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Metformin, a prescribed drug for type 2 diabetes, has been reported
to have anti-cancer effects; however, the underlying mechanism is
poorly understood. Here we show that this mechanism may be
immune-mediated. Metformin enabled normal but not T-cell-defi-
cient SCID mice to reject solid tumors. In addition, it increased the
number of CD8* tumor-infiltrating lymphocytes (TILs) and protected
them from apoptosis and exhaustion characterized by decreased pro-
duction of IL-2, TNFa, and IFNy. CD8™" TILs capable of producing mul-
tiple cytokines were mainly PD-1"Tim-3%, an effector memory subset
responsible for tumor rejection. Combined use of metformin and
cancer vaccine improved CD8* TIL multifunctionality. The adoptive
transfer of antigen-specific CD8* T cells treated with metformin
concentrations as low as 10 pM showed efficient migration into
tumors while maintaining multifunctionality in a manner sensitive
to the AMP-activated protein kinase (AMPK) inhibitor compound C.
Therefore, a direct effect of metformin on CD8" T cells is critical for
protection against the inevitable functional exhaustion in the tumor
microenvironment.

immune exhaustion | CD8T cells | antitumor immunity |
tumor microenvironment | multifunctionality

n chronic infectious diseases and cancer, CD8" T cells specific

for viral and/or tumor antigens undergo repeated TCR stim-
ulation because of persistent pathogens or cancer cells and
gradually lose their ability to secrete IL-2, TNFa, and IFNy,
eventually undergoing apoptotic elimination in a process known
as immune exhaustion (1). This worsening immune function is
accompanied by phenotypic changes in CD8" T cells, including
the expression of exhaustion markers such as PD-1 and Tim-3
(2). Antitumor immunity is enhanced in mice deficient in PD-1
or its ligands PDL-1 and PDL-2 (2-4). Galectin 9, a Tim-3 ligand,
is secreted by many tumor cells as well as by FoxP3-expressing
regulatory T-cell (Treg) and inhibits Tim-3-expressing Th1 cells
(5). An anti-Tim-3 antibody that blocks the galectin 9-Tim-3
pathway was found to accelerate antitumor immunity (6). Fur-
thermore, the administration of blocking antibodies against both
PD-1 and Tim-3 induced a more profound tumor rejection in
comparison with that achieved with either antibody alone (7).
The management of functional T-cell exhaustion within tumor
tissues is currently an extensive focus in tumor immunotherapy
(8, 9), together with efforts to neutralize immune-inhibitory Treg
and myeloid-derived suppressor cell (MDSC).

Metformin (dimethylbiguanide) has been widely prescribed
for type 2 diabetes. Its unique pharmacological features include
its antihyperglycemic efficacy, which counters insulin resistance
(10, 11). Early metformin use increases the survival of patients
with obesity-involved type 2 diabetes and/or cardiovascular dis-
ease (12). In addition, recent reports have described the un-
expected anticancer effects of metformin in patients with type 2
diabetes (13). Insulin-based diabetes treatment is associated with
an increased cancer risk (14-17), whereas metformin use has
been shown to decrease the frequency of specific cancers (18-
21). Two independent metaanalyses of epidemiological studies
concluded that compared with other treatments, metformin is

www.pnas.org/cgi/doi/10.1073/pnas.1417636112

21l

associated with a 30-40% reduction in the incidence of cancer
among patients with type 2 diabetes, indicating the need to in-
vestigate the anticancer mechanisms of metformin and conduct
long-term randomized controlled trials (RCTs) (22, 23).

In the HER-2/neu transgenic mouse breast cancer model, met-
formin treatment decreased the tumor burden and was associated
with an increased life span (24). Combined use of metformin with
chemotherapeutic agents such as cisplatin has also yielded clinical
benefits (25, 26). Regarding the anticancer mechanism, metformin
appears to preferentially kill cancer-initiating/stem cells from
glioblastoma (27), breast (28) and ovarian cancers (29) via AMP-
activated protein kinase (AMPK) activation.

