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ABSTRACT: 2-Methacryloyloxyethyl phosphorylcholine (MPC) is a custom methacrylate with a zwitterionic phosphorylcholine moiety

on the side chain. In the past 25 years, MPC has been used as a building block for a wide range of polymeric biomaterials because of

its excellent resistance to nonspecific protein adsorption, cell adhesion, and blood coagulation. Recently, MPC polymers with specific
features have been used in bioengineering and nanomedicine. This review focuses on three topics that highlight the latest findings on
MPC polymers, that is, specific recognition of C-reactive protein (CRP), cell-membrane-penetration abilities, and lubrication proper-
ties. These developments will extend the applications of this biomimetic material from bioinert polymers to biosensing, CRP inhibi-
tors, prodrug carriers, subcellular bioimaging, cell manipulation, and joint replacement. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci.

2015, 132, 41766.
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INTRODUCTION

Since the early period of biomaterial science, one of the top pri-
orities has been to develop artificial materials that can resist
nonspecific protein adsorption and blood coagulation because
nonspecific adsorption of proteins and biomolecules leads to
undesired biological reactions such as blood clotting, inflamma-
tion, immunoreactions, bacterial adhesion, biofilm formation,
cell adhesion, and cell differentiation. The cell membrane in liv-
ing organisms provides the cell with an intrinsically inert barrier
for biomolecules and signals. Based on the molecular structure
of phosphatidycholine in the outer leaflet of eukaryotic plasma
membranes, a synthetic molecule, 2-methacryloyloxyethyl phos-
phorylcholine (MPC), was developed to endow material surfaces
with biologically inert functions such as those possessed by
endothelial cells in blood vessels." A zwitterionic phosphoryl-
choline (PC) group in the side chain of MPC is responsible for
its bioinert properties, as a result of impaired electrostatic inter-
actions and the formation of a thick hydration shell with a rich
content of highly mobile free water around the PC group.”™?
Furthermore, MPC, a methacrylate monomer, can build various
molecular architectures with tunable properties via a series of
polymerization techniques including living radical polymeriza-
tion."*™'” Because of the reactivity of methacrylate, MPC-based

© 2015 Wiley Periodicals, Inc.
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materials have a wide range of applications in biomedical fields.
This is in sharp contrast to natural phospholipid, which is com-
posed of saturated or unsaturated fatty acids with a headgroup
incorporated via ester linkages and has low reactivity. As a
result of the commercial success of the mass production of
MPC, many researchers have synthesized numerous MPC poly-
mers, some of which have been used as biomaterials. MPC
polymers can be used alone or in combination with other mate-
rials, including plastics, metals, and ceramics.'®™=" Now, MPC
polymers have successful applications in nanobiosciences, bio-
conjugation on colloidal surfaces, and biosensing.” ™

In recent years, MPC polymers have attracted further attention
because of the discovery that they have other properties in addi-
tion to their bioinert nature. The first topic is that MPC poly-
mers can be used as synthetic receptors for C-reactive protein
(CRP). This is a paradigm shift because the MPC unit was
believed to repel any proteins. The second is direct penetration
of amphipathic MPC polymers across the plasma membrane
without overt cytotoxicity. The ability to diffuse into cytoplasm
is surprising because almost all macromolecules from synthetic
sources are unable to cross the plasma membrane barrier with-
out breaking up the lipid bilayer or without alerting well-
organized biological security systems. The third is hydrated

J.APPL. POLYM. SCI. 2015, DOI: 10.1002/APP.41766
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biomimetic lubrication of surfaces modified with poly(MPC)
grafts. These three aspects of MPC polymer science all arise
from the physicochemical nature of the zwitterionic PC group.
Importantly, the original antifouling properties of MPC poly-
mers and these new properties are synergistic in biological envi-
ronments. In the following sections, we focus on the details of
these important advances in MPC polymer science.

ARTIFICIAL LIGAND FOR CRP

The PC headgroups in C-polysaccharides and lysophosphatidyl-
choline present in oxidized low-density lipoprotein (LDL) or in
damaged plasma membranes are known to bind specifically
with CRP in the presence of calcium ions.”™*” Human CRP is a
nonspecific acute-phase plasma protein produced by hepato-
cytes in the liver on stimulation by endogenous proinflamma-
tory cytokines. Its systemic level in circulation sharply increases
by up to 1000-fold compared with normal conditions (0.8 mg
L") within 24-48 h of injury.”® The binding of CRP to the PC
receptor activates classical complement pathways in damaged
tissue, leading to an innate immune cascade. It has been
reported that CRP is connected to atherosclerosis and increases
the risk of cardiovascular diseases.””>" The CRP-PC interaction
triggers many systematic biological responses in living organ-
isms, so it is important to understand the activation dynamics
of CRP against PC at the molecular level at the foci of inflam-
mation and infection. The physiologically intact form of human
CRP is a pentraxin of molecular weight of 115 kDa. Each
protomer (23 kDa) is arranged in a symmelric pentagon by
noncovalent bonding and has a recognition domain for the PC
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group in a calcium-binding pocket.”’ Interaction of CRP with
two calcium ions has an intricale profile, in which the PC-
binding pocket coordinates with two calcium ions in series with
different dissociation constants [K;, = 0.03 mmol L™ (mM);
Kpy = 5.45 mM].>?

