spectrometry for their qualitative and quantitative analyses.
Although the range of measurable lipid classes varies among
assay platforms, a lipidomic approach usually can measure over
100 lipid molecules from plasma as well as from tissues (e.g., liver
tissues) [19,20]. Recently, we characterized and measured 253
lipid molecules in our assay platforms by using human blood
plasma [12]. In the present study, we employed the same platforms
and examined the effects of multiple factors on circulating lipids,
including sex, age, and feeding conditions (feeding, length of
fasting period, and diurnal time of sample collection) in the plasma
of rats, which is the most-frequently used animal model in
preclinical studies. In total, we determined and examined 262 lipid
molecules (68 phospholipids, 20 sphingolipids, 138 neutral lipids,
and 36 polyunsaturated fatty acids [PUFAs] and their metabo-
lites). Multivariate statistical analysis, i.e., orthogonal partial least
squares discriminant analysis (OPLS-DA), demonstrated that the
plasma lipid profiles of rats are predominantly affected by feeding
conditions, followed by sex and age. No component separating
length of fasting period or diurnal time of sample collection was
observed. In addition, we also addressed the effects of multiple
factors on individual circulating lipid molecules.

Materials and Methods

Animals

Male and female Sprague-Dawley rats (8 weeks old) were
purchased from Charles River Japan (Kanagawa, Japan) and
housed until they were 10 or 30 weeks old. The animals were
housed in a 12-hr light/dark cycle and were allowed food (CRF-1,
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nutrient composition were described in Table S1; Oriental Yeast,
Tokyo, Japan) and water ad libitum. The plasma samples were
obtained in the presence of EDTA-Na from rats after the indicated
fasting periods and were collected at the indicated times (Fig. 1A
and Table S2). The plasma samples were frozen immediately and
stored at —80°C.. The use of animal specimens was approved by
the Ethics Review Committee for Animal Experimentation of the
National Institute of Health Sciences (T'okyo, Japan).

Lipid extraction

Lipid extraction was performed as described previously [12]. In
brief, lipids were extracted from 90 pL of plasma by using the
Bligh and Dyer’s method with a few modifications. The lower
organic phase was used for measurement of phospholipids,
sphingolipids, and neutral lipids. The upper aqueous phase was
subjected to solid extraction and was used for measurement of
PUFAs and their metabolites. Hexadeuterated 16:0/16:0 PC
(16:0/16:0-d6 PC; Larodan Fine Chemicals, Malmo, Sweden) and
tetradeuterated leukotriene B4 (LTB4-d4; Cayman Chemical,
Ann Arbor, MI) were added as internal standards before
extraction.

Measurement of phospholipids, sphingolipids, and
neutral lipids

Phospholipids, sphingolipids, and neutral lipids were measured
using liquid chromatography-time-of-flight mass spectrometry
(LC-TOFMS; ACQUITY UPLC System [Waters, Milford]-
LCT Premier XE [Waters, Milford]), as described previously
[12]. The samples from each experimental group were random-

Component 2

G SY Sex Age Fasting BC
1] ©® M 10 wk 16 hr AM
2] @ F 10 wk 16 br AM
31 A M 30 wk 16 hr AM
4 & F 30 wk 16 hr AM
5 e M 10wk No AM
6 @ M 10 wk 22 hr AM
7 L ] M 10wk 22 hr PM

Figure 1. OPLS-DA model of overall profiles of lipid molecules. The goodness-of-fit parameters R2X, R2Y, and Q2 values are as follows; 0.469,
0.159, and 0.149 for component 1, 0.094, 0.143, and 0.127 for component 2, and 0.034, 0.107, and 0.088 for component 3. M, male; F, female; wk,

week; SY, symbol; BC, time of blood collection.
doi:10.1371/journal.pone.0112266.9001
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Table 1. Lipid classes identified and numbers of individual lipid molecules in rat plasma.

Detected ion

mode Lipid classes

Lipid types

Number of molecules

Phospholipid

Sphingolipid

- o"p‘hg = ﬁdylcﬁé - 'e;'(LP“ T

lysophosphatidylethanolamine (LPE)

Neutral lipid

Negative

total

eicosapentaenoic acid (EPA) and its 8
metabolites

262

doi:10.1371/journal.pone.0112266.t001

ized across the run. Raw data obtained by LC-TOFMS were
processed using the 2DICAL software (Mitsui Knowledge
Industry, Tokyo, Japan), which allows detection and alignment
of the ion peaks of each ionized biomolecule obtained at the
specific m/z and column retention time (RT). The main
parameter of 2DICAL was set as described previously with a
few modifications [12]. To extract the ion peaks of phospholipids
(lysophosphatidylcholine [LPC], lysophosphatidylethanolamine
[LPE], PC, ether-type PC [ePC], PE, ePE, phosphatidylinositol
[PI]) and sphingolipids (sphingomyelin [SM], Cer, hexosylcer-
amide [HexCer]), the RT range was from 2.0 to 38.0 min in the
negative ion mode; while for ion peaks of neutral lipids
(cholesterol/cholesterol ester [Ch/ChE], DG, triacylglycerol
[TG], coenzyme Q), the RT range was from 2.0 to 60.0 min in
the positive ion mode. The intensities of each extracted ion peak
were normalized to those of the internal standard (16:0/16:0-d6
PC). To monitor experimental quality throughout extraction,
measurement, and data extraction, the relative standard deviation
(RSD) of the internal standard (16:0/16:0-d6 PC) was calculated
(7.34%). Extracted ion peaks were subjected to identification of
lipid molecules by comparison of the ion features, including RT,
m/z, preferred adducts, and in-source fragments, of the experi-
mental samples with those of our reference library of lipid
molecule entries, as described previously [12]. Processing of
extracted ion peaks yielded 226 lipid molecules (88 and 138 lipid
molecules from negative ion mode and positive ion mode,
respectively; Table 1 and Table S3).

Measurements of PUFAs and their metabolites

PUFAs and their metabolites were measured by targeted
approach using LC-MS/MS (ACQUITY UPLC System-
5500QTRAP quadrupole-linear ion trap hybrid mass spectrom-

PLOS ONE | www.plosone.org

eter [AB Sciex, Framingham, MA]), as described previously [12].
The samples from each experimental group were randomized
across the run. Targeted lipid molecules were annotated by
comparison of RT, parent ion, and MS/MS ion fragments with
standard lipid molecules using MultiQuant Software (Version 2.1,
AB Sciex). The intensities of each ion peak from targeted lipid
molecules were normalized to those of the internal standard
(LTB4-d4). To monitor experimental quality throughout extrac-
tion, measurement, and data processing, the RSD of the internal
standard (LTB4-d4) was calculated (18.22%). Processing of
targeted lipid molecules yielded 36 lipid molecules (Table 1 and
Table S3).

Data processing

All data obtained of individual lipid molecules were normalized
to the median values of all measured samples as 1. The average
values * standard deviations of the normalized levels of each lipid
molecule in each study group are presented in Table S4. For
overall comparison, data were loaded into SIMCA-P+12 (Ume-
trics, Umea, Sweden), pareto-scaled, and analyzed using OPLS-
DA to visualize the variance among the groups in the present
study. Comparison of individual metabolite levels among groups
was performed by the Welch’s t-test to assess statistical differences.
In the present study, p<<0.05 represents statistical significance.

Results

Effects of multiple factors on global profiles of lipid
molecules in rat plasma

To compare the differences caused by multiple factors (sex, age,
and feeding conditions) on the determined 262 lipid molecules, the
OPLS-DA model was applied. In the present study, we employed

November 2014 | Volume 9 | Issue 11 | e112266



Effects of Multiple Factors on Fasted Rat Plasma Lipid Profile

A C F

Male/Female Male/Female Male/Female Male/Female

10 week 30 week 10 week 30 week 10 week 30 week 10 week 30 week

16:0LPC 1.09 34:08M ; 48:0TG 58:6TC
16:1LPC 34:1SM 58:7TCa
17.0LPC 3428M S8:7TCh
18.0LPC 0.5 36:1SM $8:8TGa
18:1LPC 117 36:25M 492TG 58:8TGh
182LPC 381SM. g S8:9TGa
20:1LPC L4 40:1SM S0:1TG 58:9TGh
20:4LPC 0.6 41:1SM 502TG 58:10TGa
226LPC 0wl 029 41:28M 503TG 3%10TGh
32.00C 42:1SMa 504TG 581G
321PC 0.75 42:1SMb SLITG 60 TG
332PC 124 4225M 512TG 60:2TG
34:0PC 0.6z | 048 42:35M S13TG 60:3TG
34:1PC 075 SL4TG 60:4TG
342PC 41:1Cer 520TG 60:5TGa
34:3pC 42:1Cewa S2ITG 160:5TGb N
352PC 060 42:1Cerb 52:2TG 60:9TG EE
354PC 422Cer 52376 60:11TGa
36:0PC B 0 43:1Cer 60:11TGh 063 | 063
36:PC 046 ] A2 iHeCer | i ,f 52:5TGa 60:12TGa o
36:2PCa 52:5TGb 60:12TGh
36:2PCh e e D 52:6TGa 60:13TG
36:3PCa ; 52:6TGb 622TC
36:3PCh b 0.85 0.83 52:61Ce 62:31G
364PCa 16:0ChE 527G 624TG
364PCh 16:1ChE 5321G 62:3TCa
36:5PCa 170ChE 533TG 62:5TGb
36:5PCh : 17:1ChE 074 S3ATG 62:121G
37:2PCa 18:0ChEn 065 53:5TG
37.2PCh J80ChED 0.68 | 0560 53616 621370
374PC 18:1ChEa 540TG 62:14TG
38:3PCa 18:1ChED 54:1TG CoQ9
38:3PCh Y 182ChE 5427
38:4PCa 183CHE AATG
384PCh 19:1ChE 544TGa .
38:5PCa 19:2ChE S44TCh gé\D - a1 |06
Ty 20:1ChE S4STG T
38:6PCa 20:2ChE 54:6TGa L
. S TXB2
38:6PCh S46TGy
12-HHT
39:4PCa S547TGa STEE
394PCh 54.7TCh e
306PC 54:7TCe SHETE
40:4PC 21AChE 348TCa e
40:5PCa 21:5ChEa 2
40:5PCh 2LSChED | S52TG
40:6PCa 22:3ChE
: 22:5ChE 0.78 .
40:6PCb 122:5ChE | =
4078C 226ChE S60TG ISHETE S—
J08PC 07A 24:6ChE 56116 20-HETE 088
oT T 8.3-0HETE
34:1ePC 0,600 56 E N S 6-dRIET,
36:4¢PC .77 -
36:5¢PC 0660 081
38:5ePC 3420G SATG
B 620G 56:5TCa
363DG 65T
- 56:5TCGe
1SOLPE P
36:2PE ¥
38:6DG
384PE 407D
40:6PE  usr 40:8DG 7. 18-QHETE ]
36:5¢PE 44:10DG DHA
38:5¢PE 066 4-HDoHE
38:6ePE 7-HDoHE
3421 077 | 862 10-HDoHE
36:2P1 060 13-HDoHE
36:4P1 : 14-HDoHE
374P1 17-HDoHE
38:4P1 10.17-diHDoHE
38:5P1 20-HDoHE
40:6P1 | | 19,20-diHDoPE

