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Aims: This study aims to identify the contribution of myelinated (A-fiber) and unmyelinated (C-fiber) barorecep-
tor central pathways to the baroreflex control of sympathetic nerve activity and arterial pressure.

Main methods: Two binary white noise stimulation protocols were used to electrically stimulate the aortic depres-
sor nerve and activate reflex responses from either A-fiber (3 V, 20-100 Hz) or C-fiber (20 V, 0-10 Hz) barorecep-
tor in anesthetized Sprague-Dawley rats (n = 10). Transfer function analysis was performed between stimulation
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Key findings: The central arc transfer function from nerve stimulation to splanchnic sympathetic nerve activity
displayed derivative characteristics for both stimulation protocols. However, the modeled steady-state gain
(0.28 + 0.04 vs. 4.01 + 0.2%-Hz™', P< 0.001) and coherence at 0.01 Hz (0.44 + 0.05 vs. 0.81 + 0.03, P < 0.05)
were significantly lower for A-fiber stimulation compared with C-fiber stimulation. The slope of the dynamic
gain was higher for A-fiber stimulation (14.82 + 1.02 vs. 7.21 + 0.79 dB - decade™!, P < 0.001). The steady-
state gain of the Stim-AP arc was also significantly lower for A-fiber stimulation compared with C-fiber stimulation
(023 + 0.05 vs. 3.05 + 0.31 mmHg-Hz™', P< 0.001).

Significance: These data indicate that the A-fiber central pathway contributes to high frequency arterial pressure
regulation and the C-fiber central pathway provides more sustained changes in sympathetic nerve activity and ar-
terial pressure. A sustained reduction in arterial pressure from electrical stimulation of arterial baroreceptor affer-
ents is likely mediated through the C-fiber central pathway.
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Introduction

The arterial baroreflex is an important negative feedback system
that regulates arterial pressure (AP) against acute instabilities during
daily activities. Any involvement of the arterial baroreflex in the long-
term regulation of AP has been discounted because surgical denervation
of baroreceptor afferents fails to chronically increase AP (Guyton, 1980;
Cowley, 1992). In hypertension, the arterial baroreflex resets to the pre-
vailing AP and loses the ability to suppress sympathetic nerve activity
(SNA) and AP effectively (Krieger, 1986). However, experimental ani-
mal studies using electrical stimulation (Lohmeier et al., 2012) and
baroreceptor unloading (Thrasher, 2005a) have implied that the arterial
baroreflex may be able to chronically control AP. Clinical trials using

* Corresponding author at: Department of Cardiovascular Dynamics, National Cerebral
and Cardiovascular Center, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan. Tel.: +81 6
6833 5012x2427; fax: +81 6 6835 5403.

E-mail address: michaeljturner@icloud.com (M, Turner).
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0024-3205/© 2014 Elsevier Inc. All rights reserved.

electrical activation of the carotid sinus baroreflex (Baroreflex activa-
tion therapy) have recently demonstrated effective long-term lowering
of AP in patients with drug-resistant hypertension (Bakris et al., 2012).
Although bypassing the baroreceptor transduction property by directly
stimulating the baroreceptor afferent fibers may explain the effective-
ness of the baroreflex activation therapy, the neural mechanisms in-
volved in the SNA and AP regulations during electrical stimulation of
the baroreceptor afferents are still not well understood.

An often-overlooked issue involved in the clinical application
of baroreflex activation therapy is the existence of two types of barore-
ceptor afferents: myelinated axons (A-fiber) and unmyelinated axons
(C-fiber). The former constitutes approximately 10-20% and the latter
accounts for the remaining 80-90% of the fibers in the aortic depressor
nerve (ADN) of the rat (Fazan et al., 2001). While it has long been
known that these axon types differ in a number of functional character-
istics such as firing rates, threshold pressures, expression of membrane
channels, reflex inhibition of SNA, and transfer function characteristics
(Brown et al., 1978; Numao et al., 1985; Thoren et al., 1999; Sun et al,,
2009), they may also differ in their central processing of dynamic
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input. Previous studies by Kubo et al. (1996) and Petiot et al. (2001)
identified the transfer function from ADN stimulation to SNA in rabbits
and rats, respectively, but did not deal with differences in fiber type.
Furthermare, in studies investigating baroreflex activation therapy,
both clinical (Bakris et al., 2012) and animal (Lohmeier et al., 2012),
the pulse generator was programmed to target a reduction in AP from
hypertensive to control levels. While voltage and frequency guidelines
have been used there appears to have been no attempt to actively stim-
ulate either A-fiber or C-fiber baroreceptor afferents and identify their
respective contribution to the reduction in AP.