To elucidate the role of the surrounding ionic microenviron-
ment in the activation dynamics of CRP against PC, a plasma
membrane mimetic surface was developed on a sensor surface
using a custom MPC polymer, which consists of a random
copolymer of MPC, n-butyl methacrylate (BMA), and
p-nitrophenyloxycarbonyl-poly(ethylene glycol)-methacrylate
(MEONP) [poly(MPC-co-BMA-co-MEONP), PMBN] (Figure 1)
PMBN spontaneously forms a CRP-responsive PC monolayer
on an amine-functionalized self-assembled monolayer (SAM)
via covalent bonding between the active ester in MEONP and
the amine group. The hydrophobic BMA units act as molecular
spacer for the bulky PC groups, but also help to orient hydro-
philic PC toward the liquid phase. The engineered PC surface is
biomimetic as it has a lateral PC density equivalent to that of
phospholipid vesicles. Moreover, the homogeneous PC mono-
layer enables the sole focus to be on the mechanism of the
CRP-PC interaction by excluding other possible molecular
receptors for CRP that are otherwise present on a damaged
plasma membrane such as other lipids, glycans, and proteins.
Furthermore, the covalent anchoring to the substrate makes
the biomimetic surface much more robust than natural cell
membranes or supported lipid layers. Therefore, the surface can
be regenerated by strong detergents for repeated use in
many assays and biosensing applications. Binding experiments
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Figure 1. (a) Schematic diagram of covalent deposition of biomimetic MPC polymer (PMBN) monolayer on amine SAM-formed substrate for investi-

gating binding kinetics of CRP on PC surface mediated by Ca*™. (b) SPR sensorgrams showing a sharp contrast of association and dissociation processes

of CRP adsorption onto the PC surface in HEPES buffer (pH 7.4) with

10 mM or 0,01 mM [Ca®"] at different CRP concentration (13.6-217 nM).

Reproduced with modifications from Ref. 33. © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.|

show that the CRP-PC interaction is Ca’“-dependent, in agree-
ment with stepwise uptake by CRP of two calcium ions at the
PC binding site, mentioned earlier (Figure 2).** The dynamic
range covers the physiological free calcium level of about
1.2 mM in human plasma. The observation that substituting
Ca*™" by other cations in the surrounding aqueous system coni-
pletely prevents this specific interaction shows that the calcium
ions play a pivotal role in mediating the CRP-PC interaction by
changing the free calcium concentration in the microenviron-
ment (Figure 3). In addition, the CRP-PC affinity is enhanced
by slight acidification of the solution pH. Damaged tissue or a
tumor cause hypercalcemia and acidification,”* ¢ and therefore,
CRP can preferentially bind to the PC receptor expressed on the
damaged plasma membrane. The biomimetic design of an inter-
face using the MPC polymer classifies the physiological mean-
ings of local hypercalcemia and/or acidification in a damaged
tissue as a signal for activating CRP in blood circulation during
the acute phase of inflammation. This opens up new applica-
tions of MPC unit in CRP recognition in addition to its previ-
ous applications in antifouling surfaces in biomaterials.
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The above findings suggest numerous potential applications of
MPC polymer, for example, as a biosensor for monitoring sys-
temic CRP levels in combination with various transducers.
Goda et al determined systemic CRP levels in the presence of
10% human serum using the biomimetic PC surface and surface
plasmon resonance (SPR).*® A team of Iwasaki and Goda devel-
oped gold nanoparticles (~10 nm in diameter) covered with
MPC polymer in the form of a dense brush for direct colori-
metric detection of CRP.>” Nanocolloids undergo a spontaneous
aggregation in the presence of CRP, which results in a red shift
by the localized SPR effect. The color change is more pro-
nounced in a buffer at pH 5.5 than at pH 7.4, indicating an
enhanced affinity of CRP-MPC polymer unit under mild acidic
conditions. Kitayama and Takeuchi determined CRP concentra-
tions using gold nanoparticles wrapped in a thick MPC polymer
brush layer (overall particle size ~100 nm).”® They successtully
quantified CRP levels in the presence of 1% human serum,
based on the protein repellency of the MPC polymer brush.

Synthetic molecules containing PC group can also serve as phar-
maceutical blockers for systemic CRP in therapy for acute
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