In contrast to the inhibitory action of metformin on tumor
cells, here we demonstrate the direct effects of metformin on
CDS8" T cells, which eventually results in tumor growth inhi-
bition. Metformin protects CD8* tumor-infiltrating lymphocytes
(TILs) from apoptosis, and the multifunctionality of exhausted
PD-1"Tim-3*CD8"* TILs is restored via a shift from a central
memory (TCM) to an effector memory T-cell (TEM) phenotype.
This metformin-induced antitumor mechanism is therefore linked
to marked changes in the characteristics of CD8* TILs within the
tumor microenvironment.

Results

Metformin-induced Tumor Rejection Depends on CD8*T Cells. As
metformin has been reported to decrease the rate of cancer in-
cidence in type 2 diabetic patients, we at first examined whether

Significance

The multifunctional ability of CTLs is downregulated by in-
teraction between immune-checkpoint molecules expressed on
CTLs and their ligands expressed on cancer cells, referred to as
immune exhaustion. The antibody-mediated, immune-check-
point blockade turned out to a promising method for immu-
notherapy against advanced melanoma. Metformin, a drug
prescribed for patients with type 2 diabetes, has been recog-
nized to have anti-cancer effect. We found that CD8* tumor
infiltrating lymphocytes (TILs) is a target of metformin. CD8"
TiLs inevitably undergo immune exhaustion, characterized by
diminished production of multiple cytokines such as IL-2, TNFa,
and IFNy, followed by elimination with apoptosis. Metformin is
able to counter the state. Along with conventional therapy,
treatment of cancer patients with metformin may have a great
advantage for cancer therapy.
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the drug could protect mice from methylchoranthrene-induced  depletion by mAb completely abrogated the response (Fig. 1B).
skin carcinogenesis. BALB/c mice were injected with 200 pg of ~ Complete rejection by metformin was also observed with Renca
methylchoranthrene on the right back and given 5 mg/mL met-  (renal cell carcinoma), although partial but significant growth
formin dissolved in the drinking water throughout the experi-  inhibition was observed with other tumors, 3LL (non small cell
ment. Significant inhibition of tumor development was observed  lung carcinoma), Colon 26 (intestinal carcinoma), and 4T1
in metformin-treated nondiabetic mice (Fig. S14). We next  (breast cancer) (Fig. S1 E-H).