We hypothesized that there is a difference in the dynamic character-
istics between A-fiber and C-fiber central pathways, which leads to a
difference in the regulation of SNA and AP by each fiber type. According-
ly, the purpose of the present study was to examine the contribution of
A- and C-fiber central pathways in the control of SNA and AP by electri-
cally stimulating the left ADN of rats. We devised and utilized dynamic
stimulation protocols that preferentially activate A- or C-fiber type
baroreceptor afferents.

Materials and methods
Animal preparation

Animal care was provided in strict accordance with the Guiding
Principles for the Care and Use of Animals in the Field of Physiological
Sciences, approved by the Physiological Society of Japan. All protocols
were reviewed and approved by the Animal Subject Committee of the
National Cerebral and Cardiovascular Center, Osaka, Japan.

Experiments were completed in 10 male Sprague-Dawley rats
(350-450 g). Each rat was anesthetized with an intraperitoneal injec-
tion (2 ml-kg™') of a mixture of urethane (250 mg-ml~!) and «-
chloralose (40 mg-ml~'), and mechanically ventilated with oxygen-
enriched room air. A venous catheter was inserted into the right femoral
vein and 20-fold diluted solution of the above anesthetic mixture was
administered to maintain anesthesia (2-3 ml-kg~!-h™1!). The amount
of required anesthesia was determined by testing the withdrawal and
blink reflexes and adjusted to maintain AP within a normal range in
the absence of ADN stimulation. A heating pad was used to maintain
body temperature of the animal at approximately 38 °C. A postgangli-
onic branch of the splanchnic sympathetic nerve was exposed through
a left flank incision to record SNA using a pair of stainless steel wire elec-
trodes (Bioflex wire, AS633, Cooner Wire, CA, USA). Silicone glue (Kwik-
Sil, World Precision Instruments, FL, USA) was used to secure and insu-

late the nerve and electrodes (Stocker and Muntzel, 2013). Preamplified -

nerve signals were band-pass filtered at 150-1000 Hz, and then full-
wave rectified and low-pass filtered at a cut-off frequency of 30 Hz
using analog circuits to quantify SNA.

Bilateral vagal nerves, carotid sinus nerves and ADNs were sectioned
to avoid any confounding effects mediated by native cardiopulmonary
and arterial baroreflexes. The sectioned central end of the left ADN
was placed on a pair of stainless steel wire stimulating electrodes
(Bioflex wire, AS633) and covered with silicone glue (Kwick-Sil). The
electrodes were attached to an electrical stimulator (Model SEN-7203,
Nihon Kohden, Tokyo, Japan) through a stimulus isolation unit (Model
SS-102J, Nihon Kohden).

Stimulation protocols

After surgical procedures were completed, baseline SNA and AP were
monitored for 30 min. Two stimulation protocols were employed: step
stimulation and dynamic stimulation. The pulse duration of the stimula-
tion was fixed to 0.1 ms. The two stimulation protocols were conducted
under control conditions and after a 20-minute perineuronal application
of 1 umol -1 ! resiniferatoxin (RTX) (LC Laboratories, MA, USA) to the
left ADN central to the stimulation site. This dose of RTX can irreversibly
block C-fiber conduction without significantly interfering with A-fiber

conduction (Reynolds et al,, 2006). The sequence of the stimulation proto-
col was: step — dynamic - dynamic(RTX) - step(RTX).

In the step stimulation protocol (n = 8), the left ADN was stimulated
for 30 seconds using low-voltage (1-3 V) and high-voltage (18-20 V)
settings. These voltages were selected to activate only A-fiber (low volt-
age) or both A- and C-fibers (high voltage) (Fan and Andresen, 1998;
Fan et al,, 1999). The high voltage setting is a supramaximal stimulation
that is well above the required stimulation intensity to initiate C-fiber
baroreceptor action potentials, thus insuring complete recruitment of
C-fiber baroreceptors in the ADN. The stimulation frequency was varied
among 5, 10, 20, 50 and 100 Hz for each stimulus voltage. The step stim-
ulations were given in random order and 3 minutes apart to allow for
full recovery of AP and SNA.

In the dynamic stimulation protocol (n = 10), the left ADN was
stimulated for 20 minutes. The stimulation frequency was switched be-
tween two predefined frequency values every 500 ms according to a
computer generated binary white noise sequence. A low-voltage (3 V)
and high-frequency (either 20 or 100 Hz) stimulation protocol (LVHf)
was used to chiefly estimate dynamic characteristics of the A-fiber baro-
receptor central pathway. A high-voltage (20 V) and low-frequency (ei-
ther 0 or 10 Hz) stimulation protocol (HVLf) was used to chiefly
estimate dynamic characteristics of the C-fiber baroreceptor central
pathway.

