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Introduction

1t has recently been demonstrated that naked therapeutic anti-
sense oligonucleotides (AONs) exhibit robust systemic activity
when comprised of several chemically modified nucleic acid
building blocks.® In particular, conformationally constrained
nucleotides such as 2',4-bridged nucleic acid (2’,4-BNA) [also
known as locked nucleic acid (LNA)]® in combination with
phosphorothioate (PS) exhibit extraordinarily high target RNA
binding and acceptable pharmacokinetics. However, only a
small fraction of the administered PS-LNAs is distributed in
the target tissues;® most of the dose is deposited subcellularly,
which is undesirable.* Thus, overcoming the pharmacokinetic
challenges of AONs is necessary to improve their potency and
to address safety concerns.’

A number of targeted delivery strategies for antisense thera-
peutics have been developed, including the terminal conju-
gation of biofunctional molecules.® However, these ligands
often interfere with knockdown activity, despite their advan-
tageous effect on the pharmacokinetics of AONs. In contrast,
numerous LNA analogues with unique bridging structures
have been developed and refined, and apparently minor struc-
tural modification of LNA can significantly alter their bio-
logical properties.’®” However, the design and synthesis of
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to diversify pharmacokinetic properties of therapeutic antisense oligonucleotides is described.
N2'-functionalization of AmNA with a variety of hydrophobic groups is straightforward. Combinations of
these modules display similar antisense knockdown effects and improve cellular uptake, relative to
sequence-matched conventional 2,4'-bridged nucleic acid (2',4'-BNA) in vivo.

this class of nucleotides are basically formidable. Therefore,
evaluating the pharmacokinetics of AONs is formidable as well
because we have only the option of evaluating them in vivo. On
the other hand, Leumann et al introduced hydrophobic side
chains into the Cé6'-position of each tricyclo-DNA monomer
through a metabolically labile ester group, then integrated
these nucleotides into oligonucleotides and successfully
improved cell-membrane permeability.® However, the effect of
integration of these monomers on in vivo deposition remains
obscure. In this context, we recently reported a promising
alternative scaffold nucleoside, amido-bridged nucleic acid
(AmNA),®> which may be useful for addressing this issue
(Fig. 1).

The furanose of AmNA is fused to a five-membered
y-lactam, whose amide bond is bridged between C2' and C4’ of
the ribose and rigidly fixed in C3-endo conformation. The
AmNA-modified AONs are much less susceptible to nuclease
digestion than their LNA counterparts, possibly because of the
steric hindrance of the N2-methyl and neighboring carbonyl
groups of the amide. These modified AONs maintain LNA-like
high RNA affinity and show higher in vitro antisense activity
than their LNA counterparts. Notably, N2'-functionalization is
usually facile (AmNA[N-R]), making AmNA a promising build-
ing block for AONs. Other multivalent heteroatom-containing

Tandem combination of functionalized AmNAs
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Fig. 1 Tandem arrangement strategy of N2'-functionalized AmNAs for
improving the pharmacokinetics of antisense therapeutics.
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BNAs, such as 2-amino-LNA*' 2/ 4-BNANC,” N-Me-
amincoxy BNA’® and 6-thiol containing BNA,'" are also intri-
guing alternatives in the same context, but N- or S-functiona-
lized derivatives remain to be comprehensively developed.

To demonstrate the plasticity of our scaffold nucleoside for
improving antisense therapeutics, we have developed a meth-
odology to perturb the “in vivo” pharmacokinetics of AONs by
using a variety of AmNA derivatives. Specifically, we syn-
thesized AmNAs functionalized with a series of hydrophobic
groups - for potential improvement of intracellular and hepatic
uptake of AONs and showed that hydrophobicity of the
AmNA-AONS is readily adjustable by altering the substituents.
We also demonstrated that a better tandem combination of
N-alkylated AmMNA (AmNA[N-R]) modules can improve hepatic
disposition and potency of AONs in vivo.