0.5-fold

Figure 2. Heat maps of lipid molecules among fasted male and female rats. The heat maps were generated with statistically significant
different lipid molecules (p<<0.05) of lysophosphatidylcholines and phosphoatidylcholines (A), other phospholipids (B), sphingolipids (C), cholesterol/
cholesterolesters (D), diacylglycerols (E), triacylglycerol and coenzyme Q9 (F), and arachidonic acid, eicosapentaenoic acid, docosahexaenoic acid, and
their metabolites (G). The numbers indicate the fold change of levels of individual lipid molecules in male over female at 10 and 30 weeks old. The
alphabet of the lipid class is used to distinguish 2 lipid species possessing the same formula. LPC, lysophosphatidylcholine; PC, phosphatidylcholine;
ePC, ether-type PC; LPE, lysophosphatidylethanolamine; PE, phosphatidylethanolamine; ePE, ether-type PE; SM, sphingomyelin; Cer, ceramide;
HexCer, hexosylceramide; Ch, cholesterol; ChE, cholesterolester; DG, diacylglycerol; TG, triacylglycerol; CoQ9, coenzyme Q9; AA, arachidonic acid; PG,
prostaglandin; TX, thromboxane; HETE, hydroxyeicosatetraenoic aicd; diHETE, dihydroxyeicosatetraenoic acid; diHETYE, dihydroxyeicosatrienoic acid;
EPA, eicosapentaenoic acid; HEPE, hydroxyeicosapentaenoic acid; DHA, docosahexaenoic acid; HDoHE, hydroxydocosahexaenoic acid; diHDoHE,
dihydroxydocosahexaenoic acid; diHDoPE, dihydroxydocosapentaenoic acid.

doi:10.1371/journal.pone.0112266.9002
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Table 2. Sex-based differences in the number of lipid molecules at significantly higher levels.

[:E‘
e
LN

doi:10.1371/journal.pone.0112266.t002

PLOS ONE | www.plosone.org

Effects of Multiple Factors on Fasted Rat Plasma Lipid Profile

fasted conditions to examine the effect of sexes and ages, because
food intake affects lipidomic profiles and therefore fasted condition
is prefer to identify biomarkers from lipid molecules in preclinical
study. We used all 7 groups listed in Figure 1 and Table S2. As
shown in Fig. 1, component 1 separated fed (purple circle) and
fasted (all others) rats; component 2 separated female (red) and
male (blue, purple, green, and light blue) rats,; and component 3
separated 10-week-old (dot) and 30-week-old (triangle) rats. There
is no component separating fasting duration (16 hr [blue dot] vs.
22 [green dot]) or time of blood collection (10 AM [green dot] vs.
4 PM [light blue dot]).

Differences in the fasted levels of lipid molecules
between sexes

To gain insight into sex-dependent differences in plasma lipid
molecules, we next compared the levels of individual lipid
molecules between fasted male and female rats. Of the 262 lipid
molecules we determined, 110 and 142 lipid molecules were

significantly different between male and female at 10 and 30 weeks

old, respectively (Table 2). Of these lipid molecules, 67 lipid
metabolites were commonly changed among 10- and 30-week-old
rats (Fig. 2). Higher levels of most of the SMs (9/14 molecules),
such as 36:1 and 36:2 SM, were consistent among 10- and 30-
week-old female rats (Table 2 and Fig. 2C). In addition to the
SMs, PUFAs containing ChEs are higher in both 10- and 30-
week-old female rats (Fig. 2D). On the other hand, higher levels of
PUFAs and their metabolites, such as eicosapentaenoic acid (EPA)
and S-hydroxyeicosatetraenoic acid, were almost specific for 30-
week-old female rats. Furthermore, most of the PUFAs and their
metabolites that showed higher levels in 30-week-old female rats
are EPA, docosahexaenoic acid (DHA), and their metabolites
(Fig. 2G).

Differences in the fasted levels of lipid molecules
between ages

Subsequently, we compared the levels of individual lipid
molecules between 10- and 30-week-old rats. In fasted male rats,
76 lipid molecules were significantly different, and the levels of 61
molecules were high in 10-week-old rats whereas the levels of 15
molecules were high in 30-week-old rats (T'able 3). The phospho-
lipids that presented higher levels at 10 weeks in male rats were
LPCs and PGs (Fig. 3A and B). In addition, most of the PUFAs
and their metabolites that showed higher levels at 10 weeks in
male rats than those at 30 weeks were EPA, DHA, and their
metabolites (Fig. 3G). In contrast, in fasted female rats, 101 lipid
molecules were significantly different, and the levels of 98 were
higher at 30 weeks than at 10 weeks (Table 3). Most of these lipid
molecules are neutral lipids (72 out of 101). As shown in Fig. 3F,
levels of relatively shorter and less unsaturated TGs, such as 48:0,
50:0, and 52:1 TGs, were higher at 30 weeks than at 10 weeks in
female rats. In contrast, levels of relatively longer and highly
unsaturated TGs, such as 56:10, 58:11, and 60:13 TGs, were
lower at 30 weeks than at 10 weeks in male rats. Only 16 lipid
molecules, such as 36:4 and 40:6 PE, showed significantly different
levels between 10- and 30-week-olds in both male and female rats
(Fig. 3).

Differences in the levels of lipid molecules among
feeding conditions

To gain insight into the effects of feeding conditions on plasma
lipid molecules, we next compared the levels of individual lipid
molecules between rats that were fed and fasted, 16-hr fasted and
22-hr fasted, and from which blood was collected at 10 AM and 4
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A C F

10 week/30 week 10 week/30 week 10 week/30 week 10 week/30 week
m———————
Male  Female Male  Female Male  Female Male  Female
16:0LPC 081 34DSM 069, 0.81 480TG SSETC 064
161LC 124 34:1SM .76 ARITG 58:7TGa 089
170LPC . 3425M 073 382TG 587G
180LPC 36:15M .77 PITG S38TCa
18:1LPC 077 36:25M 0.78 492TG SSRTGH
18:2LPC 074 38:15M 504016 58:9TCa 056
F0ALPC .75 40:15M 017G 589TGh
204LPC 4115M S02TG SB:10TCa
23:6L0C 06 4125M S03TG S810TGh
32.0°C 42:18Ma 078 SOATG 58:11TG
32:1PC 42:15Mb SLITG 60:1TG
332PC 4225M S12TG 021G
33:0PC 073 $235M 513TG G03TG
33IPC 13:1SM 0T STATG 60.4TG
3420C 086 4EICer S2OTG 60:5TCa
343PC 421Cera 520TG 605TGh
352PC s 12:1Cer 52.2TG OITG
354PC 2:2Cer 52.3TG 601 1TGa
36:00C 43:1Cer SATG 60:11TGb
36:1°C 421 HexCer | | 078 52:5TCa 60:12TGa
362PCa $2:5TGh 60:12TGh
36:2PCh D 52:6TCa n60 60:13TG
36:3PCa 52:6TCh 622TG
36:3PCh g Ch ! ! | [sz6TCe 62316
36:4PCa 160CHE 271G 624TG
364PCh 16:1ChE LR ! 5321G 62:5TCa
36:5PCa 17.0ChE 53:3TG 25TCh
36,30Ch T 17:1ChE S3ATG 6212TG
372PCa 18:0ChEa 5T 621310a
3720Ch 1§:0ChED S5:6TG 62:13TGh
374PC 18:ChEg 540TG 62:14TG
38:3PCa {8:1ChED 541TG CoQ9
38:3PCh 182ChE S12TG
38APCa 183ChE 158 431G
38:4PCh 19:1ChE S44TCa
3%55Ca 192ChE T S4ATCh 056 AA
38:5PCh 20 1ChE BN 54:5TG POD2
6PCo 202CHE 070 51:6TCa Lat i
38:6FCh 20:3ChEn 063 S46TGh 060 X
39aPCa 065 20:3Ch ED 547TCa 12HHT
304PCH 0ACKE ST SUETE 0.83
396C .56 205ChE 547TGe SHETE
304PC 14ChE S38TCa 12 HETE
40:5PCa 21:5ChEa SHETGh 15-HETE
40:50Ch 205ChED 527G s 213 dHHETE
406PCa 223ChE $59TG
40:6PCh 078 22:5ChE SRTG
4079C 0ss 22:6ChE S60TG T
40:5PC 24:6ChE 871 56:1TG ot
1ePC 562TG 59 SHERE
36:4ePC E S63TG S,MIH.ETLE
36:500C " S64TC ALi2-GRIETE
39:508C 34UDG S6ATCh 14] S-HETE
342D6 5637Ca EPA 2
B 36:20G e SHEPE L
363DG e SHEPE
1S0LPE 364DG WS():GFG 12-HEPE
362PE 38:5DG W 15-HEPE
364PE 077 1. 072 38:6DG trittey T TILPE
384PE 40:7DG TG e 14,15-diHETE
J0:6PE o6l L 040 405DG prccy (7I5-dIHETE
36:5¢PE 44:10DG 569TCa DHA
38:5¢PE . S69TCh 4-HDOHE
386ePL 5610TG : T-HDOHE
e 5 o 10-HDoHE
o0l e 13-HDoHE
36:4P1 59 SROTG 14-HDoHE
37P1 073 831G 17-HDoHE
S84P1 e 10.17-diHDoHIE
38501 EE 20-HDOHE
40:6P1 1920-diHDOPE.
2-fold 0.5-fold