Data analysis

Data were sampled at 200 Hz using a 16-bit analog-to-digital convert-
er. The noise level of SNA was determined by a 10-second average of the
SNA signal 2 minutes after intravenous hexamethonium (60 mg-kg™")
administration and was defined as zero (Kawada et al., 2010). SNA was
normalized by defining the SNA level for 10 seconds preceding the ADN
stimulation as 100% activity under control conditions.

In the step stimulation protocol, after applying a 1-second moving
average to the data, mean AP (MAP) and SNA responses were quantified
as negative changes from the level preceding stimulation (baseline) and
designated as AMAP and ASNA. The negative peak responses and final
step responses at 30 seconds were calculated. In the dynamic stimula-
tion protocol, based on 10-Hz resampled data, the transfer function
from ADN stimulation to SNA and that from SNA to AP were estimated
by using a standard open-loop transfer function analysis described
below. The former is referred to as the central arc transfer function
and the latter as the peripheral arc transfer function in this paper. The
transfer functions from ADN stimulation to AP were also estimated
and are referred to as the Stim-AP arc.

Data were analyzed starting from 120 seconds after the initiation of
the binary white noise stimulation input. The input-output pairs were
resampled at 10 Hz and segmented into 50% overlapping bins of 1024
points each. For each segment, a linear trend was removed, and a
Hanning window was applied. Fast Fourier transform was performed
to obtain the frequency spectra of the input and output signals. The en-
semble averages of the input power spectral density [Sxx(f)], output
power spectral density [Syy(f)], and cross spectral density between the
input and output signals [Syx(f)] were calculated over 12 segments,
where f denotes frequency. Finally, the transfer function [H(f)] from
input to output was estimated as (Bendat and Piersol, 2010):

Sw(f)
HN =32 (1)

The transfer function is a complex-valued function that can be
expressed by the modulus and phase at each frequency. In this study,
we refer to the modulus as the dynamic gain. Because the magnitude
of SNA varied among animals depending on the recording conditions,
two normalization procedures were used. The first normalization pro-
cedure, where SNA was normalized by assigning unity to the mean dy-
namic gain for frequencies below 0.03 Hz, was used for comparison
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between transfer functions before and after RTX. The second normaliza-
tion procedure used the noise level of SNA, recorded after the adminis-
tration of hexamethonium bromide, as zero and the average SNA during
baseline recordings was defined as 100%. The second normalization pro-
cedure was used for comparisons between A-fiber and C-fiber related
transfer functions.

To quantify the linear dependence between the input and output sig-
nals, a magnitude squared coherence function [Coh(f)] was calculated as:

1Sy ()1

COh) = S NS (D)

(2)

The coherence function is a real-valued function ranging from zero
to unity. When the output signal is perfectly explained by linear dynam-
ics with the input signal, the coherence value becomes unity. When the
output signal is totally independent of the input signal, the coherence
value becomes zero.

Simulation

The central and peripheral arc transfer functions were modeled using
mathematical transfer functions according to previous studies To facilitate
understanding of SNA and AP regulation via the A-fiber and C-fiber path-
ways, the central and peripheral transfer functions were modeled. Ac-
cording to previous studies (Kawada et al., 2002, 2010) the central arc
transfer functions were modeled as:

1+Lj

Hy(f) = Kn— exp(—2m f Lyj) 3)

(1+49)

where j represents the imaginary units. Ky is the steady-state gain of the
central arc (in %-Hz ™ 1!), fc; is the corner frequency determining the deriv-
ative characteristics (in Hz), fe is the corner frequency determining the
high-cut characteristics (in Hz), and Ly is the pure dead time (in seconds).

The peripheral arc transfer functions were modeled by a second-
order low-pass filter as:

Kp
1+ zgi Jj+ (% j)
I N
where Kp is the steady-state gain of the peripheral arc (in mmHg-%~1),
fn is the natural frequency (in Hz), {'is the damping ratio (unitless), and
Lp is the pure dead time (in seconds). To facilitate understanding of the
modeled transfer function, step responses were calculated by deriving
the system impulse response from the inverse Fourier transform. The
step response was then obtained from the time integral of the impulse
response (Kawada et al., 2002, 2010). The Stim-AP arc was calculated
from a product of the central and peripheral arc transfer functions in
the frequency domain. To further aid in understanding of the transfer

functions, step responses in the time domain, corresponding to respec-
tive model transfer functions were also calculated.

