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of dnNRSF-Tg mice, though blood pressures were slightly lower
and heart rates were significantly slower in dnNRSF-Tg mice than in
untreated WT mice, as previously reported (systolic blood pressure:
WT, 101.40 4 1.48; Tg, 96.0 & 1.75; Tg + cilnidipine, 96.67 + 1.64;
Tg + nitrendipine, 9547 4 1.92 mmHg and Heart rates: WT,
6823 + 27; dnNRSF-Tg, 590.6 + 10.9; Tg + cilnidipine, 567.13 +
17.58; Tg + nitrendipine, 568.8 = 11.07/min) (Figure 1C and D). We
found that cilnidipine dramatically improved the survival rate among
dnNRSF-Tg mice, compared with mice treated with nitrendipine or un-
treated control (Figure 1E). Although heart-to-body weight ratios were
higher in dnNRSF-Tg than in WT mice, as reported previously.8
heart-to-body weight ratios did not significantly differ among the
control, cilnidipine, and nitrendipine groups of dnNRSF-Tg mice
(WT, 408 +031; Tg, 594 £ 024; Tg++ cilnidipine, 5.61 14 0.48;
Tg + nitrendipine, 5.94 + 0.36 mg/g) (Figure 2A). Lung-to-body weight
ratios also did not differ among these three groups (WT, 5.28 + 0.37;
Tg, 6.07 +0.22; Tg+ cilnidipine, 5.93 4+ 0.79; Tg + nitrendipine,
5.9 + 0.29 mg/g) (Figure 2B). In addition, histological analyses, including
determination of the %fibrotic area, and echocardiographic analyses
also showed no significant differences among these three groups
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(Figure 2C—~F and Table 1). In contrast, the echocardiography and hist-
ology showed that, compared with untreated WT mice, left ventricular
systolic function was diminished and %fibrotic area was increased in
dnNRSF-Tg mice, as reported previously (Figure 2C—F and Table 1).2
Consistent with these findings, there was no significant difference in
the expression of two cardiac stress marker genes, ANP and SERCA2,
among the three groups, whereas their expression did differ between
untreated WT mice and dnNRSF-Tg mice, as described previously
(Figure 2G and H).2

Expression of the fibrosis-related genes Collal, Col3al, and FN1,
encoding collagen typelal, collagen type3al, and fibronectin 1,
respectively, was not affected by the drug treatments (see Supplemen-
tary material online, Figure STA-C). Expression of genes encoding
the fetal-type ion channels CACNATH, HCNZ, and HCN4 was higher in
untreated dnNRSF-Tg ventricles than in control WT ventricles, as
reported previously, and cilnidipine did not affect expression of these
genes in dnNRSF-Tg ventricles (see Supplementary material online,
Figure $1D—F). Collectively, all of these data indicate that cilnidipine sup-
presses sudden death in dnNRSF-Tg mice without significantly affecting
cardiac structure or function.
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WT dnNRSF-Tg

Control

harmacological inhibition
LYDd (mm)
LVDs (mm)
VST (mm)
PWT (mm)
FS (%)
EF (%)

334013

2.1+ 0.08
0.76 + 0.02
0.76 + 0.02
361423
732 +27

Genetic titration
LvDd (mm)
LVDs (mm)
IVST (mm)
PWT (mm)
FS (%)

EF (%)