Figure 3. Heat maps of lipid molecules among fasted rats of different age groups. The heat maps were generated with statistically
significant different lipid molecules (p<<0.05) of lysophosphatidylcholines and phosphoatidyicholines (A), other phospholipids (B), sphingolipids (C),
cholesterol/cholesterolesters (D), diacylglycerols (E), triacylglycerol and coenzyme Q9 (F), and arachidonic acid, eicosapentaenoic acid,
docosahexaenoic acid, and their metabolites (G). The numbers indicate the fold change of levels of individual lipid molecules in 10-week-old
over 30-week-old male and female rats. The alphabet of the lipid class is used to distinguish the 2 lipid species possessing the same formula. LPC,
lysophosphatidylcholine; PC, phosphatidylcholine; ePC, ether-type PC; LPE, lysophosphatidylethanolamine; PE, phosphatidylethanolamine; ePE, ether-
type PE; SM, sphingomyelin; Cer, ceramide; HexCer, hexosylceramide; Ch, cholesterol; ChE, cholesterolester; DG, diacylglycerol; TG, triacylglycerol;
CoQ9, coenzyme Q9; AA, arachidonic acid; PG, prostaglandin; TX, thromboxane; HETE, hydroxyeicosatetraenoic aicd; diHETE, dihydroxyeicosate-
traenoic acid; diHETYE, dihydroxyeicosatrienoic acid; EPA, eicosapentaenoic acid; HEPE, hydroxyeicosapentaenoic acid; DHA, docosahexaenoic acid;
HDoHE, hydroxydocosahexaenoic acid; diHDoHE, dihydroxydocosahexaenoic acid; diHDoPE, dihydroxydocosapentaenoic acid.
doi:10.1371/journal.pone.0112266.g003
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Table 3. Age-based differences in the number of lipid molecules at significantly higher levels.

Male Female Common

Neutral lipids
PUFAs and m

Total

doi:10.1371/journal.pone.0112266.t003

Table 4. Differences in the number of lipid molecules at significantly higher levels among rats subjected to different feeding conditions.

Fasting Duration of fasting Blood collection time

Lipld lasses

Phospholipids

doi:10.1371/journal.pone.0112266.t004
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Feeding conditions Feeding conditions Feeding conditions Feeding conditions
m——————"
Fypq 16hr AM Fypq 10hr AM FyEq 160 AM Fypq l6hr AM
/22 hr /PM 22hr /PM /22 hr /PM /22 hr /PM
16:0LPC 0.78 34:0SM 48:0TG 10.63
16:1LPC 0.40 341SM 81T
17:0LPC 0,77 34:25M 48:2TG
180LPC 0.8 36:1SM 40:1TG :
18:1LPC 054 36:25M 492TG SRETCh .68
18:2LPC 039 121 38:1SM 500TG 6.68 SRITGa
20:1LPC 0.77 40:1SM S01TG S89TCh 8.66
204LPC 41:1SM 50.2TG 58:10TGa
22:6LPC .74 41:2SM S03TG SBI0TGY 6.71
0.77 42:15Ma S0:4TG
0.19 42:1SMb SLITG
033 4228M S12TG
0.65 42:35M SLITG
047 43:1SM 132 127 SL4TG
0.55 A1:1Cer 074 5207TG
026 42:1Cern S21TG
034 131 42:1Cerb 0.67 52:2TG 60:9TG
354PC 42:2Cer 0.75 52310 60: 11 TGa
36:0PC 074 43:1Cer 324TG 053 H0:A1TGh
36:1PC 055 42:1HexCer 52:5TGa 60:12TCa
36:2PCa 0.80 52:5TGh
36:2PCh 956 D 241G
36:3PCa 029 S2:6TGh
36:3PCh 047 Ch S26TGe
364PCa 044 128 16:0ChE 0.74 527TG
36:4PCh 164ChE 038 $30TG
36:3PCa 058 170CHE 0.75 130 533TG
ST 17UCHE 457 534TG 62:12TG
G52 18:0ChEa 1330 BSTG 62:13TGa
U360 18:0ChEb 536TG 62U3TGh
18:1ChEa .64 e 62,14TG
S50 18:1ChEDb S4ITG CoQ9
053 182ChE 064 S42TG G
38:4PCa 290 18:3ChE 06.74 437G
38:4PCh 19:1ChE 068 . 544TCa AA
38:5PCa 0.76 192ChE 064 S4ATCh 8.63 PGD2
38:5PCh 034 20:{ChE . S45TG PGF2a
38:6PCa L0582 2054 54:67TGa TXB2
38:6PCh ; 346TGh 12-HHT
39:4PCa 134 063 SATTCa SHETE
39:4PCh I S4TTGo 8-HETE
39:6PC 028 SATTGe 12-HETE
40:4PC 21AChE S4:8TGa 15-HETE
40:5PCa 21:5ChEa 54:8TGo 5,5-0HETE
40:5PCh 21:5ChED 039 552TG 16-HETE
40:6PCa 0.66 2:3ChE SSTTG 17-HETE
A40:6PCh 22:5ChE SSKTG 1$-HETE
407PC 0.67 22:6ChE 56:0TG 20-HETE
40:8PC 24:6ChE 56:1TG 8 9-LHETE
34:1ePC E 56276 5.6-diHETIE
36:4ePC 56:3TG 11,12-diHETE
36:5¢PC DG 56:4TGa 14,15-diHETE
38:5ePC 342DG 56:4TCh EPA
B 36006 56:5TGa 5-HEPE
363DG SG:5TCh 8-HEPE
{S:0LPE 062 36:4DG 56:3TCe 12.HEPE
36:2PE 617 38306 366TG 15-HEPE
364PE 048 386DG 36:71Ga 18-HEPE
38:4PE 039 30706 6TTCH 14.15-diHETE |
40:6PE 046 40.8DG 368Gy 17I8-dHETE
36:5¢PE 44:10DG 56:3TGhb DHA
38:5¢PE 56:9TGa 4-HDoHE .
38:6¢PE S6:9TGh 7-HDoHE 073
34:201 £ 0407 S121 S6:10TG 10-HDoHE
36:2P1 2040 . 57216 13-BDoHE
36:4P1 0.74 38ATG 14-HDoHE
37:4P1 382TG 17-HDoHE
38:4P1 BTG 10,17-diHDoHE,
SBATG 20-HDoHE 071
40:6P1 BLIN RS 19.20-diHDoPE
2-fold 0.5-fold

Figure 4. Heat maps of lipid molecules among rats subjected to different feeding conditions. The heat maps were generated with
statistically significant different lipid molecules (p<0.05) of lysophosphatidylcholines and phosphoatidylcholines (A), other phospholipids (B),
sphingolipids (C), cholesterol/cholesterolesters (D), diacylglycerols (E), triacylglycerol and coenzyme Q9 (F), and arachidonic acid, eicosapentaenoic
acid, docosahexaenoic acid, and their metabolites (G). The numbers indicate the fold change of levels of individual lipid molecules in fasted over fed
male rats (Ft/Fd), 16-hr fasted over 22-hr fasted male rats (16 vs. 22 hr), and blood collected from male rats at 10 AM over at 4 PM (AM/PM). The
alphabet of the lipid class is used to distinguish 2 lipid species possessing the same formula. LPC, lysophosphatidylcholine; PC, phosphatidylcholine;
ePC, ether-type PC; LPE, lysophosphatidylethanolamine; PE, phosphatidylethanolamine; ePE, ether-type PE; SM, sphingomyelin; Cer, ceramide;
HexCer, hexosylceramide; Ch, cholesterol; ChE, cholesterolester; DG, diacylglycerol; TG, triacylglycerol; CoQ9, coenzyme Q9; AA, arachidonic acid; PG,
prostaglandin; TX, thrombosxane; HETE, hydroxyeicosatetraenoic aicd; diHETE, dihydroxyeicosatetraenoic acid; diHETE, dihydroxyeicosatrienoic acid;
EPA, eicosapentaenoic acid; HEPE, hydroxyeicosapentaenoic acid; DHA, docosahexaenoic acid; HDoHE, hydroxydocosahexaenoic acid; diHDoHE,
dihydroxydocosahexaenoic acid; diHDoPE, dihydroxydocosapentaenoic acid.

doi:10.1371/journal.pone.0112266.9004
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PM. The results of the comparative analysis showed that 183 lipid
molecules were significantly different between fed and fasted male
rats (Table 4). More than half of the lipid molecules in
phospholipids, neutral lipids, and PUFAs and their metabolites
were significantly different between fed and fasted male rats.
Forty-four out of 46 significantly different phospholipids and 96
out of 109 significantly different neutral lipids were higher in fed
rats than in fasted rats (Table 4). As shown in the heat map
presented in Fig. 4E and F, levels of relatively longer and highly
unsaturated DGs and TGs, such as 40:8 DG, 58:11, 60:13, and
62:14 TGs, were higher in fasted rats than in fed rats. On the
other hand, 16 out of 21 significantly different PUFAs and their
metabolites were higher in fasted rats than in fed rats (Fig. 4G). In
contrast to the other lipid classes, only 7 out of 20 sphingolipids
were statistically significant and their fold changes were less than
50% (Fig. 4C). No significantly different level of lipid molecules
was observed between 16 hr-fasted and 22 hr-fasted male rats
(Fig. 4). In addition, only 17 lipid molecules, such as 18:2 LPC and
35:2 PC, showed significantly different levels among different
blood collection conditions (10 AM vs. 4 PM; Fig. 4).