Hp(f) =

5 eXp(—21 fLp}) 4

Statistical analysis

All data are presented as mean and standard error. Effects of stimu-
lation frequency and RTX on AMAP and ASNA in the step stimulation
protocol were examined by repeated measures two-way ANOVA. The
effect of RTX at each frequency was then examined by paired t-test
with Bonferroni correction. Before and after the RTX application, chang-
es in mean SNA and AP levels were examined using repeated measures
ANOVA followed by paired t-test with Bonferroni correction for com-
parisons among conditions of pre-stimulation, LVHf, and HVLf stimula-
tion. The transfer function values (dynamic gain and phase) at 0.01, 0.1
and 1 Hz were also compared using repeated measures ANOVA

followed by paired t-test with Bonferroni correction among conditions
of LVHf before RTX, LVHf after RTX, HVLf before RTX, and HVLf after
RTX. Coherence values were compared using Friedman's test with
post-hoc Dunn's multiple comparison test. Differences were considered
to be significant at P < 0.05 for all statistical analysis.

Results
Low-voltage step stimulation

Representative traces of low-voltage step stimulation at 50 Hz before
and after perineuronal application of RTX are shown in Fig. 1a. While
stimulation decreased MAP and SNA, the reflex decreases in MAP and
SNA returned towards pre-stimulation levels during the 30-second stim-
ulation period. RTX had no significant effect on the SNA and MAP re-
sponses. The negative peak responses and the final responses measured
at different stimulation frequencies are summarized in Fig. 1b. Low inten-
sity stimulation of the ADN lowered SNA and MAP between 20 and
100 Hz, which was unaffected by the application of RTX.

High-voltage step stimulation

Representative traces of high-voltage step stimulation at 20 Hz be-
fore and after perineuronal application of RTX are shown in Fig. 2a.
The reflex response in MAP was well sustained during the 30-second
stimulation period under the control condition. After the RTX applica-
tion, the negative peak response and the final response became smaller,
and the reduction of MAP was not sustained and returned towards
baseline levels. The negative peak responses and the final responses
measured at different stimulation frequencies are summarized in
Fig. 2b. Large reflex responses in SNA and MAP were observed at 5 Hz
and above before RTX application.

Dynamic stimulation

Typical experimental traces during the LVHf and HVLf dynamic stim-
ulation protocols before and after perineuronal application of RTX are
shown in Fig. 3. MAP and SNA were not significantly decreased from
baseline values by the LVHf stimulation, both before and after the RTX
application (Table 1). However, MAP and SNA were significantly de-
creased from baseline values by the HVLS stimulation before RTX appli-
cation (MAP: 101 £ 2.7 mmHg compared with 79.4 + 2.4 mmHg,
P < 0.01; SNA: 100% compared with 70.4 + 2.5%, P < 0.001). RTX
abolished the reduction in MAP and SNA observed during the HVLf
stimulation (MAP: 105 + 3.3 mmHg compared with 99.9 +
4.4 mmHg, SNA: 116 4+ 11% compared with 1124 + 8.7%).

Central and peripheral arc transfer functions

The central arc transfer function from ADN stimulation to SNA deter-
mined by either LVHf or HVLf stimulation shows that normalized dy-
namic gain increases as the modulation frequency increases (Fig. 4a).
The slope of the dynamic gain and dynamic gain at 1 Hz were signifi-
cantly smaller for the central arc transfer function estimated by HVLf
stimulation (7.21 & 0.79 dB-decade ™', Fig. 4a, right) than those esti-
mated by LVHf stimulation (14.82 + 1.02 dB - decade™!, P < 0.001,
Fig. 4a, left). The coherence of the transfer function estimated by HVLf
was significantly higher compared with LVHf stimulation at 0.01 Hz
(0.81 + 0.03 and 0.44 + 0.05, P < 0.05) and 0.1 Hz (0.77 + 0.04 and
0.42 + 0.08, P < 0.05). The phase of both transfer functions was close
to -7 radians in the lower frequencies, reflecting the out-of-phase rela-
tionship between ADN stimulation and SNA. RTX had little effect on the
central arc transfer function estimated by the LVHf stimulation other
than an increased dynamic gain at 0.1 Hz (Table 2). However, RTX sig-
nificantly decreased the dynamic gain of HVLf simulation at modulation
frequencies of 0.01 Hz (1.10 + 0.02 a.u.-Hz™ ' compared with 0.39 +
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Fig. 1. Sympathetic nerve activity (SNA) and mean arterial pressure (MAP) responses to low voltage (3 V) stimulation. (a) Representative traces showing reflex responses in SNA (top) and
MAP (bottom) from electrical stimulation of the ADN at 3 V, 50 Hz. After a transient baroreflex response, SNA and MAP returned towards pre-stimulation levels during the 30-second
stimulation period. The gray lines indicate the original 200 Hz signal and the black lines are a 1-second moving average signal. (b) Group data (n = 8 in each group) shows high-
frequency stimulation of 20 Hz and above was required to evoke notable reflex decreases in SNA (top) and MAP (bottom). At the stimulation frequencies of 20 Hz and above, the mag-
nitude of the final responses (M) in SNA and MAP was approximately 50% and 70-80% of the peak responses (@), respectively. RTX did not significantly affect the negative peak responses

(O) or the final responses ().

