progeny viruses was completely dependent on the interaction with ORF44p at 41DFDE44. These results suggest that ORF44p is fully functional only in the presence of ORF49p and vice versa and has essential functions during infection, which are independent of the interaction with ORF49p or redundantly supported by other viral factors in the absence of ORF49p.

In the absence of the interaction with ORF49p during infection, ORF44p was detected throughout the cytoplasm and rarely colocalized with the TGN (or with a reorganized organ containing TGN-derived membranes known to be induced by viral infection, although it has not been found in VZV infection), the recognized site of viral assembly; however, incorporation of ORF44p into viral particles was comparable to that observed in wild-type virus infection. These results indicate that ORF44p was not directly incorporated into the particles through the TGN via its interaction with ORF49p, at least in the absence of ORF49p. In HSV-1, the amount of pUL16 packaged into the viral particles was severely reduced in the absence of pUL11 (50), but there are some other interaction partners that potentially function in incorporating pUL16 into the viral particles (i.e., pUL21 and glycoprotein E) (51, 52). In VZV, by global screening using the yeast two-hybrid system, some candidates for ORF44p binding partner have been reported (28, 29), but in our observations, none of these viral proteins other than ORF49p could accumulate ORF44p on the TGN; one viral protein could alter the localization of ORF44p into the nucleus; however, whether it functions in the incorporation of ORF44p into the viral particles remained unclear (T. Sadaoka and Y. Mori, unpublished observation). Anyway, additional ORF44p binding partners active during either the wild-type virus or ORF49-defective virus infection remain to be identified so far, and the complexity of the herpesvirus protein-protein network requires a solid approach to elucidate the essential roles of ORF44 during viral infection further through the interactions with other viral proteins.

In summary, in the present study, we established a *trans*-complementation system for ORF49 and identified ORF44p as the binding partner for ORF49p. We showed that (i) ORF49p functions in the efficient production of infectious virus, (ii) no other viral factor is required for binding, (iii) residue 129F of ORF44p is critical not only for binding to ORF49p but also for progeny virus production/reconstitution, (iv) the carboxyl-terminal half of the acidic cluster (41DFDE44) of ORF49p is the binding motif for ORF44p, and (v) the efficient production of infectious progeny virus by ORF49p is dependent on its interaction with ORF44p. Further analyses of the role of ORF44 mediated by its interaction with ORF49 or other as yet unidentified viral proteins may shed light on the conserved infection mechanisms of the *Herpesvirinae* and those unique to VZV.

ACKNOWLEDGMENTS

We thank Eiko Moriishi (National Institute of Biomedical Innovation, Osaka, Japan) for technical assistance, Panayiotis A. Ioannou (Cell and Gene Therapy Research Group, The Murdoch Children's Research Institute, The University of Melbourne, Royal Children's Hospital, Melbourne, Australia) for providing pGETrec, Wilfried Wackernagel (Genetics, Department of Biology and Environmental Sciences, Universität Oldenburg, Germany) for pCP20, Jun-ichi Miyazaki (Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Japan) for pCAGGS, Masaru Okabe (Department of Experimental Genome Research, Genome Information Research Center, Osaka University, Japan) for pCX-Cre, and Ulrich H. Koszinowski (Max von Pettensity, Japan) for pCX-Cre, and Ulrich H. Koszinowski (Max von Pettensity)

kofer Institut fur Virologie, Ludwig-Maximilians-Universität München, Germany) for pHA2 and pST76A-SR.

This study was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas (21022031 to Y.M.) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, a Grant-in-Aid for Scientific Research (B) (20390138 to Y.M.), a Grant-in-Aid for Young Scientists (B) (20790363 and 22790432 to T.S.), a Grant-in-Aid for Scientific Research (C) (24590551 to T.S.) from the Japan Society for the Promotion of Science (JSPS), and a grant from the Uehara Memorial Foundation (to T.S.).