Results and discussion
Phosphoramidite monomer synthesis

The phosphoramidite monomers corresponding to AmNA-
[N-H] 4a and AmNA[N-Me] 4b were obtained as previously
described.? From known nucleoside 1, we synthesized the five
monomers AMNA[N-Et] 4¢, AMNA[N-nP1] 4d, AMNA[N-iPr] 4e,
AmNA[N-Bn] 4f and AmNA[N-Phen] 4g, where abbreviated sub-
stituents indicate methyl, ethyl, n-propyl, i-propyl, benzyl and
phenethyl, respectively (Scheme 1). Briefly, 1 was treated with

o} 0
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BnO] N" "0 BnO] NT TO
O B O —-
O” OB NH 0" OBA"NR
T o 2 5

HO N iiiiy DMTro N™ ™0
0 v, o
O” OH™NR 0" 0™NR
ProN—P{
, OCH,CH,CN
4

automated DNA synthesizer

. 5-d(TTTTTXTTTT)-3' (ON4-8)
5-d(XXAXCCAGCTTXAXXA)-3'
(ON12-15, 125-15S)

Scheme 1 Reagents and conditions: (i) NaH, RX, DMF, 0 °C — rt, R = Et:
EtBr, quant.; R = nPr: nPrBr, 76%; R = iPr: iPrl, quant.; R = Bn: BnBr,
quant.; R = CHaCH,Ph: BrCH,CH,Ph, 43%; (ii) 20% Pd(OH)2/C, Hp, THF,
rt; (i) DMTrCY, pyridine, rt, R = Et: 74% (2 steps); R = nPr: 96% (2 steps);
R = iPr: 81% (2 steps); R = Bn: 90% (2 steps); R = CH,CH,Ph: 83%
(2 steps); (iv) (i-PraN),POCH,CH,CN, N,N-diisopropylammonium tetra-
zolide, MeCN/THF (3:1), rt, R = Et: 77%; R = nPr: 88%; R = iPr: 49%; R =
Bn: 61%; R = CH,CH,Ph: 48%.
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sodium hydride, followed by the addition of the corresponding
alkyl halides to give N-substituted compounds 2a-g. Despite
steric hindrance, these coupling reactions provided high yields
under optimized conditions. Hydrogenolysis of the 03', 05
benzyl groups as well as N3-benzyloxymethyl groups of 2a-g
was effected using palladium on the carbon catalyst in THF
followed by O5'-dimethoxytritylation to give N-substituted
monomers 3a-g in good yield over two steps (52-96%).
Subsequent O3'-phosphitylation of 3a-g was achieved with
2-cyanoethyl-N,N,N',N'-tetraisopropylphosphorodiamidite  to
provide desired thymine phosphoramidites 4a-g.

Oligonucleotide synthesis

Synthesis of oligonucleotides (ONs) containing AmNA[N-R]
monomers was performed on an automated DNA synthesizer
using a conventional phosphoramidite method. 5-[3,5-Bis(tri-
fluoromethyl)phenyl]-1H-tetrazole (Activator 42®) solution was
used for the synthesis of all the oligonucleotides described
here. N-Alkylated AmNAs 4a-g were successfully coupled using
an extended coupling time to 16 min. The synthesized ONs
were purified by reverse-phase HPLC (RP-HPLC) and the com-
position and purity were analyzed by MALDI-TOF mass
spectrometry and RP-HPLC, respectively (Table 1 and ESI
Table S1t). A purity greater than 95% was confirmed for all oligo-
nucleotides. Note that the large-scale synthesis of phosphoro-
thioate antisense oligonucleotides for in vivo usage and their
purification were conducted by Genme Design Inc. (Ibaraki,
Japan), where they used AmMNA[N-R] phosphoramidite mono-
mers provided by us and the composition and purity were
analyzed by MALDI-TOF mass spectrometry and RP-HPLC,
respectively.

Physicochemical properties of AmNA-containing
oligonucleotides

We compared the relative hydrophobicity of oligonucleotides
singly modified with AmNAs (4a-g; ON-1-8) by RP-HPLC using
an octadecyl (C18) silica column under the indicated con-

" ditions. The obtained retention times are shown in Table 1.

AmMNA[N-H}-modified oligonucleotide ON-2 was the most

Table 1 Oligonucleotides singly modified with AmNAs?