Discussion

In the present study, we compared effects of multiple factors on
the global profiles of lipid molecules in rat plasma. Based on
overall comparison by OPLS-DA, feeding condition has a
predominant role in the global profiles of lipid molecules, followed
by sex and age. The number of statistically different levels in the
lipid molecules between fasted and fed male rats reached 70% of
the total lipid molecules determined, indicating a massive impact
of feeding on lipid molecule levels. Sex-based differences in the
levels of 42% of the lipid molecules tested were observed at
10 weeks of age and in 54% of the lipid molecules tested, at 30
weeks of age; whereas, age led to differences in the levels of 29% of
the lipid molecules tested in male rats and 39% of lipid molecules
in female rats. In contrast, overall comparison did not show any
component contributing to separation among length of fasting
period (16 hr vs. 22 hr) or diwrnal time of sample collection
(10 AM vs. 4 PM). In addition, there was no statistically significant
difference in the levels of lipid molecules among the length of
fasting period. Only 6.5% of the total lipid molecules determined
showed significantly different levels among diurnal time of sample
collection. These observations indicate that feeding or fasting
condition, sex, and age are dominant factors influencing the global
profiles of lipid molecules in rat plasma, while length of fasting
period and diurnal time of sample collection has no or minor
effects.

Sexual differences in hepatic gene expression, including
cytochrome P450s, are well known in rodents [21,22]. In the
present study, we demonstrated that profiles of lipid molecules in
plasma also sexually vary in rats. Levels of SMs and PUFAs
containing ChEs were higher in both 10- and 30-week-old female
rats. In humans, the levels of SM are higher in female than in male
subjects throughout their lifespan, suggesting the sex-based
differences in the plasma levels of SMs are conserved among
these species [12,14,23]. The reason for higher levels of SMs in
female rats has been proposed to be due to the nutritional
preferences of women, because there are strong associations
between fruit and vegetable intake and the serum levels of d18:1/
26:1 SM [23]. In the present study, however, we housed rats with
same diet between male and female. Thus, in addition to
nutritional preference, there could be alternative factors respon-
sible for the sexually different levels of SMs in plasma. On the
other hand, the present study demonstrated that cholesterol and
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PUFAs were present in higher levels in female than in male rats,
although the difference in the levels of most PUFAs levels in 10-
week-old rats was not significant. In addition, the expression levels
of hepatic acyl-coenzyme A:cholesterol transferase 2 were
approximately 3-fold higher in female than in male subjects
[24]. Thus, the higher levels of PUFA-containing ChEs in female
rats might be due to higher levels of their substrates, as well as their
synthesizing enzymes.

Unlike SMs and PUFA-containing ChEs, the levels of EPA,
DHA, and their metabolites were higher in 30-week-old female
but not in 10-week-old female rats. It remains unclear why the
higher levels of EPA, DHA, and their metabolites in female rats
were specific for the 30-week-old age group. However, in a
previous study, the serum estradiol level in female rats was
elevated from an undetectable level at 3 months of age, to 90 pM
at 18 months of age [25]. Estrogens have been demonstrated to
induce the synthesis of DHA in rat [26]. Thus, one possible
mechanism for higher levels of PUFAs and their metabolites in 30-
week-old female rats is the estrogen effect.

In the present study, we employed 10-week-old (young adult)
and 30-week-old (matured adult) rats for examining the profiles of
lipid molecules in plasma. Our study demonstrated that levels of
relatively shorter and less unsaturated TGs (48:0, 50:0, and 52:1
TGs) were higher in 30-week-old female rats than in 10-week-old
rats, but that levels of relatively longer and highly unsaturated TGs
(56:10, 58:11, and 60:13 TGs) were not higher. It has been
reported that blood TG levels increase between 10 weeks and 30
weeks in rats and that this increase is much more drastic in female
than male rats [27]. Thus, relatively shorter and less unsaturated
TGs dominantly contribute to age-associated increases in TGs
observed in female rats, but the physiological mechanism for this
remains unclear. However, it has been reported that estrogen
treatment in turkey liver resulted in increased levels of TGs with
total carbon numbers of 53, but in decreased levels of TGs with
total carbon numbers of 57 [28]. Thus, estrogen might regulate
the synthetic ratio of acyl side chains in TGs through an unknown
mechanism in the liver, possibly leading to an increase in shorter,
less unsaturated TGs in female plasma.

We have demonstrated that feeding and fasting condition
represented a major contribution on the profiles of lipid molecules
in plasma. The majority of lipid molecules that are significantly
different between fasted and fed rats are food derivatives, which
are at lower levels in fasted rats. On the other hand, relatively
longer and highly unsaturated DGs and TGs, such as 40:8 DG,
58:11, 60:13, and 62:14 TGs, increased in fasted rats. In addition,
PUFAs also increased in fasted rats. Because DGs and TGs are
synthesized from glycerol and fatty acids, increased levels of
PUFAs might contribute to increased levels of relatively longer and
highly unsaturated DGs and TGs.

Unlike other lipid classes, sphingolipids were relatively stable
among fasted and fed rats. Feeding condition, as well as food
preference, is major concern of clinical tests. Recently, sphingo-
lipids have emerged as biomarker candidates for cardiovascular
events, traumatic brain injury, and depression [29-31]. Thus,
stability of the levels of sphingolipids throughout feeding and
fasting might be advantageous in the application of sphingolipids
as biomarkers in clinical tests, although, the effect of gender on the
levels of sphingolipids should be considered.

In conclusion, we demonstrated the effects of multiple factors on
lipidomic profiles in rat plasma. Our results demonstrated that
feeding condition and subjects’ sex and age are dominant factors
modulating the levels of lipid molecules in rat plasma. The levels of
most sphingolipids and PUFAs and their metabolites are sexually
different. Age of female rats modulates differently the levels of
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relatively shorter and less unsaturated TGs and of relatively longer
and highly unsaturated TGs. In addition, feeding and fasting
condition also bi-directionally influenced the levels of relatively
shorter and less unsaturated DGs and TGs and of relatively longer
and highly unsaturated DGs and TGs. The effects of feeding
condition are relatively smaller on the levels of sphingolipids than
phospholipids, neutral lipids, and PUFAs and their metabolites.
Taken together, our present study provides useful, fundamental
information for exploring and validating lipid biomarkers in future
preclinical studies and may also help to establish the regulatory
standards for these studies.

Supporting Information

File 1 Supplemental tables. Table S1. Nutrient composi-
tion of CRF-1 in 100 g. Table 82. Sample information. Table
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Abstract Endobiotic metabolites are associated with
biological processes in the body and therefore may serve as
biomarkers for disease states or therapeutic efficacy and
toxicity. However, information is limited regarding how
differences between blood matrices, patient backgrounds,
and sample handling affect human metabolite profiles. Our
objective was to obtain metabolite profiles from Caucasian
individuals, based on different matrices (plasma and
serum), subject backgrounds (male/female and young/old),
and storage conditions (2 or 10 freeze—thaw cycles). In
total, 297 metabolites were detected by LC/MS and GC/
MS, and more than 75 % of them were highly represented
in all sample groups. The multivariate discriminant ana-
lysis (OPLS-DA as a model) singled out the matrix type as
the most important variable influencing global metabolic
profiles; that is, more than 100 metabolites were signifi-
cantly different based on the matrix type. The influence of
subject backgrounds on global metabolic profiles was
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consistent between plasma and serum. Age-associated
differences were more predominant in females than males,
whereas gender-associated differences were more prevalent
in young subjects than old individuals were. The relative
standard deviation of metabolite levels in subjects with the
same background ranked from 0.1 to 1.5. Moreover, the
changes of metabolite levels caused by freeze—thaw cycles
were limited, and the effect was more prominent in plasma
than serum. These data demonstrate the impact of matrix,
age, gender, and freeze—thaw cycles on the metabolite
profiles and reveal metabolites affected by these factors.
Thus, our results provide would useful fundamental infor-
mation for exploring and qualifying biomarkers for clinical
applications.

Keywords Metabolomics - Endobiotic metabolite -
Plasma and serum - Age - Gender - Freeze—thaw cycle

1 Introduction

Biomarkers reflecting the severity or the presence of dis-
eases are useful tools for their diagnosis and treatment
(Gowda et al. 2008; Zineh and Huang 2011). Discovering
biomarkers that can forecast therapeutic efficacy and tox-
icity of drugs is also becoming clinically important for
developing new drugs and avoiding adverse events.
Endobiotic metabolites, which reflect both genetic and
environmental factors, represent the biological processes in
the metabolic system of cells, organs, as well as bodies
(Psychogios et al. 2011; He et al. 2012), and are therefore
expected to be suitable biomarker candidates. Metabolo-
mics is a useful tool for high-throughput biomarker iden-
tification, because it can measure a wide range of
metabolites at once (Hollywood et al. 2006; Wishart 2007).
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To date, however, the fundamental information regarding
the profiles of the stability and variance of human blood
metabolites remains limited, thereby retarding biomarker
exploration.