attempted to determine whether metformin would be effective

against an established solid tumor. Mice were intradermally ~ Metformin Prevents Apoptosis of CD8*TILs, Irrespective of Expression
injected with X-ray-induced RLmalel leukemia cells and were  of PD-1and Tim-3. Injection of a vaccine consisting of antigen (Ag)
provided oral metformin beginning on day 7. The tumors were — and adjuvant primes and generates specific T-cell immunity,
gradually and completely rejected with no reappearance after ~ mainly in draining lymph nodes near the injection site. However,
metformin withdrawal. A rechallenge with more than twice the ~ we did not inject tumor antigens with any kind of adjuvant in
original number of the same tumor cells did not yield mass  Fig. 1. Therefore, it is possible that a unique process occurs at
formation (Fig. 14, Left), suggesting the generation of an im-  the tumor site and leads to antitumor immunity. Based on this
munologic memory response. Moreover, the antitumor effect  notion, we focused on TILs throughout the experiment to clarify
was completely abrogated in SCID mice (Fig. 14, Right), clearly  the associated mechanism. We found that total numbers of TILs
demonstrating the necessity of T and/or B cells. Cytotoxic T  dramatically increased when metformin administration was
lymphocytes (CTLs) specific for the tumor antigen peptide started on day 7, and that both CD8* and CD4* T cells were
pRL1a (30) were generated in mice that rejected the tumor (Fig.  involved in the increment (Fig. 1 C-E). In particular, the number
S1B). Growth inhibition was observed with a metformin dose as  of CD8% TILs increased nearly fourfold. We considered the
low as 0.2 mg/mL (Fig. S1C). Of note, a previous report identi-  possibility that metformin may suppress expression of the im-
fied the achievement of plasma metformin concentrations of 0.45  mune exhaustion markers PD-1 and Tim-3 on CD8" TILs, thus
and 1.7 pg/mL using 1 and 5 mg/mL of metformin, respectively,  avoiding immune exhaustion. Therefore, we investigated the ex-
in drinking water (31); these plasma concentrations are similar to  pression of these markers on CD8"* TILs derived from individual
those in patients with diabetes treated using metformin (0.5~  tumor-bearing mice (Fig. S1B). The number of PD-1"Tim-3~
2 pg/mL). Administration of metformin beginning on day 0, the ~ CD8" TILs decreased from day 7-10, irrespective of metformin
time point of tumor inoculation, resulted in more effective re-  use (Fig. S2B). The PD-1"Tim-3*CD8* TIL population increased
jection than on day 7. Beginning treatment on day 10 and 13 was  progressively, whereas PD-1*Tim-3" and PD-1*Tim-3*CD8" TILs
also effective, although the effect was less than on day 0 (Fig.  remained stable. Metformin did not affect any subset populations
S1D). Finally, as expected, CD8" but not CD4* T cells were  (Fig. S2 B-E). However, we surprisingly found that a significant
proven to be responsible for the antitumor effect, because their  proportion of CD8*TILs underwent apoptosis, detected by
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Fig. 1. Metformin suppressed tumor growth in vivo, depending on CD8" T cells. (A) On day 0, BALB/c WT or SCID mice were intradermally inoculated with 2 x
10° RLmale1 cells on the right back. The mice received 5 mg/mL metformin (Met) or not (none) dissolved in the drinking water. The duration of Met ad-
ministration is indicated by the shaded rectangle. The mean diameter of each tumor was measured every day and the data are plotted with SE. On day 45,
Met-treated WT mice, all of which had rejected the tumor, were rechallenged with 5 x 10° RLmale1 cells. n = 6 in each group. The results are representative of
two independent experiments. (B) Mice inoculated with RLmale1 were treated with metformin (Met) or not (none), starting on day 7 and i.v. injected with
anti-CD8 mAb and/or anti-CD4 mAb on the same day. Average tumor diameters are plotted with SE. n = 5 in each group. (C-E) Mice inoculated with RLmale1
cells were treated with Met (+) or not (=) from day 7. On day 7, 10 and 13, the tumor mass was isolated and TILs were recovered. The numbers of TILs per
tumor volume (mm?) were calculated. The numbers of TIL (C), CD8* (D), or CD4* (E) per tumor volume are depicted. Also, the populations of CD8*TILs stained
with Annexin V were plotted (F). All data were with SD (n = 14 on days 7 and 10, n = 5 on day 13). The horizontal bars indicate median values, and P values
obtained by two-tailed Student’s t test are shown as *P < 0.05, **P < 0.01 n = 5-14 in each group. Each symbol represents an individual mouse. The results
depicted are a summary of three independent experiments.
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Fig. 2. Metformin improves the multifunctionality of antigen-specific CD8* TILs
in vivo. (A) Mice inoculated with 2 x 10° MOS5 cells were treated with or without
metformin from day 7, as indicated by the shadowed rectangle, and tumor
growth was monitored. The results are representative of two independent
experiments. n = 5 per group. (B) On days 7, 10, and 13, TILs were recovered
from tumor masses and examined for K®-OVA,s7_64 and K>-TRP21g0_1g5 tetramer
binding (n = 7-13). (C) TILs recovered on days 7, 10, and 13 from five mice per
group [with (+) or without (—) metformin] were pooled and stimulated with
DC2.4 cells that had been prepulsed with OVAs;_565 peptide (1078 M) for 8 h; TIL
cytokine-producing ability was later examined.