T (ATm/mod.)
(°0)
Retention
Oligonucleotides D RNA DNA time (min)®
-d(TTTTTTTITT)-3' ON-1 19 21 8.4

5-d(TTTTTtyTTTL)}-3' ON-2 26 (+7) 20 (~1) 71
5-d(TTTTTt,ITTT)}3' ON-3  26(+7) 18(-3) 107
5-d(TTTTTtzTTTT)-3  ON-4 24 (+5) 18(=3)  13.5
5-d(TTTTTt,TTTT)-3'  ON-5  21(+2) 18(-3)  15.5
5-d(TTTTTHTTTT)-3' ON-6 22(+3) 17(-4) 17.0
5-d(TTTTTtpTTTT)-3' ON-7 23 (+4) 18 (-3) 22.4
5-d(TTTTTtTTTT)-3'  ON-8 21 (+2) 18(-3)  25.8

®ty = AMNA[N-H), ty; = AmMNA[N-Me], tz = AMNA[N-Et] , t, = AmNA[N-
nPr], t; = AMNA|N-iPr], tg = AMNA[N-Bn}, and tp = AmMNA[N-Phen].
? Conditions: eluent A: 0.1 M TEAA buffer, eluent B: A/MeCN (1/1, v/v),
gradient: MeCN conc. = 8-13% (30 min), 260 nm.

This journal is © The Royal Society of Chemistry 2015
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hydrophilic. As expected, the retention times of the derivatives
varied -as a function of the hydrophobicity of the oligonucleo-
tides and could be adjusted by changing the substituents and
their number.

To estimate the effect of modifications (4a-g) on duplex
stability, the thermal stability of duplexes was measured with
unmodified complementary RNA and DNA strands and com-
pared with the melting temperatures of the corresponding
unmodified reference duplexes (Table 1). Single incorporation
of AmNAs 4a-g into the center of a DNA T decamer increased
thermal stability for complementary RNA (AT, = +2 to +7 °C),
but decreased stability for complementary DNA (ATy, = —1 to
—4 ©C), indicating that high RNA-selective binding is main-
tained. These results are consistent with previous observations
made using a series of BNAs whose bridges differed in size
and composition from LNA.”®*'® A previous crystal structure
study of DNA-LNA heteroduplex revealed that the 2-oxygen of
LNA forms hydrogen bonds with water molecules.”® The per-
turbation of these hydration patterns by the 2'-substituents of
AmNAs probably affected duplex stability, but all derivatives
retained high affinity.

Nuclease stability

The effect of AmNA modification on nuclease resistance was
determined by incorporating AmNAs into the second base
from the 3-end of oligonucleotides, followed by incubation
with CAPV for 40 min at 37 °C. The percentage of intact oligo-
nucleotides was analyzed by RP-HPLC and found to be higher
than with conventional AmNA[N-Me] (ESI Fig. $51).7*

In vivo activities of AmNA-modified antisense oligonucleotides

We next evaluated hydrophobic AmNA-modified AONs in vivo.
We previously developed a potent LNA-based AON that targets
apolipoprotein CIII (apoC-III) for the treatment of dyslipide-
mia.’* Truncated versions of this apoC-III AON were used in
these in vivo studies because we recently revealed that these
could be more potent.>*** Six LNAs were incorporated into a
16-mer PS-AON, ON-9S. ON-10S retains a seven natural-nucleo-
tide gap moiety, sufficient for maintaining RNase H (a key
enzyme for antisense mechanism)-recruiting activity.

The primary purpose of the in vivo study was to confirm the
effectiveness of this truncated version of LNA-AON to target
apoC-IlI mRNA, and mice were dosed intravenously with
ON-10S at a dose range of 5-20 mg kg™ ". The expression levels
of apoC-IIl mRNA in the liver were analysed 72 hours post-
injection. Dose-dependent reduction in hepatic apoC-III
mRNA through a single administration of ON-10S was
observed without significant toxicity (ESI Fig. S6, S7.f The
highest reduction in hepatic apoC-III mMRNA (60%) was
recorded at a dose of 20 mg kg™?, and statistical significance
with saline control was found at doses above 10 mg kg™.
Thus, hydrophobic AmNAs-carrying AONs were evaluated
in vivo at 15 mg kg ™.

N-Alkylated AmNAs 4b, e, f were introduced into PS-AON
ON-9S to obtain ON-11S to -13S as shown in Table 2. The rela-

This journal is © The Royal Society of Chemistry 2015

View Article Online

Paper

Table 2 Antisense oligonucleotides targeting murine apoC-lll mRNA?