Plasma and serum, two matrices that are fractionized
from blood and that contain abundant circulating metabo-
lites, can be easily obtained with low invasiveness. While
both plasma and serum are commonly used in metabolo-
mics studies for biomarker exploration, several groups
have reported differences between their metabolite levels.
By determining the levels of 72 metabolites in human
plasma and serum, Liu et al. (2010) demonstrated that
while most amino acids were present at higher levels in
serum, pyruvate and citrate were observed to be at higher
levels in plasma. In addition, a large population study has
reported higher serum levels of several amino acids, such
as arginine, serine, phenylalanine, and glycine (Yu et al.
2011). Moreover, the levels of phosphatidylcholine,
erythritol, creatinine, hexadecanoic acid and glutamine
were correlated with life expectancy for small-cell lung
cancer in plasma but not in serum (Wedge et al. 2011). Liu
et al. (2010) also showed that the levels of metabolites in
serum were less affected by incubation of blood specimens
at 37 °C, compared to those in plasma, suggesting higher
stability of serum metabolites at 37 °C. To date, the impact
of handling and storage on a wide range of metabolites
from blood and serum remains unclear. In addition, the
information regarding the metabolite profiles in association
with subject background, such as sex and age, is also
limited. Previously, several analyses of the human plasma
serum metabolome demonstrated gender- and age-associ-
ated differences in the metabolite profiles (Lawton et al.
2008; Mittelstrass et al. 2011; Yu et al. 2012). However,
because these studies combined all ages when comparing
the metabolite profiles between sexes, we speculate that
precise gender-associated differences were confounded by
age-associated differences, and vice versa. Therefore, there
remains an unmet need to reveal gender- and age-associ-
ated differences in the metabolite profiles using human
subjects. Inter-individual variations in each metabolite
level should be elucidated using subjects with the same
background, since high inter-individual variations could
mask metabolite level changes that reflect disease pro-
gression and drug response. Nevertheless, comprehensive
metabolomics studies of these differences would warrant
accelerated exploration and evaluation of biomarkers for
clinical applications.

In the present study, using a global metabolomics
approach, we determine the levels of 297 endogenous low-
molecular-weight biochemicals (mostly hydrophilic),
including amino acids, carbohydrates, and lipids, in plasma
and serum samples obtained from human subjects catego-
rized by either age or sex. To minimize the possibility of

unexpected variations affecting the differences we focused
on, we controlled subjects’ age (young population,
25-34 years old; and old population, 55-64 years old),
ethnic genetics (healthy Caucasians), and food intakes
(overnight fasting). To examine the variables tested in this
study (matrix, gender, and age), data were processed by the
multivariate statistical analysis, i.e., orthogonal partial least
squares discriminant analysis (OPLS-DA) modeling, and
matrix type gave the clearest separation. Plasma and serum
both presented clear gender- and age-associated differ-
ences. Based on our data, we addressed the metabolic
profile differences between plasma and serum samples,
young and old populations, or males and females, as well
as inter-individual variations of the metabolite levels in
subjects with the same background. In addition, we also
examined the effect of freeze—thaw cycles on the levels of
metabolites in plasma and serum samples. Overall, our
current study provides fundamental information for future
biomarker exploration and qualifications.

2 Materials and methods

2.1 Collection of human blood and preparation
of plasma and serum

Blood samples were purchased from ProMedDx (Norton,
MA). ProMedDx collected samples after informed consent
was obtained rightly from all participants; the ethics
committee of the National Institute of Health Sciences
authorized the company as a validated provider and
exempted us from the committee’s approval for the use of
purchased blood samples. Venous blood was collected
from 60 healthy Caucasian volunteers in the morning after
fasting for 14 h. Participants were categorized into 4
groups as follows: young males (25-33 years old), old
males (55-64 years old), young females (25-34 years old),
and old females (55-63 years old). Each group included 15
individuals, except for the old female group, which had 14
individuals due to the presence of EDTA in serum samples
of 1 individual. Subject information is displayed in Sup-
plemental Table 1. Fresh blood from each individual was
simultaneously drawn into 10-mL Vacutainer Plasma
Separator Tubes containing K2-EDTA (Becton—-Dickinson,
Franklin Lakes, NJ) and 10-mL Vacutainer Serum Sepa-
rator Tubes with clot activators (Becton—Dickinson). Fol-
lowing the manufacturer’s instructions, samples were
centrifuged, and serum and plasma wete separated within
2 h of blood collection and then immediately frozen. Upon
receiving samples from PromedDX, all samples were
thawed on ice, divided into aliquots, and refrozen at
—80 °C until sample extraction. An aliquot of plasma and
serum samples from young males was subjected to 10

_@ Springer
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freeze—thaw cycles, with thawing and freezing being done
on ice for 2 h and at —80 °C for 30 min, respectively.
Samples were subsequently stored at —80 °C.

2.2 Determination of endobiotic metabolite levels
The non-targeted metabolic profiling instrumentation

employed for this analysis combined three independent
platforms: ultrahigh performance liquid chromatography/

tandem mass spectrometry (UHPLC/MS/MS) optimized

for basic species, UHPLC/MS/MS optimized for acidic
species, and gas chromatography/mass spectrometry (GC/
MS) (Evans et al. 2009; Bourdonck et al. 2009). For each
plasma and serum sample, protein was precipitated and low
molecular weight compounds were extracted with metha-
nol that contained four standards to report on extraction
efficiency. The resulting supernatant was split into equal
aliquots for analysis on the three platforms. Aliquots, dried
under nitrogen and vacuum-desiccated, were subsequently
either reconstituted in 50 pL 0.1 % formic acid in water
(acidic conditions) or in 50 pL. 6.5 mM ammonium bicar-
bonate in water, pH 8 (basic conditions) for the two
UHPLC/MS/MS analyses or derivatized to a final volume
of 50 pL. for GC/MS analysis using equal parts bis-
trimethyl-silyl-trifluoroacetamide and solvent mixture
acetonitrile: dichloromethane: cyclohexane (5:4:1) with
5 % triethylamine at 60 °C for 1 h.

For UHLC/MS/MS analysis, aliquots were separated
using a Waters Acquity UPLC (Waters, Millford, MA)
instrument with separate acid/base-dedicated 2.1 mm x
100 mm Waters BEH C18 1.7 pm particle columns heated
to 40 °C and analyzed using an LTQ mass spectrometer
(Thermo Fisher Scientific, Inc., Waltham, MA, USA)
which consisted of an electrospray ionization (ESI) source
and linear ion-trap (LIT) mass analyzer (Evans et al. 2009).
Extracts reconstituted in formic acid were gradient eluted
at 350 pL/min using (A) 0.1 % formic acid in water and
(B) 0.1 % formic acid in methanol (0 % B to 70 % B in
4 min, 70-98 % B in 0.5 min, 98 % B for 0.9 min),
whereas extracts reconstituted in ammonium bicarbonate
used (A) 6.5 mM ammonium bicarbonate in water, pH 8§,
and (B) 6.5 mM ammonium bicarbonate in 95/5 methanol/
water (same gradient profile as above) at 350 puL/min. The
MS instrument scanned 99-1000 m/z and alternated
between MS and MS2 scans using dynamic exclusion with
approximately 6 scans per second. Derivatized samples for
GC/MS were separated on a 5 % diphenyl/95 % dimethyl
polysiloxane fused silica column with helium as the carrier
gas and a temperature ramp from 60 to 340 °C and then
analyzed on a Thermo-Finnigan Trace DSQ MS (Thermo
Fisher Scientific, Inc.) operated at unit mass resolving
power with electron impact ionization and a 50-750 atomic
mass unit scan range (Bourdonck et al. 2009). Metabolites
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were identified by automated comparison of the ion fea-
tures in the experimental samples to a reference library of
chemical standard entries that included retention time,
molecular weight (m/z), preferred adducts, and in-source
fragments as well as associated MS spectra, and were
curated by visual inspection for quality control using
software developed at Metabolon Inc. (DeHaven et al.
2010). ,

Data extraction of raw MS files from both platforms was
performed as described previously (DeHaven et al. 2010).
Peaks were identified using Metabolon’s proprietary peak
integration software, and metabolites were identified by
automated comparison of the ion features in experimental
samples to a reference library of chemical standard entries
that included retention time, molecular weight (m/z), pre-
ferred adducts, in-source fragments, and MS/MS spectra.
The quality control and curation processes were designed
to not only ensure accurate and consistent identification of
true chemical entities but also remove systematic artifacts,
misassignments, and background noises. Processing of raw
ion feature data yielded 297 endobiotic metabolites of
known identity (75 metabolites from GC/MS, and 128 and
94 metabolites from negative and positive ion mode of LC/
MS, respectively). Since this study spanned multiple days,
samples from each experimental category were randomized
across run days and, following data collection, a data
normalization step was performed to correct variations
resulting from instrument inter-day tuning differences. For
monitoring of data quality and process variation, several
technical replicate samples created from a homogeneous
pool containing a small amount of all study samples were
injected throughout the run, interspersed among the
experimental samples in order to serve as technical repli-
cates for calculation of precision. In addition, process
blanks and other quality control samples are spaced evenly
among the injections for each day, and all experimental
samples are randomly distributed throughout each day’s
run. The median relative standard deviation (RSD) was
11 % for technical replicates and 6 % for internal stan-
dards. Each metabolite was corrected in run-day blocks by
registering the medians to equal one and normalizing each
data point proportionately. For samples with missing val-
ues for a metabolite, the minimum observed value of the
metabolite among all samples was applied as the missing
values. RSD of each metabolite was determined by divid-
ing standard deviation of each metabolite by the mean of
that metabolite in specific sample groups. Comparison of
the metabolite levels among groups was performed by 7 test
analyses (the paired ¢ test, comparison between plasma and
serum or samples subjected to freeze—thaw cycles; and the
Welch’s 7 test, comparison between young and old subjects
or males and females) to assess statistical differences. In
this study, p < 0.05 represents statistical significance and it
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was used for the pathway occupancy analysis. The average
values, standard deviation and RSD obtained from nor-
malized levels of each metabolite, filled values (% of
detectable samples), as well as the categories and pathways
of each metabolite, were displayed in Supplemental
Table 2.

