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Abstract—White matter (WM) impairment and motor deficit
after stroke are directly related. However, WM injury mecha-
nisms and their relation to motor disturbances are still
poorly understood. In humans, the anterior choroidal artery
(AChA) irrigates the internal capsule (IC), and stroke to this
region can induce isolated motor impairment. The goal of
this study was to analyze whether AChA occlusion can
injure the IC in the marmoset monkey. The vascular distribu-
tion of the marmoset brain was examined by colored latex
perfusion and revealed high resemblance to the human
brain anatomy. Next, a new approach to electrocoagulate
the AChA was developed and chronic experiments showed
infarction compromising the IC on magnetic resonance
imaging (MRI) scanning (day 4) and histology (day 11).
Behavioral analysis was performed using a neurologic
score previously developed and our own scoring method.
Marmosets showed a decreased score that was still evident
at day 10 after AChA electrocoagulation. We developed a
new approach able to induce damage to the marmoset IC
that may be useful for the detailed study of WM impairment
and behavioral changes after stroke in the nonhuman

*Corresponding author. Tel: +81-42-346-1724; fax: +81-42-346-
1754.

E-mail addresses: sandra@ncnp.go.jp (S. Puentes), kaido@ncnp.go.
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Abbreviations: ACA, anterior cerebral artery; AChA, anterior choroidal
artery; AChAO, anterior choroidal artery occlusion; AMG,
autometallographic; BA, basilar artery; CST, corticospinal tract; DW,
distilled water; FA, flip angle; FOV, field of view; FS, Freret neurologic
score; GM, gray matter; HSD, honestly significant difference; IC,
internal capsule; ICA, internal carotid artery; MCA, middle cerebral
artery; MCAO, middle cerebral artery occlusion; MNS, marmoset
neurologic score; MRI, magnetic resonance imaging; NHP, nonhuman
primate; OR, orbital rim; OT, optic tract; PB, phosphate buffer; PCA,
posterior cerebral artery; PcomA, posterior communicating artery;
SCA, superior cerebellar artery; TE, echo time; TM, temporal muscle;
TR, repetition time; WM, white matter.
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INTRODUCTION

Stroke is a devastating disease, being the major cause of
acquired disabilities around the world (Donnan et al.,
2008). To understand the injury mechanisms and develop
new strategies aimed to improve the motor conditions of
stroke survivors, several animal models have been devel-
oped (Canazza et al., 2014). Owing to the heterogeneous
nature of stroke and additional features such as age, sex,
race and comorbidities that vary among patients, there is
no ideal animal model of human stroke (Mergenthaler and
Meisel, 2012); however, the developed models have tried
to mimic as much as possible the human condition.
Because the middle cerebral artery (MCA) is the most
commonly affected artery among stroke patients
(Rordorf et al., 1998), one of the most common models
for stroke research is MCA occlusion (MCAQ) in rodents
(Tamura et al., 1981; Kohno et al., 1995). Although these
models have helped to unveil the effects of cortical ische-
mia (Astrup et al., 1981; Neumann-Haefelin et al., 2000;
Dijkhuizen et al., 2001), they mislead the researchers’
attention to gray matter (GM) injury. Owing to the fact that
the GM/white matter (WM) ratio found in the rat neocortex
(GM:WM = 87:13) is significantly higher than in humans
(GM:WM = 61:39, Zhang and Sejnowski, 2000), the
rodent MCAOQ stroke model induces large infarcts affect-
ing mainly the GM. This feature has inspired the develop-
ment of neuroprotective agents focused on GM protection
aiming for neuron rescue; although such therapies suc-
ceed in the rodent recovery after stroke, they fail in clinical
trials (Xu and Pan, 2013). This discrepancy between
rodent models and human ftrials has drawn the attention
to the essential brain structural differences between both
species: the WM ratio.

Recent imaging studies done in stroke survivors have
highlighted the importance of WM damage,
demonstrating that corticospinal tract (CST) integrity can
be considered as a reliable predictor of stroke severity
and clinical outcome (Thomalla et al., 2004; Puig et al,,
2011; Rosso et al., 2013). Additionally, there is evidence
that motor dysfunction after MCA stroke is more depen-
dent on WM than GM damage (Rosso et al., 2011).
Because both GM and WM differ importantly in the initial
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responses to ischemia (Hughes et al., 2003), some
researchers suggest that WM ischemia may have a
longer therapeutic window (Mufioz Maniega et al., 2004;
Koga et al., 2005). Therefore, it is imperative to deepen
the research on WM ischemia owing to its potential for
the development of new therapies for stroke patients.

To investigate the effect of subcortical WM injury,
different animal models have been developed; a rodent
model (Frost et al., 2006; Lecrux et al., 2008) that induces
direct damage on the internal capsule (IC), and a mini-pig
model (Tanaka et al., 2008) that attempts to impair the IC
by occlusion of the anterior choroidal artery (AChA).
Although both approaches induced motor impairment,
the damage was subtle and transient in contrast to human
strokes that compromise the AChA territory (Derflinger
et al., 2013). Stroke of the AChA in the human brain
can lead to infarction of the posterior limb of the IC, which
induces isolated motor deficits due to disruption of the
CST (Rascol et al., 1982; Nelles et al., 2008; Likitjaroen
et al., 2012). The development of relevant animal models
to study this condition may help to identify critical factors
related to WM changes after ischemia and for the devel-
opment of new approaches focused on the rescue of
WM (Sozmen et al., 2012).