T (AT

mod.)

(°C) Retention
Oligonucleotides D RNA time (min)?
5-d(TTATCCAGCTTTATTA)-3' ON-9S 39 5.8
5'-d(tyt Aty CCAGCT Tt Aty tr A)-3' ON-10S 63 (+4) 5.8
5'-d(tmtasAtCCAGCTThyALMEA)-3Y  ON-11S 63 (+4) 5.8
5-d(tit;At;CCAGCTTHALHA)-3! ON-12S 61 (+4) 10.6
5'-d(tateAtg CCAGCT TtpAtptpA)-3' ON-13S 59 (+3) 21.2
5"d(titiAtMCCAGCmMAtitiA)'-?) ! ON-14S 62 (+4) 11.0
5'-d(tatymAtCCAGCT Tty AlytpA)-3'  ON-15S8 63 (+4) 13.0

“ty, = LNA-T, tyy = AMNA[N-Me], t; = AmNA[N-iPr] and tz = AMNA[N-Bn].
® Conditions: eluent A: 0.1 M TEAA buffer, eluent B: A/MeCN (1/1, viv),
gradient: MeCN conc. = 13-37% (30 min), 260 nm.

tive hydrophobicity of the oligonucleotides was gauged from
their elution time of RP-HPLC.

Each PS modification increases the retention time of the
AON; consequently the content of acetonitrile in the elution
buffer was modified from 8-13% to 13-37%, as described in
the footnote to Table 2. The retention times for ON-11S to -13S
differed significantly and predictably from the singly-incorpor-
ated phosphodiester-version oligonucleotides (ON-3, -6, -7;
Table 1). AmNA[N-Bn] 4f and AmNA[N-'Pr] 4e increased the
hydrophobicity of the AON, whereas steric hindrance of the
gap moiety in ON-12S and -138 reduced potency. Therefore, we
further designed and synthesized ON-14S and -15S, which
showed well-controlled retention times. The T, values of
ON-118 to -15S were measured and found to be in approxi-
mately 60 °C under the indicated buffer conditions. C57Bl/6]
male mice (n = 3 per group) were intravenously injected with
ON-10S, -118, -128, -138, -14S or -15S at a dose of 2.9 pmol
kg™ (15 mg kg™ for ON-10S). LNA counterpart ON-10S
reduced apoC-III by 45%, and AmNA-AONs ON-11S and
ON-128 achieved a similar knockdown of 40% and 30%
respectively. This is the first demonstration of AmNA-AONs
exhibiting LNA congener-like high activity in vivo (Fig. 2, ESI
Fig. S8f). In contrast, AmMNA[N-Bn] 4f-based AON ON-13§
showed no knockdown. The less hindered ON-14S and -15S in
the gaps showed improved potency compared to -11S, -128S;
interestingly, ON-14S achieved the highest knockdown of
apoC-Til mRNA of the AmMNA-AONs tested, suggesting that a
combination of functionalized AmNAs working in tandem can
tailor potency of AONs.

Hepatic tropism of hydrophobic AmNA-modified antisense
oligonucleotides

To investigate whether different combinations of hydrophobic
AmNAs alter the tissue deposition of AONs, we measured the
intact AONs that accumulated in the liver after intravenous
administration using a previously described ELISA method.'
The hepatic distribution of the more hydrophobic ON-12S,
-13S, -14S and -15S8 was ~1.5 times higher than that of the
LNA-AON ON-10S, whereas ON-10S and ON-11S exhibited
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Fig. 2 Reduction of apoC-lll mRNA in the livers of mice receiving a
single intravenous dose of 2.868 pmol kg™ of a series of AONs. Dun-
nett's multiple comparison test, ***P < 0.001, N.S.; not significant. Error
bars represent group means + S.D.n = 3.