REFERENCES

- 1. Moffat J, Ku CC, Zerboni L, Sommer M, Arvin A. 2007. VZV: pathogenesis and the disease consequences of primary infection, p 675–688. *In* Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (ed), Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, Cambridge, United Kingdom.
- 2. Baines JD, Pellett PE. 2007. Genetic comparison of human alphaherpesvirus genomes, p 61–69. *In* Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (ed), Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, Cambridge, United Kingdom.
- Davison AJ, Scott JE. 1986. The complete DNA sequence of varicellazoster virus. J. Gen. Virol. 67:1759–1816. http://dx.doi.org/10.1099/0022 -1317-67-9-1759.
- 4. Davison AJ. 2007. Comparative analysis of the genomes, p 10–26. *In* Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (ed), Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, Cambridge, United Kingdom.
- 5. Zhang Z, Selariu A, Warden C, Huang G, Huang Y, Zaccheus O, Cheng T, Xia N, Zhu H. 2010. Genome-wide mutagenesis reveals that ORF7 is a novel VZV skin-tropic factor. PLoS Pathog. 6:e1000971. http://dx.doi.org/10.1371/journal.ppat.1000971.
- Sadaoka T, Yoshii H, Imazawa T, Yamanishi K, Mori Y. 2007. Deletion in open reading frame 49 of varicella-zoster virus reduces virus growth in human malignant melanoma cells but not in human embryonic fibroblasts. J. Virol. 81:12654–12665. http://dx.doi.org/10.1128/JVI.01183-07.
- Baines JD, Jacob RJ, Simmerman L, Roizman B. 1995. The herpes simplex virus 1 UL11 proteins are associated with cytoplasmic and nuclear membranes and with nuclear bodies of infected cells. J. Virol. 69:825–833.
- 8. Britt WJ, Jarvis M, Seo JY, Drummond D, Nelson J. 2004. Rapid genetic engineering of human cytomegalovirus by using a lambda phage linear recombination system: demonstration that pp28 (UL99) is essential for production of infectious virus. J. Virol. 78:539–543. http://dx.doi.org/10.1128/JVI.78.1.539-543.2004.
- 9. Silva MC, Yu QC, Enquist L, Shenk T. 2003. Human cytomegalovirus UL99-encoded pp28 is required for the cytoplasmic envelopment of tegument-associated capsids. J. Virol. 77:10594–10605. http://dx.doi.org/10.1128/JV1.77.19.10594-10605.2003.
- 10. MacLean CA, Dolan A, Jamieson FE, McGeoch DJ. 1992. The myristy-lated virion proteins of herpes simplex virus type 1: investigation of their role in the virus life cycle. J. Gen. Virol. 73:539–547. http://dx.doi.org/10.1099/0022-1317-73-3-539.
- Silva MC, Schroer J, Shenk T. 2005. Human cytomegalovirus cell-to-cell spread in the absence of an essential assembly protein. Proc. Natl. Acad. Sci. U. S. A. 102:2081–2086. http://dx.doi.org/10.1073/pnas.0409597102.
- Loomis JS, Courtney RJ, Wills JW. 2003. Binding partners for the UL11 tegument protein of herpes simplex virus type 1. J. Virol. 77:11417–11424. http://dx.doi.org/10.1128/JV1.77.21.11417-11424.2003.
- Guo H, Wang L, Peng L, Zhou ZH, Deng H. 2009. Open reading frame 33 of a gammaherpesvirus encodes a tegument protein essential for virion morphogenesis and egress. J. Virol. 83:10582–10595. http://dx.doi.org/10 .1128/JVI.00497-09.
- 14. Liu Y, Cui Z, Zhang Z, Wei H, Zhou Y, Wang M, Zhang XE. 2009. The tegument protein UL94 of human cytomegalovirus as a binding partner for tegument protein pp28 identified by intracellular imaging. Virology 388:68–77. http://dx.doi.org/10.1016/j.virol.2009.03.007.
- 15. Maninger S, Bosse JB, Lemnitzer F, Pogoda M, Mohr CA, von Einem J, Walther P, Koszinowski UH, Ruzsics Z. 2011. M94 is essential for the

200 jvi.asm.org Journal of Virology

- secondary envelopment of murine cytomegalovirus. J. Virol. 85:9254–9267. http://dx.doi.org/10.1128/JVI.00443-11.
- Meckes DG, Jr, Wills JW. 2007. Dynamic interactions of the UL16 tegument protein with the capsid of herpes simplex virus. J. Virol. 81:13028– 13036. http://dx.doi.org/10.1128/JVI.01306-07.
- Nalwanga D, Rempel S, Roizman B, Baines JD. 1996. The UL 16 gene product of herpes simplex virus 1 is a virion protein that colocalizes with intranuclear capsid proteins. Virology 226:236–242. http://dx.doi.org/10 .1006/viro.1996.0651.
- Oshima S, Daikoku T, Shibata S, Yamada H, Goshima F, Nishiyama Y. 1998. Characterization of the UL16 gene product of herpes simplex virus type 2. Arch. Virol. 143:863–880. http://dx.doi.org/10.1007/s007050050338.
- Yeh PC, Meckes DG, Jr, Wills JW. 2008. Analysis of the interaction between the UL11 and UL16 tegument proteins of herpes simplex virus. J. Virol. 82:10693–10700. http://dx.doi.org/10.1128/JV1.01230-08.
- Johnson DC, Baines JD. 2011. Herpesviruses remodel host membranes for virus egress. Nat. Rev. Microbiol. 9:382–394. http://dx.doi.org/10.1038/nrmicro2559.
- Baines JD, Roizman B. 1991. The open reading frames UL3, UL4, UL10, and UL16 are dispensable for the replication of herpes simplex virus 1 in cell culture. J. Virol. 65:938–944.
- Dunn W, Chou C, Li H, Hai R, Patterson D, Stolc V, Zhu H, Liu F. 2003. Functional profiling of a human cytomegalovirus genome. Proc. Natl. Acad. Sci. U. S. A. 100:14223–14228. http://dx.doi.org/10.1073/pnas 2334032100
- Klupp BG, Bottcher S, Granzow H, Kopp M, Mettenleiter TC. 2005. Complex formation between the UL16 and UL21 tegument proteins of pseudorabies virus. J. Virol. 79:1510–1522. http://dx.doi.org/10.1128/JVI .79.3.1510-1522.2005.
- Phillips SL, Bresnahan WA. 2012. The human cytomegalovirus (HCMV) tegument protein UL94 is essential for secondary envelopment of HCMV virions. J. Virol. 86:2523–2532. http://dx.doi.org/10.1128/JVI.06548-11.
- Yu D, Silva MC, Shenk T. 2003. Functional map of human cytomegalovirus AD169 defined by global mutational analysis. Proc. Natl. Acad. Sci. U. S. A. 100:12396–12401. http://dx.doi.org/10.1073/pnas.1635160100.
- Chadha P, Han J, Starkey JL, Wills JW. 2012. Regulated interaction of tegument proteins UL16 and UL11 from herpes simplex virus. J. Virol. 86:11886–11898. http://dx.doi.org/10.1128/JVI.01879-12.
- 27. Phillips SL, Cygnar D, Thomas A, Bresnahan WA. 2012. Interaction between the human cytomegalovirus tegument proteins UL94 and UL99 is essential for virus replication. J. Virol. 86:9995–10005. http://dx.doi.org/10.1128/JVI.01078-12.
- 28. Stellberger T, Hauser R, Baiker A, Pothineni VR, Haas J, Uetz P. 2010. Improving the yeast two-hybrid system with permutated fusions proteins: the varicella zoster virus interactome. Proteome Sci. 8:8. http://dx.doi.org/10.1186/1477-5956-8-8.
- 29. Uetz P, Dong YA, Zeretzke C, Atzler C, Baiker A, Berger B, Rajagopala SV, Roupelieva M, Rose D, Fossum E, Haas J. 2006. Herpesviral protein networks and their interaction with the human proteome. Science 311: 239–242. http://dx.doi.org/10.1126/science.1116804.
- Sadaoka T, Yanagi T, Yamanishi K, Mori Y. 2010. Characterization of the varicella-zoster virus ORF50 gene, which encodes glycoprotein M. J. Virol. 84:3488–3502. http://dx.doi.org/10.1128/JVI.01838-09.
- Niwa H, Yamamura K, Miyazaki J. 1991. Efficient selection for highexpression transfectants with a novel eukaryotic vector. Gene 108:193– 199. http://dx.doi.org/10.1016/0378-1119(91)90434-D.
- Sadaoka T, Yamanishi K, Mori Y. 2006. Human herpesvirus 7 U47 gene products are glycoproteins expressed in virions and associate with glycoprotein H. J. Gen. Virol. 87:501–508. http://dx.doi.org/10.1099/vir.0 .81374-0.
- 33. Okuno T, Yamanishi K, Shiraki K, Takahashi M. 1983. Synthesis and processing of glycoproteins of varicella-zoster virus (VZV) as studied with monoclonal antibodies to VZV antigens. Virology 129:357–368. http://dx.doi.org/10.1016/0042-6822(83)90175-7.
- 34. Nagaike K, Mori Y, Gomi Y, Yoshii H, Takahashi M, Wagner M, Koszinowski U, Yamanishi K. 2004. Cloning of the varicella-zoster virus genome as an infectious bacterial artificial chromosome in Escherichia coli. Vaccine 22:4069–4074. http://dx.doi.org/10.1016/j.vaccine.2004.03.062.