Annexin V (Fig. 1F and Fig. S34), and that metformin sup-
pressed apoptosis induction in all subsets, including PD-1"Tim-
3*CDS8*TILs (Fig. S3 B-E). Of note, the physiologically essential
apoptotic process of CD4*CD8" thymocytes, which depends on
a mitochondrial pathway (32), was not down-regulated by met-
formin (Fig. S4), suggesting that an apoptotic mechanism unique
to the tumor microenvironment is metformin-sensitive.

We next examined the metformin effects in another tumor
system. MOS is a subclone of B16 melanoma cells expressing
ovalbumin (OVA) (33). Metformin administration induced sig-
nificant antitumor activity (Fig. 24). OVA- and TRP2-specific
CD8" TILs were identified by specific tetramers. Both TIL
populations in untreated mice decreased gradually from day
7-13; in contrast, metformin administration maintained or in-
creased these populations (Fig. 2B). CD8" TILs again underwent
apoptosis, which was suppressed by metformin administration
(Fig. S5 A and B). The Annexin V-positive populations among
OVA tetramer-positive and -negative (includes TRP-2—positive
population) CD8" TILs were near 80% at day 10; however,
metformin suppressed this rate to <20-40% (Fig. S5 C and D).
These results are consistent with those observed in the RLmalel
model. Next, to examine the functional state of antigen-specific
TILs, magnet-purified CD8* TILs isolated from tumor tissues
were incubated with DC-like DC2.4 cells that had been pulsed
with an epitope peptide (OVAjs7_264); TILs were later examined
for their cytokine production capacity. Only IFNy-producing
cells or very small populations producing both IFNy and TNFa
or IL-2 could be identified in untreated mice, whereas a marked
increase in the population producing both IFNy and TNFa was
observed with metformin (Fig. 2C).

Eikawa et al.

Influence of Metformin on the TCM/TEM Ratio of CD8*TILs. CD8"
TILs in the context of memory T cells are poorly understood.
Elegant studies with an acute viral infection model have pro-
posed classification of memory T cells into central memory
(TCM; CD44*, CD62L"€M) and effector memory (TEM; CD44¥,
CD62L'°") (34, 35). TCM were shown to mediate viral-specific
recall responses. Based on this model, we investigated TCM and
TEM CD8" TILs. Without metformin, the staining of CD8*
TILs from an RLmalel tumor using antibodies against CD62L
and CD44 revealed that proportions of TCM and TEM were
nearly equal on day 7 and 10 but shifted to TCM dominance on
day 13. In contrast, metformin maintained TEM dominance
from day 10 to day 13 (Fig. 34). Further dissection of the TIL
compartment based on CD62L and KLRG1 expression revealed
that short-lived effector T cells (TE; CD62L'*"KLRG1"€") were
visible on day 7 but gradually decreased by day 13. In contrast,
metformin yielded increases in both TEM and TE populations
on day 13 (Fig. 3B), coinciding with tumor regression (Fig. 14).
In the MOS5 model, metformin again caused TEM dominant over
TCM (Fig. 3 C and D). At this stage, we concluded that TEM
and/or TE are more responsible than TCM for tumor rejection.