324010
22 + 012
0.66 + 0.01
0.68 + 0.02
318+ 18
664 + 24

3.2 Cilnidipine improves cardiac autonomic
nervous system function and reduces
arrhythmicity in dnNRSF-Tg mice

We hypothesized that correcting autonomic balance through NCC
blockade reduces arrhythmogenicity, thereby improving survival
among dnNRSF-Tg mice. Heart rate variability (HRV) is a widely
accepted index of cardiac autonomic nervous system activity.'” Earlier
frequency domain analysis of HRV revealed that patients with severe
heart failure show a progressive reduction in power in both the low-
frequency (LF) and high-frequency (HF) ranges,"® and that a reduction
in the LF power range is a significant predictor of sudden cardiac
death in patients with heart failure.”® We used HRV as an index to evalu-
ate cardiac autonomic function in WT and dnNRSF-Tg mice, and exam-
ined the effects of cilnidipine on HRV." In mice, HRV predominantly
correlates with parasympathetic a‘ctivi‘cy.21 As we showed previously,
both the LF and HF powers averaged over 24 h in dnNRSF-Tg mice
(LF, 1228 + 0.198; HF, 0.823 + 0.186 m/s?) were markedly lower
than in WT mice (LF,4.331 + 0.706; HF, 2.412 4 0.089 m/sz). indicating
a general reduction in parasympathetic activity in dnNRSF-Tg mice
(Figure 3A and B). Cilnidipine dramatically increased the power in both
the LF and HF ranges of HRV (LF, 3.308 + 0.338; HF, 2228 +
0.283 m/s?), whereas nitrendipine had little effect on HRV (LF,
0.538 + 0.447; HF, 1.383 + 0.57 m/s?) (Figure 3A and B). We also
found that urinary excretion of norepinephrine, which is indicative of
the level of sympathetic nerve activity, was significantly higher in
dnNRSF-Tg than in WT mice, and that norepinephrine excretion was
significantly reduced only by cilnidipine (WT, 0.09 4+ 0.02; Tg, 0.33 +
0.04; Tg + cilnidipine, 0.15 + 0.03; Tg + nitrendipine, 0.32 4 0.1 pg/
day) (Figure 3C).

39 +£0.19

314047
0.72 £ 0.02
0.74 + 002
203+ 14
49.0 +23

33+£008

2.2 +0.06
0.68 + 0.02
0.67 + 0.02
331 +£19
689 £ 26

40+ 0.11
31+ 011
072 + 002
0.76 + 0.02
233427
55.4 + 42

38 +0.08

2.9 +0.10
0.71 £ 003
0.76 + 0.03
238 +24
570+ 43

41+012

32+013
0.66 + 0.02
0.66 + 0.02
204+ 13
490+ 24

3.3+ 0.07*

2.3 + 0.08*
0.69 + 0.02
0.68 +0.02
304 + 1.3*
64.3 + 1.8*

We next used an implanted telemetric monitoring system to examine
the effects of cilnidipine and nitrendipine on electrocardiographic
parameters in dnNRSF-Tg mice. We found that only cilnidipine signifi-
cantly suppressed the number of premature ventricular contractions
(PVCs) in dnNRSF-Tg hearts (WT, 0 4 0; dnNRSF-Tg, 502.66 +
305.69; dnNRSF-Tg + cilnidipine, 1.0 + 0.66; dnNRSF-Tg + nitrendi-
pine, 326.17 + 147.24 /n) (Figure 3D). More importantly, it dramiatically
reduced the number of episodes of ventricular tachycardia (VT)
(WT, 0+ 0; dnNRSF-Tg, 14.92 4+ 4.95; dnNRSF-Tg + cilnidipine,
0.06 + 0.06; dnNRSF-Tg + nitrendipine, 12.75 4+ 5.16/h) (Figure 3E
and Supplementary material online, Figure S2A and B). These lines of evi-
dence suggest that by restoring autonomic nervous system balance, cil-
nidipine reduces the incidence of lethal arrhythmias in dnNRSF-Tg mice.