14.0

- =
s N
o [~

N

«
o
N

Liver AON content
(pmole/ug liver protein)

>
=)

g
=

LM

/

ON-10S ON-11S ON-128 ON-13S ON-14S ON-15S

0.0

Fig. 3 ELISA-based gquantification of a series of AONs distributed in
murine liver after 72 hours post-injection. Error bars represent group
means + S.D.n=3.

hepatic distribution similar to each other (Fig. 3). However,
the activity of all these AmNA-based AONs was at best compar-
able to the LNA counterpart ON-10S. It should primarily be
noted that no statistical significance was found between these
liver AON contents, which may contribute to this insignificant
change in potency. It is also possible that the hydrophobic
modification altered the suborgan distribution of AONs in
liver. ApoC-III mRNA is predominantly expressed in hepatic
parenchymal cells, which comprise 80% of the liver volume,
whereas non-parenchymal cells such as Kupffer cells and sinu-
soidal endothelial cells are relatively minor components of the
liver. AONs should therefore selectively target the parenchymal
cells. However, it is reported that 80% of PS-AONs accumulated
in the liver are distributed in non-parenchymal cells and only
20% are in the parenchymal hepatocytes.*” The hydrophobic
AONs developed here might foster this trend. Alternatively,
there are at least two uptake pathways in parenchymal cells
(a productive pathway and a bulk nonproductive pathway); the
hydrophobic AONs might encourage the nonproductive uptake
which undermines the knockdown activity of AONs.**
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Conclusions

In summary, we here showed that AmNAs are an interesting
class of antisense building blocks. A series of AmNAs funetio-
nalized with a variety of hydrophobic groups were synthesized:
AMNA[N-Et] 4¢, AmMNA[N-nPr] 4d, AmNA[N-iPr] 4e, AmNA-
[N-Bn] 4f and AmNA[N-Phen] 4g. We demonstrated that a
tandem arrangement of these small substituents affects the
systemic activity and tissue disposition of AONs in vivo. This
strategy will allow more finely-tuned control of the properties
of AONs than conventional strategies. Using this scaffold
nucleoside, we will further develop useful modules and ident-
ify the best combination of these AmNA modules to tackle the
issues currently confronting antisense therapeutics.

Experimental
General

All moisture-sensitive reactions were carried out in well-dried
glassware under a N, atmosphere. Anhydrous dichloro-
methane, DMF, MeCN, and pyridine were used as purchased.
"M NMR spectra were recorded at 300 and 400 MHz and
500 MHz, **C NMR were recorded at 75 and 100 MHz, and the
%1p spectrum was recorded at 161 MHz. Chemical shift values
are expressed in § values (ppm) relative to tetramethylsilane
(TMS) as an internal standard and a residual solvent for 'H
NMR, and CHCl; (6 = 77.00 ppm), methanol (6 = 49.00 ppm)},
and DMSO (39.50 ppm) for **C NMR, and 85% HzPOy4 (5§ =
0 ppm) for **P NMR. Fast atom bombardment mass spectra
(FAB-MS) were recorded in the positive ion mode. For column
chromatography, silica gel PSQ 100B was used. Progress of the
reaction was monitored by analytical thin layer chromato-
graphy (TLC) on pre-coated aluminium sheets (Silica gel
60 F,5, sheet, Merck), and the products were visualized by UV
light.

Synthesis of AmNA monomers and phosphoramidites

General procedure 1 (synthesis of compound 2). To the stir-
ring solution of 1 (1.0 equiv.) in DMF (0.1 M) was added NaH
(1.2 equiv.) at 0 °C. After stirring for 30 min, alkyl halide
(1.2 equiv.) was added. The reaction temperature was gradually
raised from 0 °C to room temperature and after completion of
the reaction (approx. 30 min), ice-cold water was added. The
solution was stirred for 15 min and the product was extracted
with ethyl acetate. The organic phase was washed with brine,
dried (Na,S0,), and concentrated. The product was purified
by flash column chromatography (n-hexane-ethyl acetate =
3:1 or 2: 1) to afford 2 as a white amorphous solid.

(2'R)-3',5'-Di-O-benzyl-N>-benzyloxymethyl-2'-ethylamino-2'-N,4'-
C-oxomethylenethymidine (2c: R = Et). By following the general
procedure 1, using bromoethane as an alkyl halide, 2¢ was
obtained in quant. as a white amorphous solid.

[a]% +45.9 (c 0.100, CHCly). IR (KBr): 3071, 3033, 2930,
2871, 1725, 1708, 1665, 1454, 1273 cm™". *"H NMR (300 MHz,
CDCly) &: 1.22 (3H, t), 1.64 (3H, s), 3.35 (1H, dq J = 14 Hz,

This journal is © The Royal Society of Chemistry 2015
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