Metformin Induced Multifunctional CD8" TEM Expressing the Exhaustion
Marker Tim-3. We next investigated the capacity for triple cytokine
(IL-2, TNFa, IFNy) production or the multifunctionality of CD8*
TILs in the context of TCM/TEM classification. CD8* TILs re-
covered from RLmalel tumor masses were stimulated with PMA/
ionomycin for 6 h in vitro and monitored for cytokine production.
Without metformin, the cytokine-producing cells on day 10 were
mainly identified as TCM (Fig. 44). In contrast, with metformin,
triple cytokine-producing cells appeared in correlation with the in-
creased population of TEM (Fig. 44). The populations with various
cytokine producing patterns in the presence and absence of met-
formin are summarized in Fig. 4B. Metformin markedly changed
the multifunctionality of CD8" TILs. Taking these results together,
we concluded that metformin-induced TEM capable of producing
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Fig. 3. Influence of metformin on the TCM/TEM ratio of CD8* TILs. TILs
were isolated on days 7, 10, and 13 from mice inoculated with RLmale1 (A
and B, n = 5) or MO5 (C and D, n = 3-5) with (+) or without (=) metformin,
and analyzed for CD8 and memory markers including CD44, CD62L, KLRG1.
The proportion (%) of CD62LM9" (H) and CD62L'*™ (L) among CD44* cells in
RLmale1 and MO5 models are shown in A and C, respectively. The pro-
portion (%) of CD62LM9", KLRG1'*™ (central memory; CM) and CD62L"",
KLRG1 '*V (effector memory; EM) and CD62L'°%, KLRG1 9" (effector; E) in
RLmale1 and MO5 are shown in B and D, respectively. *P < 0.05, **P < 0.01.
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multiple (triple and double) cytokines are most important for
tumor rejection. We next classified CD8" TILs on the basis of
their expression of PD-1 and Tim-3, followed by intracellular
cytokine staining. We found that CD8" TILs with triple cytokine-
producing abilities belonged exclusively to the PD-1"Tim-3*
subset, which was the supposedly exhausted population in the
RLmalel tumor model (Fig. S6). We further confirmed this
notion using adoptive transfer experiments. MOS5-inoculated
mice were adoptively transferred with OT-1 CD8* T cells. The
transferred T cells had been previously shown to undergo vigorous
division and were thus cross-primed in vivo via the adjuvant-free
administration of a fusion protein comprising OVA and Myco-
bacterium heat shock protein 70 (OVA-mHSP70) as a vaccine (36,
37). OVA-mHSP70 injection significantly enhanced the migration
of the transferred CD45.17OT-1 CD8* T cells into the tumor
tissues; however, the cytokine-producing abilities of these cells
were poor (Fig. 54). In contrast, injection of the fusion protein
together with oral metformin administration apparently improved
the multifunctionality of the migrated T cells, which were classi-
fied as the Tim-3" population (Fig. 54).
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IL-2* TNFa* IFNy* > 4.6-7.2% (169-264)
IL-2* TNFa* IFNy- - 1.3-1.9% (48-69)
IL-2* TNFa- IFNy* - 5.3-7.2% (194-264)
IL-2-TNFa* IFNy* = 7.2-11.2% (264-411)
IL-2* TNFa- IFNy- 2.0% (15) | 1.7% (62)
IL-2-TNFa*IFNy- | 4.0% (30) | 13.1% (480)
IL-2- TNFa- IFNy* 9.0% (67) | 36.0% (1320)