2.3 OPLS-DA analysis

Metabolite data, following run-day normalization and
minimum value imputation, were loaded into SIMCA-P+
12 (Umetrics, Umea, Sweden), pareto-scaled, and analyzed
using OPLS-DA to visualize the variance among the
groups evaluated in this study. The OPLS-DA results were
given as score plots to represent the similarity of overall
metabolic profiles.

2.4 Pathway occupancy analysis

To construct pathway occupancy maps, pathways repre-
sented by more than four metabolites were picked and
scored with statistically different metabolites within spe-
cific pathways (p < 0.05, scored as 1). The scored values
were divided by the number of metabolites within specific
pathways, resulting in the ratio of occupied metabolites
that reached statistical significance within a pathway.

3 Results

3.1 Global profiles of low-molecular-weight
biochemicals in plasma and serum of young
and old males and females

To generate an overview of group-based variances of
global metabolic profiles in different matrices (plasma and
serum), subject backgrounds (young and old males and

females), and sample storage (2 or 10 freeze—thaw cycles),
the OPLS-DA model was applied. Because the examina-
tion of the effect of freezing and thawing on metabolic
profiles was limited to the subset of plasma and serum from
young males, data from this subset were excluded from
modeling. As shown in Fig. 1, the plasma and serum
samples clustered into two distinct groups separated mainly
by component 1 (R2Y = 0.448 and Q2 = 0.29). Within
each cluster of plasma and serum sample groups, young
and old sample groups clustered into two groups separated
mainly by component 2. By age-based clustering, young
male and female sample groups were separated distinctly
from each other, whereas old sample groups showed no
clear separation between sexes. Overall, the trend of clus-
tering for ages and sexes was similar between plasma and
serum. In addition, age-associated changes of the metabolic
profiles were more pronounced in females than males.

3.2 Differences in the metabolite levels
between sample matrices

Our results show that the difference in the overall metabolic
profiles between plasma and serum was the greatest. Of 297
metabolites we measured, around 25 % were detected in less
than 80 % of the samples with a given group. As shown in
Fig. 2a, four individual gender-age groups and their averages
were assessed for filled values of each metabolite (the per-
centage of detectable samples within a group), which were
found to be almost the same between plasma and serum. Only
five peptides (bradykinin, glycylphenylalanine, glycylvaline,
aspartylphenylalanine, and phenylalanylphenylalanine) and
two lipids (1-myristroylglycerol and 2-arachidonylglycerol)
showed markedly higher filled values (>80 %) in either plasma
or serumn than the other matrix (<40 %). Specifically, the filled
values in serum were much higher for glycylphenylalanine,
glycylvaline, aspartylphenylalanine, phenylalanylphenylala-
nine, 1-myristroylglycerol, and 2-arachidonylglycerol but were

Fig. 1 OPLS-DA model of
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obtained from human plasma 8t
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females (open triangle) were T o L o O,‘;u:;i;:ae
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parameter R2 and the predictive 2 A Old female
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lower for bradykinin. The levels of abovementioned seven
metabolites in plasma and serum are shown in Fig. 2b.

To get insights into the difference in the metabolic profiles
between plasma and serum, we counted the number of
metabolites that were statistically different (p < 0.05)
between plasma and serum in each group with different
subject backgrounds (Fig. 2c). More than 100 metabolites
showed significantly different levels between plasma and
serum of all subject groups; among them, approximately 50
had more than 50 % changes, either higher or lower, in their
levels (see Supplemental Table 3). Similar trends in numbers
were observed for all four analyzed groups. Notable differ-
ences (i.e., more than twofold differences) between plasma
and serum were observed for 24, 28, 31, and 21 metabolites in
young males, old males, young females, and old females,
respectively. Examples of these metabolites include aspartate,
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Fig. 2 Differences in the metabolite characteristics between plasma
and serum. a The distribution of filled values (the percentages of
metabolites detected in each subject group). Data obtained from
plasma and serum are presented as the average values of all subject
backgrounds or each subject background. b Metabolites showing
significantly different levels between plasma and serum. Each dot
represents the data of an individual subject. Data shown are human
plasma (red) and serum (blue) samples from young males (closed
circle), old males (open circle), young females (close triangle), and
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aspartylphenylalanine, glycerol-3-phosphate, and 2-palmi-
toylglycerol. To further understand pathway-based differ-
ences between plasma and serum, we identified the metabolic
pathways whose components diverged the most between the
two matrices by scoring the metabolites that were signifi-
cantly different between the two. To do this, the number of
statistically different metabolites in a pathway was divided by
the total number of metabolites detected in the pathway,
which was referred to as pathway occupancy. Figure 2d
shows the average values of pathway occupancy for all four
gender-age subject groups. The pathway occupancy of indi-
vidual groups was almost the same as the average (data not
shown). The pathways that displayed high levels of occu-
pancy contain metabolites involved in blood coagulation,
such as lysolipids (e.g., 1-stearoylglycerophosphoinositol),
monoacylglycerols (e.g., 2-palmitoylglycerol), fatty acids

Serum > Plasma, P<0.05 EZ Fold change > 1.5 Fold change < 1.5
Serum < Plasma, P < 0.05 A Fold change < 2/3 Fold change > 2/3
Young 193
Male
Old 163
Young 196
Female
Olid 189
297 metabolite total
Glycine. serine and threonine metabolism pasmessamsses
Alanine and aspanate i
ine & tyrosinc i
AA Tryptophan metabolism .
Valine, leucine and isoleucine metabolism [ = Serum
Cysteine, ionine, SAM, tavrine i
Urea cycle: arginine-. proline-, metabolism ¥ Plasma
Dipeptide Jse -
PCP camma-ghutamyl
Polypeptide prmsmmmsmmmes
Fructose. mannose, galactose. starch, and sucrose metaholism prsssessms
CH Glycolysis, is. pyruvate i
Nucleotide sugars, pentose metabolism Jusas
E! TCA cycle
Essential fatty acid
Medium chain fatty acid
Long chain faity acid
Fatty acid. monohydroxy
. Fatty acid. dicarboxylate pwss
Llp Carnitine metabolism P
Bile acid metabolism
Glycerolipi o
Lysolipid s
Sterol/Steroid s
N Purine metabolism e
Pyrimidine metabolism, uracil containing pssmsss

Hemoglobin and porphyrin metabolism sz 33
0 0.0 0203 040506070809 1

Pathway occupancy
(ratio of significantly different metabolites)

old females (open triangle). ¢ The number of metabolites with
statistically significant differences and with at least 50 % changes in
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the number of metabolites. d Pathway occupancy rates of statistically
different metabolites between plasma and serum. AA amino acids,
P peptides, CH carbohydrates, E energy metabolites, Lip lipids,
N nucleotides, CoFV cofactors and vitamins. Blue the ratio of
metabolites higher in serum than plasma, red vice versa
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(e.g., eicosapentanoate), glycerophosphatidylcholine and its
components (e.g., glycerol-3-phosphate), polypeptides (e.g.,
bradykinin), dipeptides (e.g., aspartylphenylalanine), and
amino acids (e.g., aspartate).

3.3 Differences in the metabolite levels between ages
and sexes (subject backgrounds)

Next, we analyzed the differences in the metabolite profiles
between ages and sexes. Because age-associated differ-
ences in the metabolite profiles were more pronounced than
gender-associated ones, we first focused on the differences
between young and old subject groups. In agreement with
the overall metabolic profiles shown in Fig. 1, the number
of metabolites with statistically significant differences
(p < 0.05) between young and old subjects (Fig. 3a) was
greater in females than males. Specifically, 95 and 93
metabolites in plasma and serum, respectively, reached
statistical significance in females, with 54 and 56 of which
showing more than 50 % differences in their levels (see
Supplemental Table 4). On the other hand, only 23 and 27
metabolites in plasma and serum, respectively, achieved
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Fig. 3 Differences in the metabolite levels between ages and sexes.
a, ¢ The number of metabolites with statistically significant differ-
ences and with at least 50 % changes of the levels between young and
old (a) or male and female (c) subjects. Values within boxes indicate
the number of metabolites. PL plasma, SR serum. b, d Pathway
occupancy rates of statistically different metabolites between young

Young

statistical significance in males, with 12 and 16 of which
showing more than 50 % level differences (see Supple-
mental Table 4). Plasma and serum samples demonstrated
similar trends in the fold differences and statistical signif-
icance for both males and females. More than twofold
differences between young and old subjects were observed
for 4, 4, 25, and 20 metabolites in men’s plasma and serum,
and women’s plasma and serum, respectively. Examples of
these metabolites include pregnenolone sulfate (in both
sexes) and Salpha-pregnan-3beta, 20alpha-diol disulfate
(only in females).

To get insights into the differences in the metabolic
profiles between young and old subjects, we next deter-
mined the pathway occupancy of metabolites with signifi-
cantly different levels between young and old groups
(Fig. 3b). In females, a broad range of metabolic pathways
for amino acids (such as alanine, asparagine, phenylace-
tylglutamine, and p-cresol sulfate) were predominant in the
old population, whereas in the young population, metabolic
pathways for fatty acids (such as palmitate and stearate)
and sterol/steroids (pregnane metabolites, such as Salpha-
pregnan-3beta, 20alpha-diol disulfate) were dominant. In
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P peptides, CH carbohydrates, E energy metabolites, Lip lipids,
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males, specific types of amino acids (phenylacetylgluta-
mine and p-cresol sulfate) produced by gut microflora
showed age-associated differences, similar to females;
however, most pathways had little significant difference
between young and old males, except for the TCA cycle
metabolites, such as citrate and malate, which showed
higher levels in old subjects. These results indicate that
age-associated differences in the metabolite profiles are
more prominent in females than males.