3.3 B-Adrenergic recéptor, blockade
prevents lethal arrhythmias and sudden
death in dnNRSF-Tg mice

To verify the importance of correcting autonomic nervous system

imbalance for the prevention of lethal arrhythmias and sudden death
in dnNRSF-Tg mice, irrespective of effects on structural remodelling,
we examined the effects of treating these mice with a B-adrenergic re-
ceptor blocker. We administered a subpressor dose of the lipophilic
B-adrenergic receptor blocker bisoprolol (1 mg/kg/day po) to WT
and dnNRSF-Tg mice. Although systolic blood pressures did not differ
between untreated control and bisoprolol-treated mice (untreated
WT, 1075 + 1.6; WT + bisoprolol, 108.0 + 1.2; untreated Tg,
98.6 + 2.0; Tg + bisoprolol, 98.6 + 1.7 mmHg) (Figure 3F), heart rates
were significantly slower in bisoprolol-treated than in untreated WT
and dnNRSF-Tg mice (untreated WT, 697.8 + 8.3; WT + bisoprolol,
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604.7 + 38.3; Tg, 601.6 + 10.1; Tg + bisoprolol, 558.6 + 12.0/min)
(Figure 3G). At the dose tested, bisoprolol also did not affect cardiac sys-
tolic function assessed echocardiographically in dnNRSF-Tg mice
[LVDd: WT, 3.3 + 0.2, WT + bisoprolol, 3.2 +0.1; Tg, 3.9 £ 0.1;
Tg + bisoprolol, 3.9 + 0.1 mm and ejection fraction (EF): WT, 84.5 +
4.0; WT + bisoprolol, 83.0 + 1.5; Tg, 46.0 £ 1.6; Tg + bisoprolol,
51.5 + 2.7%] (Figure 3H and ). On the other hand, bisoprolol significant-
ly restored power in both the LF and HF ranges of HRV (LF: untreated

0t
cont Bis

WT Ty Tg

WT
N 100

% Survival rate

cont Bis
Tg

WT, 5.19 + 0.37; Tg, 1.36 + 0.14; Tg + bisoprolol, 3.34 + 0.39 m/s*
and HF: untreated WT, 2.12 + 0.24; Tg, 0.86 + 0.12; Tg + bisoprolol,
1.62 + 0.22 m/s?) (Figure 3/ and K) and reduced the incidence of PVCs
and VTs in those mice (PVC: Tg, 408.3 £ 122.9; Tg + bisoprolol,
989 1+ 42.2/h; VT: Tg, 282 + 12.1; Tg+ bisoprolol, 7.6 + 1.7/h)
(Figure 3L and M). As a result, bisoprolol significantly improved survival
rates among dnNRSF-Tg mice (Figure 3N). These results strongly

-support our finding that imbalance of autonomic nervous system
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activities is critically involved in the occurrence of sudden arrhythmic
death in dnNRSF-Tg mice.

3.4 Genetic titration of NCC improves
survival among dnNRSF-Tg mice

To further confirm the benefit of NCC inhibition for prevention of sudden
death in dnNRSF-Tg mice, we next genetically titrated NCC expression
by crossing dnNRSF-Tg mice with mice lacking CACNA1B, encoding
the a1B subunit of NCC. Because the CACNA1B™'™ genotype has a
high incidence of early mortality from an as yet unknown cause, we com-
pared the phenotypes of dnNRSF-Tg;CACNATBH* mice with those of
dnNRSF-Tg;CACNA1B™' ™ mice, in which NCC expression is reduced
to ~52.9% of that in dnNRSF-TgCACNATBH* mice (Figure 4A). The
gross appearance of CACNA1B™'™ mice is normal, and they show no
early mortality. Systolic blood pressures in dnNRSF-Tg,CACNA 1B~
and dnNRSF-TgCACNATB™* mice did not significantly differ, but they
were mildly lower than in control WT (CACNATB**) mice (WT,
101.25 + 7.26; CACNA1B™™, 9125 + 2.78; dnNRSF-Tg, 92 + 4.38;
dnNRSF-TgCACNATB™ ~, 89.25 + 2.14 mmHg)  (Figure 4B). Similarly,
heart rates did not differ between dnNRSF-TgCACNA1B* and
anRSF-Tg;CACNA1B+'_ mice, although they were slower in
dnNRSF-TgCACNA1B™™ than in control WT mice, as reported
previously (WT, 63225+ 26.36; CACNATB™™, 594 +33.39;
dnNRSF-Tg, 51525 + 14.71; dnNRSF-TgCACNATB™ ™, 5215 +
23.32/min) (Figure 4C).2 Body weights were comparable between
the two dnNRSF-Tg groups (WT, 31.08 + 1.11; CACNA1B*/~,
29.53 + 1.37; dnNRSF-Tg; 28.86 + 1.19; dnNRSF-Tg;CACNATB™~,
2741 +1.09 g) (Figure 4D), but heart-to-body weight ratios were
higher in dANRSF-Tg;CACNATB*'* than in WT (CACNA18+*) mice
and were significantly lower in dnNRSF-Tg;CACNA1BY ™ than in
dnNRSF-Tg,CACNATB™'* mice (WT, 4.44 +004; CACNAIBY ™,
4514014, dnNRSF-Tg; 5.68 +0.21; dnNRSF-TgCACNATBH ™,
4.86 + 0.18 mg/g) (Figure 4E). Lung-to-body weight ratios were
comparable between the two dnNRSF-Tg groups (WT, 5.06 + 0.22;
CACNATB*' ™, 468+ 096; dnNRSF-Tg 541+ 0.09; dnNRSF-Tg;
CACNA1B*' ™, 552 + 0.26 mg/g) (Figure 4F). Echocardiographic anal-
ysis showed that left ventricular diastolic dimension (LVDd) was higher
in dANRSF-Tg:CACNA 1B+ than in WT mice, whereas EF was lower in
dnNRSF-TgCACNA 18+ than in WT mice, as was reported previously
(Figure 5A and B).2 In addition, LVDd was lower and EF was higher
in dnNRSF-TgCACNA1BH~ than in dnNRSF-TgCACNA1BH* mice
(Figure 5A and B and Table 1).