Fig. 4. Metformin-induced CD8*TILs with multifunctionality are TEM rather than
TCM. (A) TiLs were isolated on the indicated days from five mice per group in-
oculated with 2 x 10° RLmale1. Met treatment was started (+) or not (-) from day
7. TiLs were then pooled on indicated days and stimulated with PMA/ionomycin
for 6 h, stained for surface molecules including CD8, CD44, CD62L, followed by
intracellular staining for IL-2, TNFa, and IFNy. CD8*TILs producing TNFa were fur-
ther analyzed for expression of CD62L and CD44 to identify TCM and TEM. Also, to
investigate multifunctionality, cytokine-producing CD8'TILs were further exam-
ined for production of IFNy and IL-2. (B) Summary of the populations of cytokine
producing CD8*TILs on day 10 is shown. Gated populations for CD8*IFNy*, CD8*
TNFa*, or CD8IL-2* were further analyzed for their production of TNFa and IL-2,
IFNy and IL-2, or IFNy and TNFa. The gating strategy gives rise to some ranges for %
populations of double and triple cytokine producing TiLs. The numbers within pa-
renthesis indicate numbers of corresponding CD8*TILs per tumor volume (mm?3).
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Metformin-Treated Antigen-Specific Naive CD8 T Cells Migrate into
Tumors and Exert Antitumor Immunity Following Adoptive Transfer.
It is unknown whether plasma metformin concentrations as low
as 10 pM (1.6 pg/mL) would directly influence the fate of T cells.
To address this important question, we incubated CD8" T cells
isolated from naive OT-I mice with 10 pM metformin for 6 h in
the presence or absence of different doses of the AMPK in-
hibitor compound C (38) as indicated (Fig. SB). After extensive
washing, the cells were transferred into MOS5-bearing mice. Two
days later, splenic T cells and TILs were recovered and in-
vestigated for the presence and multifunctionality of donor-
derived CD8" T cells. Metformin-treated CD8" TILs comprised
up to 9.9% of all CD8" T cells and were identified as triple cy-
tokine-producing cells (Fig. 5B). However, compound C treat-
ment abrogated the migration, although donor CD8" T cells
were present in the spleens of all groups (Fig. 5B). Accordingly,
tumor growth inhibition was apparent in the metformin-treated
group, although this effect was blocked by compound C (Fig.
5C). The weak but significant metformin-mediated increase in
the phosphorylation of AMPK and its downstream target acetyl-
CoA carboxylase (ACC) and the abrogation of this effect by
compound C were observed by Western blot analysis (Fig. 5D).
The results led us to conclude that the direct action of metformin
on CD8" T cells, at least partly, reduced their exhaustion within
the tumor microenvironment in a manner sensitive to the AMPK
inhibitor compound C.

AMPK Phosphorylation, Enhanced Bat3 Expression, and Caspase-3
Inhibition Mediated by Metformin. Finally, we examined the ex-
pression of CD8* TIL molecules that may possibly be influenced
by metformin administration. After CD8" TIL purification on
day 10, cell lysates were immediately prepared for candidate
molecule detection via Western blot analysis and for caspase-3
activity measurement using a fluorescent substrate. The levels of
phosphorylated AMPKa and p were increased; a twofold in-
crease in Bat3 expression was also observed, whereas Bcl2 and
Bax expression were unaltered (Fig. S74). As expected, caspase-
3 activity was prominent without metformin but was completely
abrogated in CD8" TILs from metformin-treated mice (Fig.
S7B), which offers a plausible explanation for apoptosis in-
hibition. To further examine the apoptotic cell populations, we
evaluated the expression of active caspase-3 in TCM, TEM, and
TE. Without metformin, TCM, TEM, and TE all expressed ac-
tive caspase-3 whereas with metformin, primarily TCM ex-
pressed this activated enzyme (Fig. S7C). These results may
explain the dominance of TCM over TEM in the absence of
metformin and the dominance of TEM and TE in the presence
of metformin. pS6, a downstream target of mTOR, was positive
in TCM, TEM, and TE without metformin but negative with
metformin (Fig. S7D), indicating that metformin inhibits mTOR,
possibly via AMPK activation.

Discussion

In this report, we showed that established solid tumors are
regressed by oral administration of metformin, and that CD8*T
cells mediate this effect. The number of FoxP3 expressing CD4*
regulatory T cells (Treg) has been implicated as a critical com-
ponent in suppressing tumor immunity (39). However, their
numbers were not decreased, rather, transiently increased by
metformin administration in RLmale 1 tumor model (Fig. S8).
Upon tumor rejection, the treated mice became resistant to
rechallenge with the same tumor, providing proof of memory
T-cell generation. Because no protective effect was observed in
SCID mice, the direct killing of tumor cells by metformin is
negligible. It was also confirmed by immunohistochemistry
(IHC) of tumors. Tumors of mice treated with metformin
showed decreased expression of Ki67 as a proliferation marker,
accordingly, increased expression of active caspase 3 as an
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