0.04 a.u.-Hz=!,P< 0.01) and 0.1 Hz (1.27 £ 0.12 a.u.-Hz~'and 0.38 + decreases as the modulation frequency increases (Fig. 4b). The phase
0.04 a.u.-Hz™', P< 0.01) and coherence values at 0.01 Hz (0.81 + 0.03 of both transfer functions approached zero radians at 0.01 Hz and was
and 0.24 4+ 0.05, P <0.001), 0.1 Hz (0.77 + 0.04 and 0.29 + 0.06, delayed by almost — 2m radians as the modulation frequency increased
P <0.001) and 1 Hz (0.70 4+ 0.04 and 0.33 + 0.06, P < 0.05). to 1 Hz. RTX had no effect on the peripheral arc transfer function estimat-

The peripheral transfer function from SNA to AP estimated by either ed by LVHf stimulation (Table 3). RTX significantly decreased
LVHf or HVLf stimulation shows that normalized dynamic gain the dynamic gain at 0.01 Hz (0.99 + 0.06 mmHg-a.u.”! and 0.57 +
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Fig. 2. Sympathetic nerve activity (SNA) and mean arterial pressure (MAP) responses to high voltage (20 V) stimulation. (a) Representative traces showing reflex responses in SNA (top)
and MAP (bottom) from electrical stimulation of the ADN at 20 V, 20 Hz. High voltage stimulation resulted in robust responses in SNA and MAP that was sustained throughout the stim-
ulation period. After the application of RTX, responses became brief and returned towards pre-stimulation levels while stimulation was maintained. The gray lines indicate the original
200 Hz signal and the black lines are a 1-second moving average signal. (b) Group data (n = 8 in each group) shows that the magnitude of the final responses (M) in SNA and MAP
was above 60% and 90% of the peak responses (®), respectively. RTX significantly attenuated the negative peak responses (O) at 5 Hz, 10 Hz, and 20 Hz and the final responses (L) at
all frequendies for both SNA and MAP. *P < 0.01 for control (peak) vs. RTX (peak); TP < 0.01 for control (final) vs. RTX (final).
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Fig. 3. Typical recordings of binary white noise stimulation (BIN), sympathetic nerve activity (SNA) and arterial pressure (AP) during low voltage (3 V) high frequency stimulation (a) and
high voltage (20 V) low frequency stimulation (b). Because of the dynamic nature of the input signal it is not easy to visually identify stimulation-induced reflex responses in SNA and AP. In
the SNA plots, the gray lines are the 200 Hz signal, and the black lines indicate 10 Hz resampled data and in the AP plots, the gray lines are the 200 Hz signal and the black line indicates a 1-

second moving average.

Table 1
Cardiovascular variables during pre-stimulation conditions and stimulation protocols.
Before RTX After RTX
Prestim LVHf HVLf Prestim LVHf HVLf
SNA, % 100 963 + 11.0 704 + 2.5 116 + 11.0 106 + 69 112 + 87
MAP, mmHg 101 + 2.7 96.0 £ 5.6 794 + 2.4 105 +£ 33 943 £+ 47 999 + 44
HR, bpm 387 £ 62 394 + 10.1 370 £ 9.0 394 + 63 408 + 108 404 + 4.7

Data are means + SE (n = 10 in each group). SNA, sympathetic nerve activity; MAP, mean arterial pressure; HR, heart rate; Prestim, pre-stimulation conditions; LVHf, low-voltage high-
frequency dynamic stimulation; HVL{, high-voltage low-frequency dynamic stimulation; RTX, resiniferatoxin.

2 P<0.001 vs. Prestim.

> P <0001 vs. LVHf.

€ P <001 vs. Prestim.

4 P< 0,05 vs. LVHE.
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Fig. 4. Effect of RTX on central arc (a) and peripheral arc (b) transfer functions using either LVHF (left) or HVLS (right) stimulation protocols. LVHf, low-voltage high-frequency dynamic
stimulation; HVL{, high-voltage low-frequency dynamic stimulation; RTX, resiniferatoxin. [n each panel, the solid and dashed lines represent the mean and mean = SE, respectively.