Histological analysis revealed no significant difference between
dnNRSF-Tg,CACNA 1B and dnNRSF-Tg;CACNATB*' ™~ mice, although
%fibrotic area showed a trend towards being smaller in dnNRSF-
TgCACNATB™ ™ than in dnNRSF-TgCACNATB™* mice (Figure 5C
and D). Expression of the fibrosis-related genes Collal, Col3al, and
FNT did not significantly differ between dnNRSF-TgCACNA1BT/+
and dnNRSF-TgCACNATBY' ™ mice (see Supplementary material
online, Figure S3A—C), though there was a significant difference in the
expression of ANP and SERCA2 between these two genotypes
(Figure 5E and F). Genetic reduction in CACNATB also significantly
affected expression of CACNATH and HCNZ, but not HCN4, in
dnNRSF-Tg ventricles (see Supplementary material online, Figure
S3D—F). All of these data demonstrate that genetic reduction of
CACNA1B tends to ameliorate impaired cardiac function and patho-
logical remodelling in dnNRSF-Tg mice. Furthermore, survival'among
dnNRSF-Tg;CACNATB'™ mice was dramatically and significantly

better than among control dnNRSF-Tg;CACNATB '+ mice (Figure 6A),
demonstrating that reduction of NCC prevents sudden arrhythmic
death in dnNRSF-Tg mice.

3.5 Reducing CACNA1B expression
improves autonomic function and decreases
the occurrence of arrhythmias in
dnNRSF-Tg mice

We also assessed autonomic nervous system activity in dnNRSF-
TgCACNA1B™ ™ and dnNRSF-Tg,CACNATBH mice. In HRV analyses,
the reductions in LF and HF power otherwise seen in dnNRSF-
TgCACNAIB™* mice (LF, 1.288 + 0.16; HF, 1.168 + 0.108 m/s?)
were significantly ameliorated in dnNRSF-TECACNATB™ ™ mice
(LF, 3.54 + 0.47; HF, 3.075 + 0.468 m/s?), indicating a restoration
of parasympathetic activity through reduction of NCC function
(Figure 6B and C). In addition, we found that the increase in urinary
excretion of norepinephrine seen in dnNRSF-TgCACNATB ™ mice
(0.428 + 0.07 pg/day) was significantly ameliorated in dnNRSF-
Tg,CACNAT B+~ mice (0.154 + 0.05 png/day) (Figure 6D). Finally,
evaluation of arrhythmicity revealed that the incidences of both PVCs
and VT were significantly lower in dnNRSF-TgCACNATB™ ™ than
in dnNRSF-Tg,CACNATB™* mice (PVC: WT, 0+ 0; CACNA1B™ ™,
0+0; dnNRSF-Tg, 239.08 +27.93; dnNRSF-TgCACNATB™ ™,
321+ 321 and VT: WT, 0 + 0; CACNATB*~, 0 + 0; dnNRSF-Tg,
413 + 12.69; dnNRSF-Tg;CACNATB™ ™, 0.36 + 0.36/h) (Figure 6E
and F). These results demonstrate that genetic titration of CACNA1B,
encoding NCC, corrected an imbalance between sympathetic and
parasympathetic nervous system activities, which, at least in part, contri-
butes to reducing malignant arrhythmias in dnNRSF-Tg mice inamanner
similar to pharmacological NCC blockade.