- 35. Narayanan K, Williamson R, Zhang Y, Stewart AF, Ioannou PA. 1999. Efficient and precise engineering of a 200 kb beta-globin human/bacterial artificial chromosome in E. coli DH10B using an inducible homologous recombination system. Gene Ther. 6:442–447. http://dx.doi.org/10.1038/sj.gt.3300901.
- Cherepanov PP, Wackernagel W. 1995. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9–14. http://dx.doi.org/10.1016/0378-1119(95)00193-A.
- Hobom U, Brune W, Messerle M, Hahn G, Koszinowski UH. 2000. Fast screening procedures for random transposon libraries of cloned herpesvirus genomes: mutational analysis of human cytomegalovirus envelope glycoprotein genes. J. Virol. 74:7720–7729. http://dx.doi.org/10.1128/JVI .74.17.7720-7729.2000.
- Shevchenko A, Wilm M, Vorm O, Mann M. 1996. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68:850–858. http://dx.doi.org/10.1021/ac950914h.
- 39. Carpenter JE, Henderson EP, Grose C. 2009. Enumeration of an extremely high particle-to-PFU ratio for varicella-zoster virus. J. Virol. 83: 6917–6921. http://dx.doi.org/10.1128/JVI.00081-09.
- Shiraki K, Takahashi M. 1982. Virus particles and glycoprotein excreted from cultured cells infected with varicella-zoster virus (VZV). J. Gen. Virol. 61:271–275. http://dx.doi.org/10.1099/0022-1317-61-2-271.
- 41. Gabel CA, Dubey L, Steinberg SP, Sherman D, Gershon MD, Gershon AA. 1989. Varicella-zoster virus glycoprotein oligosaccharides are phosphorylated during posttranslational maturation. J. Virol. 63:4264–4276.
- Gershon AA, Sherman DL, Zhu Z, Gabel CA, Ambron RT, Gershon MD. 1994. Intracellular transport of newly synthesized varicella-zoster virus: final envelopment in the trans-Golgi network. J. Virol. 68:6372

 6390.
- Harson R, Grose C. 1995. Egress of varicella-zoster virus from the melanoma cell: a tropism for the melanocyte. J. Virol. 69:4994–5010.
- 44. Ali MA, Li Q, Fischer ER, Cohen JI. 2009. The insulin degrading enzyme binding domain of varicella-zoster virus (VZV) glycoprotein E is important for cell-to-cell spread and VZV infectivity, while a glycoprotein I binding domain is essential for infection. Virology 386:270–279. http://dx.doi.org/10.1016/j.virol.2009.01.023.
- Tischer BK, Kaufer BB, Sommer M, Wussow F, Arvin AM, Osterrieder N. 2007. A self-excisable infectious bacterial artificial chromosome clone of varicella-zoster virus allows analysis of the essential tegument protein encoded by ORF9. J. Virol. 81:13200–13208. http://dx.doi.org/10.1128 /JVI.01148-07.
- 46. Yamagishi Y, Sadaoka T, Yoshii H, Somboonthum P, Imazawa T, Nagaike K, Ozono K, Yamanishi K, Mori Y. 2008. Varicella-zoster virus glycoprotein M homolog is glycosylated, is expressed on the viral envelope, and functions in virus cell-to-cell spread. J. Virol. 82:795–804. http://dx.doi.org/10.1128/JVI.01722-07.
- Betts MJ, Russell RB. 22 May 2003. Amino acid properties and consequences of substitutions. Chapter 14. In Barnes MR, Gray IC (ed), Bioinformatics for geneticists. Wiley, Chichester, West Sussex, England. http://dx.doi.org/10.1002/0470867302.ch14.
- 48. Burley SK, Petsko GA. 1985. Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229:23–28. http://dx.doi.org/10.1126/science.3892686.
- Eidenschink LA, Kier BL, Andersen NH. 2009. Determinants of fold stabilizing aromatic-aromatic interactions in short peptides. Adv. Exp. Med. Biol. 611:73–74. http://dx.doi.org/10.1007/978-0-387-73657-0_32.
- Meckes DG, Jr, Marsh JA, Wills JW. 2010. Complex mechanisms for the packaging of the UL16 tegument protein into herpes simplex virus. Virology 398:208–213. http://dx.doi.org/10.1016/j.virol.2009.12.004.
- 51. Han J, Chadha P, Meckes DG, Jr, Baird NL, Wills JW. 2011. Interaction and interdependent packaging of tegument protein UL11 and glycoprotein E of herpes simplex virus. J. Virol. 85:9437–9446. http://dx.doi.org/10.1128/JVI.05207-11.
- 52. Harper AL, Meckes DG, Jr, Marsh JA, Ward MD, Yeh PC, Baird NL, Wilson CB, Semmes OJ, Wills JW. 2010. Interaction domains of the UL16 and UL21 tegument proteins of herpes simplex virus. J. Virol. 84: 2963–2971. http://dx.doi.org/10.1128/JVI.02015-09.