0.07 mmHg-a.u.~ ', P< 0.001) and coherence values at 0.01 Hz (0.66 &
0.04 and 0.39 + 0.07, P < 0.05) and 0.1 Hz (0.77 £ 0.02 and 0.46 +
0.06, P < 0.001) of the peripheral arc transfer function estimated by
HVLSf stimulation.

Stim-AP arc transfer functions

The Stim-AP arc transfer function, estimated by either LVHf or HVLf
stimulation, shows that normalized dynamic gain decreases as the mod-
ulation frequency increases (Fig. 5). The phase of both transfer functions
approached —m radians at 0.01 Hz and was delayed by almost — 3 ra-
dians as the modulation frequency increased to 1 Hz. RTX had no effect
on the Stim-AP arc transfer function estimated by LVHf stimulation
(Table 4). RTX significantly decreased the dynamic gain at 0.01 Hz
(3.05 + 0.31 mmHg-Hz~'and 0.91 + 0.10 mmHg-Hz™ ', P< 0.001)

Table 2
Transfer function parameters of the baroreflex central arc obtained from LVHf and HVLf
stimulation protocols,

Central arc ~ LVHf LVHf (RTX) HVLf HVLS (RTX)
Gain (a.u.-Hz™")

0.01 Hz 139 + 007 1.69 + 023 1.10 + 0.02 039 + 0.04%
0.1 Hz 1.28 + 02 207 + 0.28° 127 £ 0.12 038 + 0.04%
1 Hz 855+ 106 1028 + 1.13 336 + 023° 172 £ 026
Slope (dB-decade™")

0.1-1Hz 1482 + 1.02 1554 + 132 7214+079° 1594 + 1.64¢
Phase (radians)

0.01 Hz —268+£023 —252+011 —327+005 —272+03
0.1 Hz —274+036 —251+016 —272+005 —2544+ 046
1Hz —336+009 —331+009 —424+009® —3.18+0.15¢
Coherence

0.01 Hz 044 + 005 040 + 0.08 081 + 0.03° 0.24 4+ 0.05¢
0.1 Hz 042 + 0.08 057 £ 0.07 0.77 £ 0.04° 0.29 + 0,064
1 Hz 0.70 + 0.05 073 + 0.04 0.70 + 0.04 0.33 + 0.06

Data are means + SE (n = 10 in each group). LVHf, low-voltage high-frequency dynamic
stimulation; HVL{, high-voltage low-frequency dynamic stimulation; RTX, resiniferatoxin.

2 P<0.01 vs. HVLf.

b P <0.001 vs. LVHf.

€ P<0.01vs. LVHf.

4 P<0.001vs. HVLf.

€ P <0.05vs. LVHf.

T P<0.05 vs HVLE.

and coherence values at 0.01 Hz (0.70 + 0.03 and 0.31 + 0.07,
P < 0.001) and 0.1 Hz (0.72 + 0.04 and 0.41 + 0.07, P < 0.01) of the
Stim-AP arc transfer function estimated by HVLf stimulation. The gain
at 0.01 Hz was also significantly lower for the transfer function estimat-
ed by LVHf stimulation compared with HVLf (0.23 + 0.05 mmHg-Hz ™"
and 3.05 + 0.31 mmHg-Hz™', P < 0.001).

Simulation

Model transfer functions and corresponding step responses are
shown in Fig. 6. The parameter values used to simulate the transfer
functions were derived from the mean values shown in Table 5. The
transfer gain in the lower frequency range (steady-state) was lower in
the A-fiber related transfer function than the C-fiber related transfer
function in the central arc (0.28 4 0.04%-Hz~ ' vs. 4.01 + 0.2%-Hz™ !,
P <0.001) and Stim-AP arc (0.15 + 0.03 mmHg-Hz™ ! vs. 2.39 +
0.23 mmHg-Hz ™', P< 0.001). There were no significant differences be-
tween the A-fiber and C-fiber related transfer functions of the peripher-
al arc (Table 4). The step responses, corresponding to the respective
model transfer functions, provide an intuitive representation of A- and
C-fiber related changes in SNA and AP. The peak response was signifi-
cantly greater (—11.20 £ 0.50% vs. —2.44 4 0.44%, P < 0.001) and
time to peak (0.36 &+ 0.02 second vs. 0.19 + 0.01 second, P < 0.001)
was significantly longer for C-fiber related responses in the central arc
step response. There was no significant difference in the peripheral arc
step responses.

Discussion

The purpose of this study was to identify the contribution of A- and
C-fiber baroreceptor central pathways to the reduction in AP observed
during electrical activation of the arterial baroreflex. The present results
demonstrate that the C-fiber central pathway contributes more to
sustained decreases in SNA and AP than the A-fiber central pathway.