4. Discussion

Autonomic dysregulation leading to increased sympathetic nerve activ-
ity and reduced parasympathetic nerve activity is reportedly associated
with the increased arrhythmicity seen in patients with chronic heart
failure.>*** NCCs play a major role in the release of norepinephrine
at sympathetic nerve terminals.”?* Consequently, mice lacking
CACNA 1B, the gene encoding the a1 subunit of NCCs, exhibit a signifi-
cantly impaired positive inotropic response.7 In the present study, we
found that pharmacological blockade of NCCs or their genetic titration
improved the balance between sympathetic and parasympathetic nerve
activities and prevented the sudden death and arrhythmicity otherwise
seen in dnNRSF-Tg mice, a mouse model of sudden arrhythmic death
associated with cardiac dysfunction® The mode of death in these
model mice is sudden and without overt oedema, pleural effusion, or ap-
parent lung congestion, and all the telemetry data obtained at the time
of death indicate VT/VF to be the cause® Moreover, in an earlier
study, we found that systemic administration of isoproterenol induced
VT more frequently in dnNRSF-Tg than in WT mice."” Conversely,
administration of a B-blocker led to a significant reduction in the inci-
dence of sudden death among dnNRSF-Tg mice under conditions in
which cardiac systolic function and remodelling were not affected
(Figure 3H—N). These findings suggest that NCC blockade or genetic ti-
tration of NCC reduces the likelihood of sudden arrhythmic death,
thereby improving survival.

Pharmacological interventions that reduce cardiac sympathetic
activity have been shown to protect against arrhythmias,® while

—329—

G102 ‘2L Uddep uo }sanb Aq wiol; papeojumo



190

Y. Yamada et al.

> B

1.2 4
1.0
0.8
0.6

0.4 -

Relative CACNA1B
mMRNA level

0.2

0
CACNA1TB:  +/+

C 800
700 -
600 -
500 -
400 -
300
200 -

100 -
0
CACNATB: ++  4f-

WT

Heart rate {/min}

o 9~
}

I3

HW/BW ratio {mg/g)
-~ N W O
i i i 1 i

0
CACNA1B: +i+

WT

interventions that stimulate cardiac sympathetic activity provoke malig-
nant arrhythmias.>?® In patients with heart failure, {3-adrenoreceptor
blockade reduces the incidence of sudden death;Z?‘28 however,
B-blockers are not completely protective, and mortality remains high
among patients with cardiac dysfunction, despite optimal B-blocker
therapy.”® It is therefore necessary to find other approaches to
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modulate sympathetic or parasympathetic activity. In that context, aclin-
ical trial testing the effect of central modulation of sympathetic activity
using moxonidine SR in patients with heart failure was terminated
early due to an increase in mortality and morbidity in patients receiving
the drug’ Thus, strong central inhibition of the sympathetic nervous
system through imidazoline receptor stimulation appears not to
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protect against lethal arrhythmias. NCCs are localized at peripheral
sympathetic nerve terminals, where they regulate the release of neuro-
transmitters (e.g. catecholamines), thereby modulating sympathetic ac-
tivity.*=® Our findings suggest that, by correcting their autonomic
dysregulation, NCC blockade could be an effective approach to prevent-
ing sudden arrhythmic death in patients with heart failure.