Microbiology and Immunology

Microbiol Immunol 2014; 58: 119–125 doi: 10.1111/1348-0421.12121

ORIGINAL ARTICLE

MHC class I molecules are incorporated into human herpesvirus-6 viral particles and released into the extracellular environment

Megumi Ota¹, Satoshi Serada², Tetsuji Naka² and Yasuko Mori¹

¹Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan and ²Laboratory of Immune Signal, Division of Biomedical Research, National Institute of Biomedical Innovation, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan

ABSTRACT

Human herpesvirus-6 (HHV-6), which belongs to the betaherpesvirus subfamily, mainly replicates in T lymphocytes. Here, we show that MHC class I molecules are incorporated into HHV-6 viral particles and released into the extracellular environment. In addition, HHV-6A/B-infected T cells showed reduced surface and intracellular expression of MHC class I molecules. The cellular machinery responsible for molecular transport appears to be modified upon HHV-6 infection, causing MHC class I molecules to be transported to virion assembly sites.

Key words human herpesvirus-6A/B, MHC class I, viral particles.

Human herpesvirus 6 (HHV-6), which belongs to the betaherpesvirus subfamily (1), was first isolated from peripheral blood lymphocytes obtained from patients with lymphoproliferative disorders (2). HHV-6 isolates are classified as HHV-6A and HHV-6B based on genetic and antigenic differences and their cell tropism (2–5). Primary infection with HHV-6B causes exanthem subitum (6). The diseases caused by HHV-6A are so far unknown. HHV-6B mostly infects infants and remains latent in more than 90% of the population (7).

In general, herpesviruses use several strategies to evade host immune responses. For example, viruses may inhibit MHC class I-associated antigen presentation to escape detection by cytotoxic T lymphocytes. Several proteins expressed by herpesviruses block the transport of antigenic peptides from the cytosol to the endoplasmic reticulum (8–11), whereas others retain (12–14) or destroy class I molecules, or deliver them to lysosomes for degradation (15–18). The result is reduced surface

expression of MHC class I molecules, enabling the virus to evade host immune surveillance.

HHV-6A, but not HHV-6B, downregulates expression of MHC class I in dendritic cells (19). HHV-6 U21 binds to and diverts MHC class I molecules to an endolysosomal compartment, effectively removing them from the cell surface and providing a possible means of immune escape (20).

Here, we show that expression of MHC class I molecules by infected cells is downregulated with incorporation into HHV-6 viral particles, suggesting a possible mechanism by which the virus escapes host immune surveillance.

MATERIALS AND METHODS

Cells and viruses

CBMCs were prepared as described previously (21). CBMCs were provided by K. Adachi (Minoh Hospital, Minoh,

Correspondence

Yasuko Mori, Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.

Tel: +81 78 382 6878; fax: +81 78 382 6879; email: ymori@med.kobe-u.ac.jp

Received 17 October 2013; revised 22 November 2013; accepted 6 December 2013.

List of Abbreviations: CBMC, umbilical cord blood mononuclear cell; LC-MS/MS, liquid chromatography-tandem mass spectrometry; HHV-6A, human herpesvirus-6A; HHV-6B, human herpesvirus-6B; MVB, multivesicular body; TGN, *trans*-Golgi network.

Japan) and H. Yamada (Kobe University Graduate School of Medicine, Kobe, Japan) and purchased from the Cell Bank of the RIKEN BioResource Center, Tsukuba, Japan. Virus stocks were also prepared as described previously (21, 22). HSB-2 and MT-4 cell lines were used in this study (23). HHV-6A (strain GS) and HHV-6B (strain HST) were prepared as previously described (21).

Antibodies

Monoclonal antibody (Mab) OHV-1 (24) and a polyclonal antibody against gB (23, 25) have been described previously. The following other Mabs were purchased: MHC class I (clone: W6/32; Bio Legend, San Diego, CA, USA), CD63 (clone: CLB-gran/12, 435; Sanquin Blood Supply, Amsterdam, the Netherlands), and α-tubulin (clone: B-5-1-2; Sigma, St Louis, MO, USA). The following secondary antibodies were used: Alexa Fluor 488- or 594-conjugated F(ab')2 fragment of goat anti-mouse or rabbit immunoglobulin G (IgG) (Invitrogen, Tokyo, Japan) and anti-mouse IgG, horseradish peroxidase-linked whole antibody (from sheep) (GE Healthcare, Piscataway, NJ, USA).

Virion and exosome isolation

Virions and exosomes were purified as previously described (23, 26). The collected fractions were used for western blotting, electron microscopy or liquid chromatography-tandem mass spectrometry (LC-MS/MS).