Because nonhuman  primates  (NHPs) are
phylogenetically closer to the human, where the WM
volume is larger than rodents’ (GM/WM ratio: 79/21.
Zhang and Sejnowski, 2000; Bailey et al., 2009; Okano
et al., 2012), the development of an alternative model of
WM ischemia in such species may provide relevant infor-
mation about WM responses after stroke and improve fur-
ther translational research. The common marmoset
(Callithrix jacchus) is a NHP similar to Homo sapiens, with
a brain five times larger than the rat’s, representing approx-
imately 2.7% of its body weight, which is equivalent to
human proportions (Abbott et al., 2003; Okano et al.,
2012). Moreover, the neocortical GM/WM ratio is smaller
in comparison with rodents (Zhang and Sejnowski,
2000), and marmoset ergonomics are closer to the
human’s. We consider that the similarities in WM propor-
tions and ergonomics between marmosets and humans
may offer a promising scenario for the study of WM
changes after ischemia.

The aim of this study was to establish whether a
vessel homologous to the human AChA exists in the
marmoset brain and to evaluate the effect of its
occlusion on the IC. To our knowledge, there is no
established method to induce an infarct in the marmoset
IC as a model of WM stroke.

EXPERIMENTAL PROCEDURES
Animals

Twenty-two laboratory-bred adult common marmosets
(C. jacchus) ~4.5years old at the start of the
experiments were used. Two already euthanized
marmosets (fixed and long-term freeze-preserved:
cadaveric preparations) were used for carotid artery
cannulation and colored latex intravascular perfusion
(Alvernia et al., 2010). Twelve marmosets were used to
evaluate brain vascular anatomy (non-operated side)

and test the reproducibility of the AChA occlusion
(AChAO; operated-side) by the injection of colored latex
perfusion after surgery (acute experiments). The remain-
ing eight marmosets were divided into two groups to per-
form AChAO (n = 5) and sham operation (n = 3). These
animals were observed for 11 days before euthanasia
(chronic experiments). All monkeys were kept within a
large colony to allow good visual and auditory interaction
with other marmosets. All procedures were performed in
accordance with the National Institute of Health Guide-
lines for the Care and Use of Laboratory Animals and
were approved by the Animal Research Committee at
the National Institute of Neurosciences in Tokyo, Japan.

AChA identification

To identify the vascular anatomy of the marmoset, liquid
latex was used as previously described (Alvernia et al.,
2010), with some modifications as follows: For cadaveric
preparations, the animals were unfrozen at room tempera-
ture, and bilateral dissection of the common carotid arteries
was performed. Cannulation was achieved using an
18-gauge catheter (18G x 2” catheter; Nipro, Osaka,
Japan), and both catheters were perfused with tap water
followed by liquid red latex solution (Ward's Natural
Science 37-2571, Columbus Chemical Industries, Columbus
WI, USA) using a 10-cc syringe until leakage from the
contralateral carotid artery and vertebral arteries was
evident. After 20 min, the brain was dissected carefully
and vascular exploration was performed. To evaluate the
consistency of the vascular patterns, pictures were taken,
hand drawings from the right side of the intracranial vessels
emerging from the internal carotid artery (ICA) were
performed, and the distance between the AChA and ICA
bifurcation was measured. The same evaluation was per-
formed for the non-operated side of animals used to test
the surgical procedure accuracy (see below). In total, 14
animals were used for the evaluation of the vascular pattern.

Surgical procedures

Surgical preparation. Marmosets were anesthetized
with Isoflurane (1-2% (v/v); Mylan Pharmaceutical Co.,
Ltd. Morgantown WV, USA) delivered initially via an
animal face mask, then through endotracheal intubation
(6 Fr catheter, length 6.5cm). Two g/kg of p-Mannitol
(20% (w/v); Yoshindo Inc., Toyama, Japan) were slowly
injected from the catheterization of the femoral vein
(26G x 3/4” catheter; Nipro, Osaka, Japan) as a bolus,
followed by continuous infusion (0.7 ml/h) containing
Remifentanil  (0.18 pg/h;  Ultiva 5mg; Janssen
Pharmaceutical, Tokyo, Japan) and Rocuronium
Bromide (24 pg/h; Eslax, 25 mg/2.5 ml; MSD Co., Ltd.,
Tokyo, Japan) before starting artificial ventilation (A.D.S.
2000; Engler, Hialeah FL, USA) (flow rate: 1.65 &+ 0.4
I/min; peak inspiratory pressure: 15cm of Hy0;
respiratory rate: 9.5 +£ 1 breaths per minute). During
surgery, heart rate (189.7 + 16.4 beats per minute) and
arterial oxygen saturation (Sa02: 96.4 + 2.5%) were
monitored with a pulse oximeter (8600V NONIN medical
Inc., Plymouth MN, USA). Electrocardiographic traces