Dynamic characteristics of A- and C-fiber central pathways

Arterial baroreceptors can be classified as either A- or C-fiber type
based on the presence of myelin and other distinct characteristics,
such as firing rate and threshold pressures. While the differences in fir-
ing characteristics of A- and C-fiber baroreceptor afferents are well doc-
umented (Thoren et al., 1999), differences in the central processing
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Table 3

Transfer function parameters of the baroreflex peripheral arc obtained from LVHf and HVLf stimulation protocols.
Peripheral arc LVHf LVHf(RTX) HVLf HVL{(RTX)
Gain (mmHg-a.u.”")
0.01 Hz 097 + 0.06 0.98 + 0.01 0.99 + 0.06 057 + 0.07¢
0.1 Hz 0.52 + 0.08 0.38 + 0.03 0.29 + 003" 021 + 0.02
1 Hz 0.007 + 0.001 0.007 + 0.001 0.003 + 0.001¢ 0.005 + 0.001
Slope (dB-decade ")
0.1-1 Hz —326 + 094 —-293 £ 217 —343 + 1.05 —26 £ 1.72*
Phase (radians)
0.01 Hz —0.56 £ 0.11 —0.53 + 0.06 —0.44 + 007 —0.66 + 0.17
0.1 Hz —241 £ 0.12 —233 +0.12 —244 + 0.08 —2.11 £ 0.14¢
1 Hz —498 + 0.29 —5.01 £ 0.29 —5.18 4+ 0.19 —527 4+ 0.13
Coherence
0.01 Hz 045 + 0.06 0.59 + 0.06 0.66 + 0.04 039 + 0.07¢
0.1 Hz 060 + 0.06 0.67 + 0.04 0.77 + 0.02¢ 046 + 0.06*
1Hz 036 + 0.07 0.33 + 0.06 0.32 + 0.06 030 + 0.05

Data are means + SE (n = 10 in each group). LVHf, low-voltage high-frequency dynamic stimulation; HVLf, high-voltage low-frequency dynamic stimulation; RTX, resiniferatoxin.

2 P<0.001 vs. HVLf.
b p<0.01vs. LVHf.
€ P<0.05vs LVHL.
4 p<0.05 vs. HVL.

between A-fiber and C-fiber central pathways remain to be fully eluci-
dated. The present study demonstrated that LVHf dynamic stimulation,
which predominantly activates the A-fiber baroreceptor afferents, pro-
duced a central arc transfer function with strong derivative characteris-
tics (Fig. 4a, left). This may indicate that the A-fiber central pathway
primarily contributes to the SNA regulation in the higher frequency
range. In contrast, HVLf dynamic stimulation, which predominantly ac-
tivates the C-fiber baroreceptor afferents, produced a central arc transfer
function with less derivative characteristics before the RTX application
(Fig. 4a, right). Therefore, the C-fiber central pathway contributes to
the SNA regulation both in the lower frequency range and in the higher
frequency range. These characteristics conform to known characteristics
of A- and C-fiber baroreceptor firing (Thoren et al., 1999).

The dynamic gain of the C-fiber related central arc transfer function
was over an order of magnitude higher than that of the A-fiber related

central arc transfer function (Fig. 6a). These data indicate that, per
unit stimulation frequency, C-fiber baroreceptor activity results in a sig-
nificantly greater reduction in SNA than A-fiber baroreceptor activity. At
the same time, it is important to remember normal physiological firing
rates of A-fiber (10-100 Hz) and C-fiber (0-20 Hz) baroreceptor axons
(Thoren et al., 1999). Even after we take this difference into account it
seems that the C-fiber central pathway contributes more to the SNA reg-
ulation in the lower frequency range compared with the A-fiber central
pathway. The simulation of the Stim-AP arc (Fig. 6¢) also indicates that
the contribution of the C-fiber pathway is greater in the regulation of AP
than that of A-fiber pathway because the peripheral arc transfer func-
tion did not differ significantly between A- and C-fiber related transfer
functions (Fig. 6b).

To further interpret how each baroreceptor subtype contributes to
the control of SNA it is important to take coherence into account.
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Fig. 5. Effect of RTX on Stim-AP arc transfer functions using either LVHF (left) or HVLS (right) stimulation protocols. LVHf, low-voltage high-frequency dynamic stimulation; HVLS, high-
voltage low-frequency dynamic stimulation; RTX, resiniferatoxin. In each panel, the solid and dashed lines represent the mean and mean =+ SE, respectively.
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Table 4
Transfer function parameters of the Stim-AP arc obtained from LVHf and HVLf stimulation
protocols.