Liquid chromatography-tandem mass spectrometry

The fractions described above were analyzed by LC-MS/ MS. Proteins were diluted tenfold with 9.8 M urea. The solutions were adjusted to pH 8.5, reduced with 13 mM dithiothreitol at 37°C for 1.5 hr and alkylated with 27 mM iodoacetamide in the dark for 1 hr. The protein mixtures were further diluted with 100 mM triethylammonium bicarbonate (pH 8.5) to reduce urea to 1 M, and digested with 4 µL of 1 mg/mL trypsin-tosyl phenylalanyl chloromethyl ketone solution. Samples were digested overnight at 37°C. Following digestion, lysates were acidified by adding 10% trifluoroacetic acid. The samples were desalted using peptide cleanup C18 spin tubes (Agilent Technologies, Santa Clara, CA, USA) and vacuum-dried. NanoLC-MS/MS analyses were performed on an LTQ-Orbitrap XL mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) as described previously (27), while spray voltage was changed to 1800 V. Peptides and proteins were identified by automated database searches using Proteome Discoverer v.1.1 (Thermo Fisher Scientific) against all entries of the Swiss Prot protein database (version 3.26) with a precursor mass tolerance of 10 p.p.m., a fragment ion mass tolerance of 0.8 Da, and strict trypsin specificity, allowing for up to two missed cleavages. Cysteine carbamidomethylation was set as a fixed modification, and methionine oxidation was allowed as a variable modification.

Western blotting

Western blotting was performed as described previously (28, 29).

Electron microscopy

Electron microscopy was performed as described previously (30).

Briefly, the virion-containing pellets were resuspended in 2% (w/v) paraformaldehyde solution buffered with 0.1 M phosphate (pH 7.2). Next, 5 µL of the resuspended pellet was loaded onto formvar-carbon-coated grids to adsorb the virions. Immunostaining was then performed. The virions were incubated with mouse anti-gB, anti-MHC class I or anti-CD63 antibody for 1 hr at room temperature, followed by goat anti-mouse IgG conjugated to 10 nm colloidal gold particles (GE Healthcare) for a further 1 hr at room temperature. After immunolabeling, the samples were washed in distilled water, stained for 5 min with uranyl oxalate, pH 7.0, washed again, embedded in a mixture of 1.8% methylcellulose and 0.4% uranyl acetate, pH 4.0, at 4°C, air-dried, and observed under a Hitachi H-7100 electron microscope (Hitachi, Tokyo, Japan). For the control experiments, samples were incubated with the secondary antibody alone.

Flow cytometry

MT-4 cells were infected with HHV-6B. At 72 hr post-infection, the cells were fixed with 4% (w/v) paraformal-dehyde at room temperature for 15 min and incubated with anti-MHC class I Mab at 37°C for 1 hr. The cells were then stained with an appropriate secondary antibody at 37°C for 30 min. For the control experiments, samples were incubated with the secondary antibody alone. Stained cells were analyzed using a flow cytometer (ec800; Sony, Tokyo, Japan).

Immunofluorescence assay

Immunofluorescence assay was performed as described previously (28). Briefly, MT-4 cells were infected with HHV-6B. At 72 hr post-infection, the cells were fixed with cold acetone–methanol (7:3) and incubated at 37°C

for 1 hr with an anti-HHV-6 gB rabbit antibody or an anti-MHC class I Mab. After washing for 10 min with PBS containing 0.02% Tween-20, the cells were incubated with an appropriate secondary antibody at 37°C for 30 min, followed by Hoechst33342 at 37°C for 40 min. After washing as described above, signals were detected by a confocal laser-scanning microscope (Olympus FluoView FV1000; Olympus, Tokyo, Japan).

RESULTS

Virion and exosome isolation

Extracellular viral particles containing exosomes were purified from the culture supernatant of HHV-6A (strain GS)-infected HSB-2 or HHV-6B (strain HST)-infected MT-4 cells. The particle-containing fractions were confirmed by western blotting with an anti-gB anti-body (23, 25). Next, the particle-containing fractions were analyzed by LC-MS/MS (27), which detected many cellular proteins (unpublished data). Of the host proteins detected, our analyses focused on MHC class I molecules.

Virion- or exosome-associated fractions contain MHC class I molecules

To verify expression of MHC class I within viral particles, the proteins in fractions 3-10 were separated by SDS-PAGE and analyzed by western blotting with anti-gB rabbit, anti-MHC class I or anti-CD63 antibodies. As shown in Figure 1, gB protein was detected in fractions 5-6 whereas MHC class I was detected primarily in fractions 6-8. We have previously reported that the MVB marker, CD63, is incorporated into virions and exosomes (23); therefore, expression of CD63 was also examined. As expected, CD63 was detected in fractions 5-10 (Fig. 1c). To confirm expression of MHC class I within both virions and exosomes, negative staining of fractions 6 and 7 were performed, followed by electron microscopy (30). Fraction 6 contained mainly viral particles of diameter approximately 200 nm. Both MHC class I (Fig. 1e) and gB protein (Fig. 1d) were present in these particles. Fraction 7 contained mainly exosomes of diameter approximately 50-100 nm (Fig. 1f). These exosomes contained MHC class I, which confirmed the results of the western blotting experiments. Taken together, these results indicate that MHC class I molecules are present in exosomes and virions released from HHV-6B-infected cells.