Cilnidipine failed to prevent the decline in cardiac function in
dnNRSF-Tg mice, whereas genetic titration tended to ameliorate the
adverse cardiac remodelling and cardiac dysfunction seen in dnNRSF-Tg
mice (Figures 2A—H, 4E, and 5A—F and Table 1). The reasons for the dif-
ference in the effects on cardiac function between cilnidipine and genetic
titration of NCCs remain unclear at present. It may be that cilnidipine’s
ability to block L-type Ca®* channels has a detrimental effect on cardiac
function, as L-type Ca®* channel blockers can adversely affect the pro-
gression of heart failure.*® Other possibilities are that the relatively low
dose of cilnidipine used in this study was not sufficient to prevent the

progression of cardiac dysfunction, though it did prevent lethal arrhyth- - :

mias, or that the NCC inhibition achieved in CACNA18 ™ mice was
more prolonged and more stable than that achieved with cilnidipine,
which was not started until the mice were 8 weeks of age. The effects

on NCCs expressed in the central nervous system could also differ . .

between cilnidipine and genetic titration, as cilnidipine has little ability
to cross the blood—brain barrier' These differences suggest the
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underlying mechanisms involved in the reduced incidence of lethal
arrhythmias, and the prolonged survival differ somewhat between cilni-
dipine treatment and genetic titration of CACNATB in this study. Cilni-
dipine treatment, which improved autonomic imbalance and reduced
lethal arrhythmias without affecting cardiac remodelling, mainly sup-
pressed the triggering of lethal arrhythmias induced by autonomic
imbalance. On the other hand, genetic titration of CACNATB, which
improved autonomic imbalance and also tended to prevent adverse
cardiac remodelling, suppressed lethal arrhythmias and improved sur-
vival in two ways: it inhibited the triggering of arrhythmias and also sup-
pressed the generation of arrhythmogenic substrates. In both cases,
correcting the autonomic imbalance associates with a reduction in the
incidence of sudden death attributable to lethal arrhythmias in
dnNRSF-Tg. However, because it is not possible to completely
exclude the possibility that some dnNRSF-Tg mice (especially older
mice) die due to congestive heart failure, irrespective of arrhythmias,
there is a possibility that genetic deletion of NCC may also prevent
this mode of death in addition to sudden arrhythmic deathin dnNRSF-Tg
mice through suppression of excessive sympathetic activity.

In the present study, both pharmacological blockade of NCCs and
their genetic titration not only repressed sympathetic activity, as demon-
strated by a reduction in urinary norepinephrine levels, butalso restored
parasympathetic activity,'as indicated by HRV analyses. The precise
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mechanism by which NCC inhibition improves parasympathetic activity
is not clear at present. However, accumulating data indicate the sympa-
thetic and parasympathetic nervous systems interact via several mechan-
isms at both the central and peripheral levels of the neuraxis.>? NCC
inhibition-induced reductions in sympathetic activity may affect these
interactions, ameliorating the reduction in parasympathetic activity, as
was observed in dnNRSF-Tg mice. In humans, cilnidipine reportedly
enhances parasympathetic activity in hypertensive patients while exert-
ing a concomitant sympathoinhibitory effect.’>** Moreover, there is
now much evidence showing the anti-arrhythmic effects of parasympa-
thetic nervous activation. This suggests that, in addition to a reduction
in sympathetic activity, an increase in parasympathetic activity likely
contributes to the protective effects of NCC inhibition observed in
this study.?” Although further investigation is necessary, our study
suggests that agents able to selectively block NCCs could be clinically
useful for the prevention of sudden arrhythmic death in patients with
heart failure.
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Supplementary material

Supplementary material is available at Cardiovascular Research online.
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Extensive late gadolinium enhancement

on cardiovascular magnetic resonance predicts
adverse outcomes and lack of improvement in LV
function after steroid therapy in cardiac sarcoidosis

Takayuki Ise,” Takuya Hasegawa,' Yoshiaki Morita,> Naoaki Yamada,® Akira Funada,’
Hiroyuki Takahama,' Makoto Amaki,' Hideaki Kanzaki," Hideo Okamura,’
Shiro Kamakura,' Wataru Shimizu," Toshihisa Anzai,! Masafumi Kitakaze'®

ABSTRACT

Background Gadolinium-enhanced cardiovascular
magnetic resonance is an emerging tool for the
diagnosis of cardiac sarcoidosis (CS); however, the
correlations between extent of late gadolinium
enhancement (LGE) and efficacy of steroid therapy and
adverse outcomes in patients with CS remain unclear.
Objective We aimed to clarify the prognostic impact of
extent of LGE in patients with CS.