Subsequently, we addressed the differences in the
metabolite levels between male and female samples. In
agreement with the overall metabolic profiles shown in
Fig. 1, the number of metabolites with statistically signif-
icant levels differences (p < 0.05) between males and
females (Fig. 3c) was greater in young subjects than old
subjects. Specifically, 50 and 45 metabolites in plasma and
serum, respectively, showed significant difference in young
subjects, with 17 of both of which displaying more than
50 % level differences (see Supplemental Table 5). On the
other hand, only 28 and 29 metabolites in plasma and
serum, respectively, reached statistical significance in old
subjects, with 15 and 19 of which showing more than 50 %
level differences (see Supplemental Table 5). Plasma and
serum samples demonstrated similar trends in the fold
changes and statistical significance for both young and
aged subject groups. More than twofold differences
between males and females were observed for 5, 4, 7, and 8
metabolites in plasma and serum of young subjects, plasma
and serum of old subjects, respectively. Examples of these
metabolites included pyroglutamine (in both groups) and
5-alpha-pregnan-3beta, 20alpha-diol disulfate (in young
subjects only).

Because sample subjects have significantly different
BMIs between male and female, it remains possible that
BMI is confounding factor of the gender-associated dif-
ferences. To assess this possibility we selected young
population, which have much severe difference in average
BMI (26.9 for male and 37.0 for female). Young female
subjects were divided into two groups as follows: normal
BMI (range 24.9-35.4, which BMIs are within comparable
range of those in male) and high BMI (range 42.8-49.7)
(see Supplemental Fig. la). Of metabolites significantly
different between normal BMI and high BMI female
groups, only two each of metabolites (glutaroylcarnitine
(C5) and cortisol for plasma and 3-(4-hydroxy-
phenyl)lactate and citrulline for serum) out of 50 and 45
gender-associated metabolites in plasma and serum,
respectively, were BMI-dependent (Supplemental Fig. 1b).
In addition, OPLS-DA analysis with young male, young
female with normal BMI, and young female with high BMI
demonstrated clear separation of male and female but not
normal BMI and high BMI in both plasma and serum
(Supplemental Fig. 1c). Taken all together, BMI of subject
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is not confounding factor of gender-associated difference
in metabolite profiles.

We also described the pathway occupancy of the
metabolites with significantly different levels between
male and female samples (Fig. 3d). A larger number of
metabolic pathways was highlighted in young subjects,
even though the differences in occupancy rates between
sexes were moderate compared to those between ages.
Fatty acids (such as myristate and palmitoleate) were much
more dominant in young females, whereas a broad range of
amino acids (pyroglutamine and asparagine) were more
dominant in young males. While sex steroid metabolites
were moderately highlighted in both young and old sub-
jects, the levels of androgen metabolites (4-androsten-
3beta, 17beta-diol disulfate and Salpha-androstan-3beta,
17beta-diol disulfate) were consistently higher in young
and old males. In addition, the levels of progesterone
metabolites (Salpha-pregnan-3beta, 20alpha-diol disulfate
and pregnanediol-3-glucuronide) were only higher in
young females, whereas the levels of pregnenolone
metabolites (pregnen-diol disulfate and 21-hydroxypregn-
enolone sulfate) were only higher in old males.

3.4 Inter-individual variations in subject backgrounds

Inter-individual variations of the metabolite levels are
critical factors for designing metabolomics studies on the
exploration and/or qualification of biomarker candidates,
since large inter-individual variations in healthy states
could mask the changes of metabolite levels in response to
diseases or drugs. Therefore, we determined inter-individ-
ual variations of the metabolite levels in each subject
background by calculating RSD. The RSDs of the metab-
olite levels were found to be constant among all subject
background groups (data not shown). As shown in Fig. 4,
the RSDs of determined metabolites were largely distrib-
uted from O to 1.5 and showed almost similar patterns
between plasma and serum samples. In total, 173 and 169
metabolites in plasma and serum, respectively, had a score
of 0.5 or less.

3.5 Effect of freeze—thaw cycles on the metabolite
profiles

Lastly, we examined the effect of freeze—thaw cycles on
the stability of metabolites using plasma and serum sam-
ples from young males. The number of metabolites show-
ing statistical significance (p < 0.05) is shown in Fig. 5a.
While the overall difference between 2 and 10 freeze—thaw
cycles was smaller than that between matrices or subject
backgrounds, 43 and 19 metabolites in plasma and serum,
respectively, showed statistically significant differences,
with 7 and 3 of which displaying more than 50 % changes



Human metabolite profiles: blood matrices, ages, and sexes

409

60 1 0.5

—&—PLASMA
—&—SERUM

50

40 A

30 A

20 A

Number of biochemicals

10 +

B B B A B L S B B LS B T
O OO0 OO0 o o o0 — e e

OVER

Relative standard deviation
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in their levels (see Supplemental Table 6). These results
indicate that the plasma levels of metabolites were more
sensitive than those in the serum were, and that the
majority of their changes were enhanced by 10 freeze—thaw
cycles. More than twofold differences between 2 and 10
freeze—thaw cycles were observed for 4 and 2 metabolites
in plasma and serum, respectively. Examples of these
metabolites include allantoin (in both plasma and serum)
and bradykinin (in plasma only).

In addition, pathway occupancy was also analyzed to
delineate sensitive metabolic pathways against freeze—thaw
cycles (Fig. 5b). Compared to the serum samples, a larger
number of metabolic pathways in plasma were affected; in
particular, pathways that are associated with peptides (such
as bradykinin), low-molecular-weight lipids (such as hex-
adecanedioate), and glycerolipid metabolites (such as
choline) were affected more in plasma than serum. These
results suggest that the sources of these metabolites, such
as proteins and large lipids, may be broken down by
freeze—thaw cycles. Notably, the metabolic pathway of
cofactors and vitamins (e.g., heme, biliverdin, and (E,E)-
bilirubin) was affected in both plasma and serum samples.

4 Discussion

In the present study, we demonstrate that the global met-
abolic profiles of two blood sample matrices (plasma and
serum) were comparable; only a few metabolites were
specific to either one or the other. Plasma and serum also
exhibited compatible age- and gender-associated patterns
in the overall metabolic profiles, suggesting both matrices
compatibly reflect the variation of metabolite profiles

caused by subject backgrounds. In addition, plasma and
serum presented similar inter-individual variations of the
measured metabolites among subjects with the same
background. Together, these results suggest that serum and
plasma are both useful matrices, with which metabolomics
can be performed to discover and/or qualify biomarker
candidates. However, more than one-third of the metabo-
lites detected in this study showed significantly different
levels between plasma and serum. This result underscores
the need for a uniform matrix type when designing meta-
bolomics studies to identify and/or evaluate biomarkers.

While our results suggest that both plasma and serum
are suitable matrices for metabolomics studies, each of
them has different characteristics. We found that the
metabolites in serum were more stable against cycles of
freezing and thawing than those in plasma were. In addi-
tion, Liu et al. (2010) previously demonstrated that the
analytical peak areas in serum were less affected by 37 °C
incubation of blood than those in plasma were. Based on
these findings, we speculate that the metabolites are more
stable in serum than plasma.

The characterization of differences in the metabolic
pathways between matrices, subject backgrounds, and
freeze—thaw cycles was also a focus of our present study.
The pathways that were affected by matrices, subject
backgrounds, and freeze—thaw cycles were identified by the
pathway occupancy analysis (Fig. 6). The following core
pathways are affected by variables: (A) pathways related to
blood coagulation (differences between plasma and
serum); (B) amino acids metabolized by gut microflora
(differences between ages); (C) glucose catabolism
(female-related differences between ages); (D) steroid
hormone metabolism (common and age-specific differ-
ences between sexes); and (E) bilirubin synthesis (affected
by freeze—thaw cycles).

Blood coagulation, which releases phospholipases and
proteases by platelet activation (Zucker and Nachmias
1985), represents the major differences between plasma
and serum. Metabolites produced by phospholipases, such
as lysophospholipids and fatty acids, were found to be at
higher levels in serum than plasma (Fig. 6a), in agreement
with previous reports (Aoki et al. 2002; Yu et al. 2011). In
addition, other lipid metabolites, including monoacylglyc-
erol and glycerophosphorylcholine, were also detected in
the present study. It is also noted that peptides were present
at higher levels in plasma, whereas dipeptides and free
amino acids were present at higher levels in serum.

Phenylacetylglutamine and p-cresol sulfate are catabo-
lites of aromatic amino acids, phenylalanine and tyrosine,
respectively. Bacteria of the gut microflora are responsible
for the production of these aromatic amino acid derivatives
(Smith and Macfariane 1996). In this study, phenylacetyl-
glutamine and p-cresol sulfate were present at higher levels
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in old subjects than in young individuals, without any age-
associated decrease in the levels of their precursor aromatic
amino acids in both males and females (Fig. 6b). While
p-cresol sulfate has been reported as an age-associated
biomarker (Lawton et al. 2008), our results suggést that
phenylacetylglutamine, the catabolite of phenylalanine,
may also serve as an age-associated biomarker.
Age-associated differences in females are the most pro-
found among various comparisons of subject backgrounds
(Fig. 1). Fatty acids are present at higher levels in young
female subjects, whereas amino acids are at higher levels in
old subjects (Fig. 6¢). Because overnight fasting minimizes
food-derived influences on the levels of amino acids, fatty
acids, and those catabolized from glucose, glucose-related
catabolism could be different between young and old female
subjects. It has been reported that progesterone treatment
increased lipogenesis from glucose, pyruvate, and lactate in
the liver of pregnant rats (Lorenzo et al. 1986). In the present
study, pregnanediol metabolites, the downstream metabo-
lites of progesterone, showed much higher levels in young
females than old females (Fig. 6d), suggesting that the

@ Springer

0 02 04 06 08 10 02 04 06 08 1

Score of pathway occupancy

decreases in progesterone levels depend on their age.
Therefore, progesterone may play a role in the direction of
glucose catabolism, resulting in female-specific differences
in the metabolite profiles between young and old subjects.
Since pregnenolone is the source of sex hormones, such
differences may be associated with the drastic loss of female
sex hormones upon reaching menopause.