Downregulated expression of MHC class I molecules on the surface of HHV-6B-infected cells

Downregulation of MHC class I occurs in many different virus-infected cells (31–37). Because MHC class I

molecules were incorporated into virions, HHV-6infected MT-4 cells might show an apparent downregulation in cell surface expression. To confirm this, HHV-6B- or mock-infected cells harvested 72 hr postinfection were fixed and then stained with an anti-MHC class I antibody. Surface expression of MHC class I was then analyzed by flow cytometry. As expected, HHV-6Binfected cells showed downregulated cell surface expression of MHC class I when compared with mock-infected cells (Fig. 2a). This reduced expression was confirmed by western blot analysis (Fig. 2b), indicating that expression of MHC class I molecules within HHV-6-infected cells (not just expression on the cell surface) was also downregulated. Next, the localization of MHC class I molecules in these cells was assessed after they had been fixed and co-stained with anti-MHC class I and gB antibodies. MHC class I in infected cells was localized mainly within intracellular compartments, and colocalized with the envelope glycoprotein gB during the later stages of infection; however, MHC class I was mainly localized to the plasma membrane in mock-infected cells (Fig. 2c).

DISCUSSION

Here, we used mass spectrometry-based proteomics analysis to show that MHC class I molecules are incorporated into HHV-6 viral particles. Downregulation of MHC class I molecules in virus-infected cells is an important mechanism by which viruses evade immune surveillance (31–37). We showed that downregulation of MHC class I molecules occurs in T cells infected by HHV-6. MHC class I molecules are incorporated into viral particles and exosomes and then released into the extracellular environment, suggesting a possible strategy for escaping host immune responses. In addition, MHC class I molecules incorporated into virions and exosomes may assist viral entry. Further studies are needed to address this question.

We have previously reported that immature HHV-6 particles bud into TGN or TGN-derived vesicles (which are produced in HHV-6B-infected cells), that vesicles containing mature virions become MVBs, and that virions and exosomes are released into the extracellular environment via an exosomal secretary pathway (23). It is possible that MHC class I molecules are transported into the TGN-derived membranes from which the virions bud and then incorporated into virions within infected cells without being recycled (Fig. 3).

Within infected cells, MHC class I molecules colocalized with the gB protein in the cytoplasm indicating that, like viral glycoproteins, they are sorted into vesicles. The reduction in the total (both cell surface and

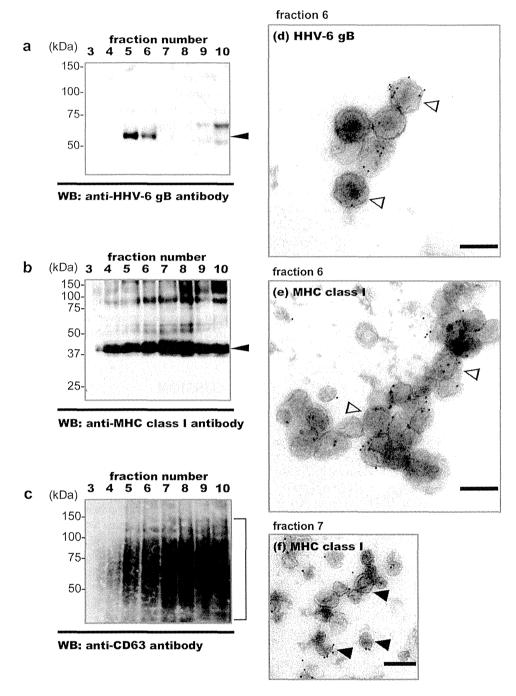
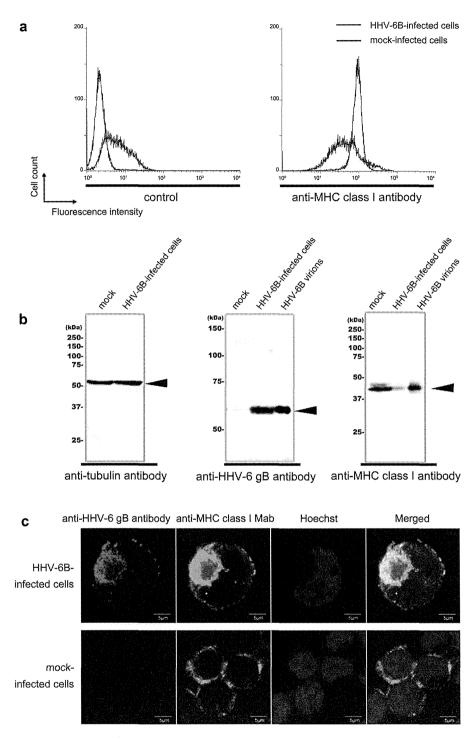



Fig. 1. MHC class I molecules are incorporated into virions and exosomes and released from HHV-6B-infected cells. Virions and exosomes were collected from the culture medium of HHV-6B-infected cells by sucrose density gradient centrifugation and examined by (a–c) western blotting and (d–f) electron microscopy. Western blots with (a) anti-gB rabbit, (b) anti-MHC class I (W6/32) or (c) anti-CD63 (CLB-gran/12, 435) antibodies are shown. The same amount of each protein fraction was added to each well of the gel. Immunogold labeling of (d) gB in fraction 6 and of (e,f) MHC class I in fractions 6 and 7. The fractions were collected from the bottom of tube. Hollow arrowheads, labeled virions; filled arrowheads, exosomes. Scale bars: 200 nm (d–f).

intracellular) expression of MHC class I in HHV-6-infected cells suggests that some of them may be transported to lysosomes and degraded, as this route is the same as that used to transport particles to MVBs.