Methods Before the start of steroid therapy,

43 consecutive LGE-positive patients with CS were
divided into two groups based on the extent of LGE by a
median value: small-extent LGE (LGE mass <20% of LV
mass; n=21) and large-extent LGE (LGE mass >20% of
LV mass; n=22). We examined the correlations between
extent of LGE and outcomes after steroid therapy.
Results Among the 6 patients who died from heart
disorders, 11 patients who were hospitalised because of
heart failure and 6 patients who suffered life-threatening
arrhythmia during the follow-up period, large-extent LGE
predicted higher incidences of cardiac mortality and
hospitalisation for heart failure. Multivariate Cox
regression analysis showed that large-extent LGE was
independently associated with combined adverse
outcomes including cardiac death, hospitalisation for
heart failure, and life-threatening arrhythmias. In the
small-extent LGE group, LV end-diastolic volume index
significantly decreased and LVEF significantly increased
after steroid therapy, whereas in the large-extent LGE
group, neither LV volume nor LVEF changed
substantially.

Conclusions Large-extent LGE correlates with absence
of LV functional improvement and high incidence of
adverse outcomes in patients with CS after steroid
therapy.

INTRODUCTION

Sarcoidosis is a multisystem granulomatous disorder
of unknown cause with symptomatic myocardial
involvement in up to 7% of affected patients.™
Although it is generally associated with a low mot-
tality rate, concomitant cardiac involvement worsen
its prognosis.* * Therefore, detection of myocardial
involvement is critical for management of patients
with sarcoidosis. In patients with sarcoidosis,
gadolinium-enhanced  cardiovascular  magnetic

resonance (CMR) is a useful diagnostic tool to
qualitatively detect myocardial involvement.*™® In
most patients with cardiac sarcoidosis (CS), late
gadolinium enhancement (LGE) is typically loca-
lised in the basal and lateral segments of the LV
wall or epicardium, which does not fit any specific
coronary perfusion area.” LGE in CMR has been
reported to reflect myocardial fibrosis and granu-
lomatous inflammation in patients with CS.” It has
also been reported that the presence of myocardial
LGE can predict adverse events in patients with sys-
temic sarcoidosis.” '® However, the prognostic
impact of the extent of LGE has not been fully
investigated. In this study, we examined the correla-
tions between the extent of LGE and adverse out-
comes, as well as the efficacy of steroid therapy in
patients with CS.

METHODS

Study patients

Medical records were screened to identify patients
diagnosed with CS in our institution from May
2000 to May 2012. CS was diagnosed according to
the guidelines of the Specific Diffuse Pulmonary
Disease Research Group, Sarcoidosis Division
(Japanese Ministry of Health and Welfare).!* In
brief, CS was diagnosed on the basis of histological
findings or clinical findings. Histological diagnosis
of CS was confirmed when histological analysis of
endomyocardial biopsy specimens demonstrated
epithelioid granuloma without caseating granu-
lomas. Clinical diagnosis of CS was confirmed by
the presence of an electrocardiographic (ECG)
abnormality suggesting myocardial injury, and at
least one of the following items: abnormal wall
motion, regional wall thinning, or dilatation of the
LV; perfusion defect on thallium-201 myocardial
scintigraphy  or  abnormal accumulation by
gallium-67-citrate scintigraphy or
technetium-99m-pyrophosphatemyocardial scintig-
raphy; abnormal intracardiac pressure, low cardiac
output, or depressed LVEF; and interstitial fibrosis
or cellular infiltration over moderate- grade even if
the findings were non-specific. All patients under-
went coronary angiography, and no significant cor-
onary artery stenosis was noted. All baseline
characteristics, including CMR data, were collected

Ise T, et al. Heart 2014;100:1165-1172. doi:10.1136/heartjnl-2013-305187

—334—

1165