Progesterone synthesis is regulated by estrogen (Endo
et al. 1998). In agreement with decreased estrogen levels in
post-menopausal women (Burger et al. 1999; Bjornerem
et al. 2004), progesterone metabolites showed lower levels
in old female subjects than young female subjects, and the
levels in old females were comparable to those in males
(Fig. 6d). In contrast, the decrease was quite limited for
androgens, and their levels were still higher in old males
than old females (Sowers et al. 2001; Muller et al. 2003),
even though their levels were reported to be gradually
decreased in an age-dependent manner. Together, these
results indicate that the observation of higher levels of
androgen metabolites in males than females was common
between young and old subjects.



Human metabolite profiles: blood matrices, ages, and sexes

411

Fig. 6 Highlighted pathways in
this study. Highlighted
pathways contain specific
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E. Change by numbers of freeze-thaw cycles

L biliverdiﬁ

As for the changes by freeze—thaw cycles, heme deg-
radation was the only pathway common between plasma
and serum (Fig. 6e). Biliverdin and bilirubin were
decreased and increased, respectively, by repeated freeze—
thaw cycles. While it remains unclear as to whether bili-
verdin reductase is released into plasma or serum, the
enzyme may be activated during freeze—thaw cycles and
then catalyze biliverdin to bilirubin. On the other hand,
peptides and several types of lipids were increased by more
freeze—thaw cycles only in plasma, possibly due to the
breakdown of much larger proteins and/or lipids by phos-
pholipases and/or proteases, which may be removed from
serum during the coagulation process.

Metabolites whose levels are not highly sensitive to
differences in age or gender may have potential as bio-
markers. In addition, biomarkers that are easy to detect and
show low inter-individual variations might have even
greater utility. In this study, we identified a subset of bio-
chemicals sharing the following three characteristics

—

i

P
é Decreased |

(Supplemental Fig. la): ease of detection (average filled
value, more than 80 %), low gender- or age-associated
differences (less than 50 % changes and without statisti-
cally significant level differences), and low inter-individual
variations (RSD, 0.5 or less). Among 297 metabolites
detected in this study, 124 passed all three criteria in
plasma and/or serum (Supplemental Fig. 1b; Supplemental
Table 7). Of these 124 metabolites, 103 were shared by
both plasma and serum; therefore, we suggest that these
103 metabolites are well-controlled in healthy adults and
may be primary candidates for biomarkers. Alternatively,
metabolites whose levels are drastically modulated by
diseases or drugs could overcome the limitations of these
background variations and serve as biomarkers. In the
present study, Caucasians who had an overnight fast were
employed as experimental subjects. It has been reported
that nutrients and ethnicity also affect the metabolic pro-
files. For example, it was suggested that fruits and vege-
tables intake are strongly associated with the levels of
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glycerophospholipids and sphingomyelines (Menni et al.
2013). Comparison of northern and southern Chinese
populations using an NMR spectroscopy-based metabolo-
me-wide association approach also demonstrated different
levels of several amino acids and carbohydrates (Yap et al.
2010). Nevertheless, the differences associated with nutri-
ents and/or ethnicity should also be taken into consider-
ation for the exploration of biomarkers.

5 Concluding remarks

The discovery of biomarkers capable of forecasting disease
states and efficacy/toxicity of therapeutic drugs is clinically
important. While metabolomics has been applied to many
research studies to identify such biomarkers, fundamental
information regarding the metabolite profiles of different
blood matrices and subject backgrounds is still limited. The
findings of this study clearly suggest that plasma and serum
are both useful matrices for exploring biomarkers among
low-molecular-weight biochemicals and that the metabo-
lites were more stable in serum than plasma. In addition,
our results also show that several metabolites were scarcely
detectable, had large age- and gender-associated differ-
ences, and possessed high RSD values, all of which are
characteristics that should be taken into consideration when
selecting biomarker candidates. Taken together, our pres-
ent study provides useful fundamental information for
exploring and selecting biomarkers in future clinical stud-
ies and may also help establish the regulatory standards for
these studies.

Acknowledgments This work was supported by the Health Labour
Sciences Research Grants (Grant number 028) from the Ministry of
Health, Labour and Welfare, and by the Advanced Research for
Products Mining Program (Grant number 10-45) from the National
Institute of Biomedical Innovation of Japan.

References

Aoki, J., Taira, A., Takanezawa, Y., et al. (2002). Serum lysophos-

phatidic acid is produced through diverse phospholipase path- -

ways. The Journal of Biological Chemistry, 277, 48737-48744.

Bjornerem, A., Straume, B., Midtby, M., et al. (2004). Endogenous
sex hormones in relation to age, sex, lifestyle factors, and
chronic diseases in a general population: the tromso study.
Journal of Clinical Endocrinology and Metabolism, 89,
6039-6047.

Bourdonck, K. J., Mitchell, M. W., Nemet, L., et al. (2009).
Discovery of metabolomics biomarkers for early detection of
nephrotoxicity. Toxicologic Pathology, 37, 280-292.

Burger, H. G., Dudley, E. C., & Hopper, J. L. (1999). Prospectively
measured levels of serum follicle-stimulating hormone, estradiol,
and the dimeric inhibins during the menopausal transition in a

@ Springer

population-based cohort of women. Journal of Clinical Endo-
crinology and Metabolism, 84, 4025-4030.

DeHaven, C. D., Evans, A. M., Dai, H., & Lawton, K. A. (2010).
Organization of GC/MS and LC/MS metabolomics data into
chemical libraries. Journal of Cheminformatics, 2, 9.

Endo, T., Henmi, H., Goto, T., et al. (1998). Effects of estradiol and
an aromatase inhibitor on progesterone production in human
cultured luteal cells. Gynecological Endocrinology, 12, 29-34.

Evans, A. M., DeHaven, C. D., Barrett, T., Mitchell, M., & Milgram,
E. (2009). Integrated, nontargeted ultrahigh performance liquid
chromatography/electrospray ionization tandem mass spectrom-
etry platform for the identification and relative quantification of
the small-molecule complement of biological systems. Analyz-
ical Chemistry, 81, 6656-6667.

Gowda, G. A., Zhang, S., Gu, H., Asiago, V., Shanaiah, N., &
Raftery, D. (2008). Metabolomics-based methods for early
disease diagnostics. Expert Review of Molecular Diagnostics,
8, 617-633.

He, Y., Yu, Z., Giegling, I, et al. (2012). Schizophrenia shows a
unique metabolomics signature in plasma. Translational Psy-
chiatry, 2, el149.

Hollywood, K., Brison, D. R., & Goodacre, R. (2006). Metabolomics:
Current technologies and future trends. Proteomics, 6,
4716-4723.

Lawton, K. A., Berger, A., Mitchell, M., et al. (2008). Analysis of the
adult human plasma metabolome. Pharmacogenomics, 9,
383-397.

Liu, L., Aa, J., Wang, G., et al. (2010). Differences in metabolite
profile between blood plasma and serum. Analytical Biochem-
istry, 406, 105-112.

Lorenzo, M., Roncero, C., & Benito, M. (1986). The role of prolactin
and progesterone in the regulation of lipogenesis in maternal and
foetal rat liver in vivo and in isolated hepatocytes during the last
day of gestation. Biochemical Journal, 239, 135-139.

Menni, C., Zhai, G., Macgregor, A., et al. (2013). Targeted
metabolomics profiles are strongly correlated with nutritional
patterns in women. Metabolomics, 9, 506-514.

Mittelstrass, K., Ried, J. S., Yu, Z., et al. (2011). Discovery of sexual
dimorphisms in metabolic and genetic biomarkers. PLoS ONE,
7, €1002215.

Muller, M., Tonkelaar, 1., Thijssen, J. H. H., Grobbee, D. E., &
Schouw, Y. T. (2003). Endogenous sex hormones in men aged
40-80 years. European Journal of Endocrinology, 149,
583-589.

Psychogios, N., Hau, D. D., Peng, J., et al. (2011). The human serum
metabolome. PLoS ONE, 6, e16957.

Smith, E. A., & Macfariane, G. T. (1996). Enumeration of human
colonic bacteria producing phenolic and indolic compounds:
effects of pH, carbohydrate availability and retention time on
dissimilatory aromatic amino acid metabolism. Journal of
Applied Bacteriology, 81, 288-302.

Sowers, M. F., Beebe, J. L., McConnell, D., Randolph, J., &
Jannausch, M. (2001). Testosterone concentrations in women
aged 25-50 years: associations with lifestyle, body composition,
and ovarian status. American Journal of Epidemiology, 153,
256-264.

Wedge, D. C., Allwood, J. W., Dunn, W., et al. (2011). Is serum or
plasma more appropriate for intersubject comparisons in meta-
bolomic studies? An assessment in patients with small-cell lung
cancer. Analytical Chemistry, 83, 6689-6697.

Wishart, D. S. (2007). Current progress in computational metabolo-
mics. Briefings in Bioinformatics, 8, 279-293.

Yap, I. K., Brown, I. J., Chan, Q., et al. (2010). Metabolome-wide
association study identifies multiple biomarkers that discriminate
north and south Chinese populations at differing risks of