Although several host proteins are usually expressed on the surfaces of uninfected cells, they are expressed in the same intracellular compartments as those in which viral particles incorporated. Newly formed compartments

Fig. 2. Expression of MHC class I in HHV-6B-infected cells. (a) Expression of MHC class I on the surface of HHV-6B-infected cells is downregulated. HHV-6B-infected or mock-infected cells were harvested at 72 hr post-infection and fixed with 4% (w/v) paraformaldehyde. Fixed cells were stained with an anti-MHC class I antibody followed by staining with a secondary antibody prior to flow cytometric analysis. Control samples were incubated with the secondary antibody alone. Black histogram, mock-infected cells; blue histogram, HHV-6B- infected cells. (b) The total expression of MHC class I in HHV-6-infected cells was reduced. HHV-6B-infected or mock-infected cells were harvested at 72 hr post-infection and cell lysates prepared for western blotting. Purified HHV-6B virions were also used for western blotting. (c) MHC class I colocalizes with HHV-6B gB in intracellular compartments. HHV-6B-infected or mock-infected cells were harvested at 72 hr post-infection and fixed in cold acetone—methanol. Fixed cells were stained with antibodies against HHV-6 gB or MHC class I and with Hoechst33342. The stained cells were observed under a confocal microscope. The merged panels show the colocalized HHV-6 gB and MHC class I molecules. Single sections are shown. Scale bars: 5 micro meter.

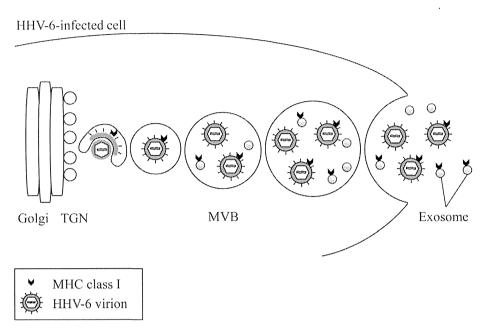


Fig. 3. Scematic representation of the fate of MHC class I molecules in HHV-6-infected cells. MHC class I molecules are transported to TGN- or post-TGN-derived vacuoles in HHV-6-infected cells and then incorporated into virions and intracellular small vesicles, which later become exosomes. Finally, MHC class I molecules are released from HHV-6-infected cells along with virions and exosomes.

within HHV-6-infected cells may show the combined characteristics of early and late endosomes. Recycling to early endosomes in HHV-6-infected cells may be modified or defective; therefore, several cellular proteins that use the same recycling system may be incorporated into virions and exosomes.

ACKNOWLEDGMENTS

We thank Dr. Kazushige Adachi (Minoh City Hospital) and Dr. Hideto Yamada (Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine) for providing the CBMCs. We also thank Ms. Eiko Moriishi (National Institute of Biomedical Innovation) for her technical support. This study was supported in part by a Grant-in-Aid for Scientific Research (B) and a Grant-in-Aid for Exploratory Research from the Japan Society for the Promotion of Science (JSPS).

DISCLOSURE

The authors declare that they have no competing interests.

REFERENCES

 Roizmann B., Desrosiers R.C., Fleckenstein B., Lopez C., Minson A.C., Studdert M.J. (1992) The family Herpesviridae: an update.

- The Herpesvirus Study Group of the International Committee on Taxonomy of Viruses. *Arch Virol* **123**: 425–49.
- Salahuddin S.Z., Ablashi D.V., Markham P.D., Josephs S.F., Sturzenegger S., Kaplan M., Halligan G., Biberfeld P., Wong-Staal F., Kramarsky B., Gallo R.C. (1986) Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. *Science* 234: 596–601
- Aubin J.T., Collandre H., Candotti D., Ingrand D., Rouzioux C., Burgard M., Richard S., Huraux J.M., Agut H. (1991) Several groups among human herpesvirus 6 strains can be distinguished by Southern blotting and polymerase chain reaction. *J Clin Microbiol* 29: 367–72.
- Campadelli-Fiume G., Guerrini S., Liu X., Foa-Tomasi L. (1993) Monoclonal antibodies to glycoprotein B differentiate human herpesvirus 6 into two clusters, variants A and B. J Gen Virol 74(Pt 10) 2257–62.
- 5. Wyatt L.S., Balachandran N., Frenkel N. (1990) Variations in the replication and antigenic properties of human herpesvirus 6 strains. *J Infect Dis* **162**: 852–7.
- Yamanishi K., Okuno T., Shiraki K., Takahashi M., Kondo T., Asano Y., Kurata T. (1988) Identification of human herpesvirus-6 as a causal agent for exanthem subitum. *Lancet* 1: 1065–7.
- Okuno T., Takahashi K., Balachandra K., Shiraki K., Yamanishi K., Takahashi M., Baba K. (1989) Seroepidemiology of human herpesvirus 6 infection in normal children and adults. *J Clin Microbiol* 27: 651–3.
- Ahn K., Gruhler A., Galocha B., Jones T.R., Wiertz E.J., Ploegh H.L., Peterson P.A., Yang Y., Fruh K. (1997) The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. *Immunity* 6: 613–21.
- 9. Hill A., Jugovic P., York I., Russ G., Bennink J., Yewdell J., Ploegh H., Johnson D. (1995) Herpes simplex virus turns off the TAP to evade host immunity. *Nature* 375: 411–5.