Stim-AP Arc  LVHf LVHf (RTX) HVLf HVLSf (RTX)
Gain (mmHg-Hz™ ")

0.01 Hz 0.23 + 0.05 0.29 + 0.06 305 + 031° 091 + 0.10*
0.1 Hz 0.10 £ 0.02 0.10 + 0.02 0.83 + 0.10° 035 + 0.06*
1 Hz 0.006 + 0001 0.008 + 0002 0.026 + 0.004° 0.024 + 0.003
Slope (dB-decade™")

0.1-1 Hz —186 + 140 —165+ 134 —2344087° —156+ 1.07*
Phase (radians)

0.01 Hz —350+022 —32540.11 —-3734+006 —3.12+ 046
0.1 Hz —473+£016 —478+£0.13 —5194+007 —443 + 046
1 Hz —595 +0.15 —561+0.10 —680+0.13¢ —590+ 0.21°
Coherence

0.01 Hz 0.44 £+ 0.08 048 + 0.08 0.70 + 0.03 031 + 0.06*
0.1 Hz 055 + 0.08 0.65 + 0.05 072 + 0.04 041 + 0.07°
1 Hz 0.32 £ 0.05 0.38 + 0.05 0.25 + 0.04 0.19 4+ 0.03

Data are means + SE (n = 10 in each group). LVHf, low-voltage high-frequency dynamic
stimulation; HVLS, high-voltage low-frequency dynamic stimulation; RTX, resiniferatoxin.
2 P<0.001 vs. HVLE.
b P <0001 vs. LVHf.
€ P<0.01vs. HVLf.
4 P< 001 vs. LVHf,
€ P<0.05 vs.LVHf.

Estimates of coherence vary between zero and unity. Coherence equal
to unity implies perfect linear coupling between input and output sig-
nals, whereas a coherence of zero indicates an output that is linearly in-
dependent from the input (Bendat and Piersol, 2010). Coherence is
lowered by noise components in the output signal unrelated to the
input stimulation and nonlinear system responses. The coherence of
the A-fiber related central arc transfer function was low between 0.01
and 0.1 Hz, which suggests that the A-fiber central pathway did not con-
tribute much to the SNA variation in these low modulation frequencies.

Table 5
Model parameters and step response.

A-fiber related C-fiber related

Central arc

Ky, %-Hz ™! 0.278 + 0.042 4014 + 0.2*
fen Hz 0.093 + 0015 0.133 + 0.01°
fe Hz 1.85 + 0.15 0.92 + 0.08°
Ly, s 0.11 + 0.003 0.155 + 0.008*
Peak response, % —244 4+ 044 —112 4+ 05*
Time to peak, s 0.19 + 001 036 + 0.02°
Peripheral arc

Kp, mm-%~" 052 + 0.07 0.60 + 0.06
fur Hz 0.06 + 001 0.07 + 0.01
I'e 1.00 + 0.07 1.06 £+ 0.09
Lp, s 044 + 0.02 0.45 4+ 0.01
Steady state response, mmHg 051 + 0.06 0.58 + 0.05
Initial slope, mmHg-%~'-s~! 0.049 + 0.007 0.058 + 0.005

Data are means + SE (n = 10 in each group).
2 p<0.001.
b p<005.

In contrast, the coherence of the C-fiber related central arc transfer func-
tion was relatively high at all modulation frequencies, which indicates
that the C-fiber central pathway governed the SNA output in the fre-
quency range under study.

A possible mechanism for the observed difference in A- and C-fiber
central pathways is neuronal adaptation. Adaptation is generally de-
fined as a decline in response during a maintained stimulus of constant
intensity. Adaptation of baroreceptor activity from a sustained elevation
in input pressure is dependent on a K™ current that is blocked by 4-
aminopyridine (Chapleau et al., 1993). Baroreceptive second order neu-
rons may also adapt to sustained baroreceptor input in a similar way to
the baroreceptor afferents that they are associated with. The C-fiber
central pathway may not adapt to the same degree as the A-fiber central
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Fig. 6. Simulation of transfer functions and step responses of the central arc (a), peripheral arc (b), and Stim-AP arc (c). In the central arc (a) and Stim-AP arc (c) transfer functions, dynamic
gain is displayed in units of output change per stimulation frequency. The ordinate (right axis) for A-fiber related transfer functions (gray lines) in the central arc (a) and Stim-AP arc (c)
was shifted upwards by an order of magnitude for relative comparison with C-fiber related transfer functions (black lines). A- and C-fiber related transfer functions and step responses of
the Stim-AP arc are the product of the central and peripheral arcs. The majority of the difference in the transfer functions and step responses between A- and C-fiber related responses of
the total baroreflex can be attributed to differences in the central arc.



