myc-5
consensus sequence. As shown in Figure S2, Myc-5 bound to
the E-box#2 of the CDK4 promoter. The CDK4 gene is
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established as a direct target of MYC identified by serial
analysis of gene expression with essential E-boxes in their pro-
moters.*® The CDK4 promoter contains four highly conserved
E-box elements where E-box#3 and #4 were the most impor-
tant for CDK4 promoter activity.®® The Mye-5 effect on m-
RNA expression of the MYC gene and further its transcrip-
tional target genes were analyzed by real-time PCR in K562
and P493.6 cell lines. In K562 cells, MYC mRNA expression
is unaffected by Myc-5 treatment and a similar trend was
observed in its target gene CDK4 mRNA expression. However
MYC mRNA expression in Myc-5 treated group is signifi-
cantly increased as compared to control group in P493.6 cells.
P493.6 B lymphoma cells overexpress MYC, which indicates
that P493.6 cell lines may have some mutations on its pro-
moter or regulator regions. The MYC promoter or regulatory
regions do not have any Myc-5 binding consensus sequence.
This may be due to some specific mutation in these regions
that might have generated a novel Myc-5 binding site at the
MYC promoter of P493.6 cells. This novel Myc-5 binding site
in the promoter could be acting as a transcriptional activator
of the MYC gene and helping it to further overexpress. Fur-
thermore, Myc-5 has very high affinity for its consensus
sequence and may act as a non-competitive inhibitor of MYC
protein. Therefore, overexpression of MYC protein in P493.6
cells does not have an effect on MYC downstream genes with
active Myc-5 binding sites, such as elF4Gl.

Taken together, our data are compatible with a mechanism
that involves the recruitment of Myc-5 at E-box sites within
the promoter of the MYC target gene, thereby inhibiting MYC
binding at particular sites and inhibiting target gene function
instead of blocking MYC. Myc-5 downregulates its target gene
transcription, supporting the notion that polyamides bind to
DNA with affinity and sequence-specificity comparable to
DNA-binding proteins and gene expression can be regulated

© 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd
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by competitive displacement of transcription factor from DNA
target sequences.”” where Myc-5 consensus sequences are not
contained.

Myc-5 exerts its therapeutic role in tumor maintenance
through sclective effects on the translation of specific down-
stream genes. In our in vive study we used 7.5 mg/kg on the
basis of i)lfi_()l' pharmacokinetic profiles and previous analytical
studies, "™ We identified strong in vivo nuclear localization
of Myc-5 and also its inhibitory effect on tumor growth in a
P493.6 mouse model. One possible reason for this activity can
be explained by previous reports showing that changes in the
levels or activity of clF4F mediate the wanslational regulation
of specific genes involved (as in the P493.6 cell line, elF4G1
is completely suppressed) in survival and apoptosis.”” In
nasopharyngeal carcinoma, knockdown of elF4G1 expression
markedly inhibited cell-cycle progression, proliferation, and
suppressed in vivo xenograft tumor growth,“%*" which might
be applicable to our system as well.

In conclusion, the results reported here identify a novel PJ
polyamide, Myc-5. as a lead compound targeting against the E-
box and thereby modulating expression of some genes. Our
approach can be an efficient tool to identify the sequence-spe-
cific compound that targets the E-box and specifically modulates
MYC downstream genes and interferes with their pathways.
Myc-5 competes with the MYC:MAX heterodimer and inhibits
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transregulation of the target gene promoter (Fig. 6d) at the E-
box. The extension of this approach could result in the identifi-
cation of more potent inhibitory PI polyamides in multiple path-
ways and reveal a new E-box-regulated target or combination of
targets for a distinet MYC function, which may have formidable
therapeutic opportunities for the future.
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