- Tomazin R., Van Schoot N.E., Goldsmith K., Jugovic P., Sempe P., Fruh K., Johnson D.C. (1998) Herpes simplex virus type 2 ICP47 inhibits human TAP but not mouse TAP. *J Virol* 72: 2560–3.
- Wills M.R., Ashiru O., Reeves M.B., Okecha G., Trowsdale J., Tomasec P., Wilkinson G.W., Sinclair J., Sissons J.G. (2005)
 Human cytomegalovirus encodes an MHC class I-like molecule (UL142) that functions to inhibit NK cell lysis. *J Immunol* 175: 7457–65.
- Jones T.R., Wiertz E.J., Sun L., Fish K.N., Nelson J.A., Ploegh H.L. (1996) Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. *Proc Natl Acad Sci USA* 93: 11,327–33.
- Wiertz E.J., Jones T.R., Sun L., Bogyo M., Geuze H.J., Ploegh H.L. (1996) The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. *Cell* 84: 769–79.
- 14. Ziegler H., Thale R., Lucin P., Muranyi W., Flohr T., Hengel H., Farrell H., Rawlinson W., Koszinowski U.H. (1997) A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. *Immunity* 6: 57–66.
- Coscoy L., Ganem D. (2000) Kaposi's sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis. *Proc Natl* Acad Sci USA 97: 8051–6.
- Hudson A.W., Howley P.M., Ploegh H.L. (2001) A human herpesvirus 7 glycoprotein, U21, diverts major histocompatibility complex class I molecules to lysosomes. J Virol 75: 12347–58.
- 17. Ishido S., Wang C., Lee B.S., Cohen G.B., Jung J.U. (2000)
 Downregulation of major histocompatibility complex class I
 molecules by Kaposi's sarcoma-associated herpesvirus K3 and K5
 proteins. *I Virol* 74: 5300–9.
- Reusch U., Muranyi W., Lucin P., Burgert H.G., Hengel H., Koszinowski U.H. (1999) A cytomegalovirus glycoprotein reroutes MHC class I complexes to lysosomes for degradation. EMBO J 18: 1081–91.
- 19. Hirata Y., Kondo K., Yamanishi K. (2001) Human herpesvirus 6 downregulates major histocompatibility complex class I in dendritic cells. *J Med Virol* 65: 576–83.
- Glosson N.L., Hudson A.W. (2007) Human herpesvirus-6A and -6B encode viral immunoevasins that downregulate class I MHC molecules. Virology 365: 125–35.
- Mori Y., Yagi H., Shimamoto T., Isegawa Y., Sunagawa T., Inagi R., Kondo K., Tano Y., Yamanishi K. (1998) Analysis of human herpesvirus 6 U3 gene, which is a positional homolog of human cytomegalovirus UL 24 gene. Virology 249: 129–39.
- 22. Mori Y., Akkapaiboon P., Yang X., Yamanishi K. (2003) The human herpesvirus 6 U100 gene product is the third component of the gH-gL glycoprotein complex on the viral envelope. *J Virol* 77: 2452–8.
- 23. Mori Y., Koike M., Moriishi E., Kawabata A., Tang H., Oyaizu H., Uchiyama Y., Yamanishi K. (2008) Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway. *Traffic* **9**: 1728–42.
- 24. Okuno T., Shao H., Asada H., Shiraki K., Takahashi M., Yamanishi K. (1992) Analysis of human herpesvirus 6

- glycoproteins recognized by monoclonal antibody OHV1. *J Gen Virol* 73(Pt 2) 443–7.
- 25. Tang H., Kawabata A., Takemoto M., Yamanishi K., Mori Y. (2008) Human herpesvirus-6 infection induces the reorganization of membrane microdomains in target cells, which are required for virus entry. Virology 378: 265–71.
- Kawabata A., Tang H.M., Huang H.L., Yamanishi K., Mori Y. (2009) Human herpesvirus 6 envelope components enriched in lipid rafts: evidence for virion-associated lipid rafts. Virology J 6: 127.
- 27. Yamada M., Mugnai G., Serada S., Yagi Y., Naka T., Sekiguchi K. (2013) Substrate-attached materials are enriched with tetraspanins and are analogous to the structures associated with rear-end retraction in migrating cells. *Cell Adh Migr* 7: 304–14.
- 28. Akkapaiboon P., Mori Y., Sadaoka T., Yonemoto S., Yamanishi K. (2004) Intracellular processing of human herpesvirus 6 glycoproteins Q1 and Q2 into tetrameric complexes expressed on the viral envelope. *J Virol* 78: 7969–83.
- Mori Y., Akkapaiboon P., Yonemoto S., Koike M., Takemoto M., Sadaoka T., Sasamoto Y., Konishi S., Uchiyama Y., Yamanishi K. (2004) Discovery of a second form of tripartite complex containing gH-gL of human herpesvirus 6 and observations on CD46. J Virol 78: 4609–16.
- Raposo G., Nijman H.W., Stoorvogel W., Liejendekker R., Harding C.V., Melief C.J., Geuze H.J. (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183: 1161–72.
- Elboim M., Grodzovski I., Djian E., Wolf D.G., Mandelboim O. (2013) HSV-2 specifically down regulates HLA-C expression to render HSV-2-infected DCs susceptible to NK cell killing. PLoS Pathog 9: e1003226.
- Kubota A., Kubota S., Farrell H.E., Davis-Poynter N., Takei F. (1999) Inhibition of NK cells by murine CMV-encoded class I MHC homologue m144. *Cell Immunol* 191: 145–51.
- 33. Ma G., Feineis S., Osterrieder N., Van De Walle G.R. (2012) Identification and characterization of equine herpesvirus type 1 pUL56 and its role in virus-induced downregulation of major histocompatibility complex class I. J Virol 86: 3554–63.
- 34. Neumann L., Kraas W., Uebel S., Jung G., Tampe R. (1997) The active domain of the herpes simplex virus protein IC P47: a potent inhibitor of the transporter associated with antigen processing. J Mol Biol 272: 484–92.
- Raafat N., Sadowski-Cron C., Mengus C., Heberer M., Spagnoli G.C., Zajac P. (2012) Preventing vaccinia virus class-I epitopes presentation by HSV-ICP47 enhances the immunogenicity of a TAP-independent cancer vaccine epitope. *Int J Cancer* 131: E659– 69.
- Said A., Azab W., Damiani A., Osterrieder N. (2012) Equine herpesvirus type 4 UL56 and UL49.5 proteins downregulate cell surface major histocompatibility complex class I expression independently of each other. J Virol 86: 8059–71.
- 37. Vasireddi M., Hilliard J. (2012) Herpes B virus, macacine herpesvirus 1, breaks simplex virus tradition via major histocompatibility complex class I expression in cells from human and macaque hosts. *J Virol* 86(12) 503–11.

