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progeny viruses was completely dependent on the interaction with
ORF44p at 41DFDE44. These results suggest that ORF44p is fully
functional only in the presence of ORF49p and vice versa and has
essential functions during infection, which are independent of the
interaction with ORF49p or redundantly supported by other viral
factors in the absence of ORF49p.

In the absence of the interaction with ORF49p during infec-
tion, ORF44p was detected throughout the cytoplasm and rarely
colocalized with the TGN (or with a reorganized organ containing
TGN-derived membranes known to be induced by viral infection,
although it has not been found in VZV infection), the recognized
site of viral assembly; however, incorporation of ORF44p into
viral particles was comparable to that observed in wild-type virus
infection. These results indicate that ORF44p was not directly in-
corporated into the particles through the TGN via its interaction
with ORF49p, at least in the absence of ORF49p. In HSV-1, the
amount of pUL16 packaged into the viral particles was severely
reduced in the absence of pUL11 (50), but there are some other
interaction partners that potentially function in incorporating
pULI16 into the viral particles (i.e., pUL21 and glycoprotein E) (51,
52). In VZV, by global screening using the yeast two-hybrid sys-
tem, some candidates for ORF44p binding partner have been re-
ported (28, 29), but in our observations, none of these viral pro-
teins other than ORF49p could accumulate ORF44p on the TGN;
one viral protein could alter the localization of ORF44p into the
nucleus; however, whether it functions in the incorporation of
ORF44p into the viral particles remained unclear (T. Sadaoka and
Y. Mori, unpublished observation). Anyway, additional ORF44p
binding partners active during either the wild-type virus or
ORF49-defective virus infection remain to be identified so far, and
the complexity of the herpesvirus protein-protein network re-
quires a solid approach to elucidate the essential roles of ORF44
during viral infection further through the interactions with other
viral proteins.

In summary, in the present study, we established a frans-com-
plementation system for ORF49 and identified ORF44p as the
binding partner for ORF49p. We showed that (i) ORF49p func-
tions in the efficient production of infectious virus, (ii) no other
viral factor is required for binding, (iii) residue 129F of ORF44p is
critical not only for binding to ORF49p but also for progeny virus
production/reconstitution, (iv) the carboxyl-terminal half of the
acidic cluster (41DFDE44) of ORF49p is the binding motif for
ORF44p, and (v) the efficient production of infectious progeny
virus by ORF49p is dependent on its interaction with ORF44p.
Further analyses of the role of ORF44 mediated by its interaction
with ORF49 or other as yet unidentified viral proteins may shed
light on the conserved infection mechanisms of the Herpesvirinae
and those unique to VZV.
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ABSTRACT

Human herpesvirus-6 (HHV-6), which belongs to the betaherpesvirus subfamily, mainly replicates in T
lymphocytes. Here, we show that MHC class I molecules are incorporated into HHV-6 viral particles
and released into the extracellular environment. In addition, HHV-6A/B-infected T cells showed
reduced surface and intracellular expression of MHC class I molecules. The cellular machinery
responsible for molecular transport appears to be modified upon HHV-6 infection, causing MHC class
I molecules to be transported to virion assembly sites.

Key words human herpesvirus-6A/B, MHC class |, viral particles.

Human herpesvirus 6 (HHV-6), which belongs to the
betaherpesvirus subfamily (1), was first isolated from
peripheral blood lymphocytes obtained from patients
with lymphoproliferative disorders (2). HHV-6 isolates
are classified as HHV-6A and HHV-6B based on genetic
and antigenic differences and their cell tropism (2-5).
Primary infection with HHV-6B causes exanthem
subitum (6). The diseases caused by HHV-6A are so
far unknown. HHV-6B mostly infects infants and
remains latent in more than 90% of the population (7).

In general, herpesviruses use several strategies to evade
host immune responses. For example, viruses may inhibit
MHC class I-associated antigen presentation to escape
detection by cytotoxic T lymphocytes. Several proteins
expressed by herpesviruses block the transport of
antigenic peptides from the cytosol to the endoplasmic
reticulum (8-11), whereas others retain (12-14) or
destroy class I molecules, or deliver them to lysosomes for
degradation (15-18). The result is reduced surface

Correspondence

expression of MHC class I molecules, enabling the virus
to evade host immune surveillance.

HHV-6A, but not HHV-6B, downregulates expression
of MHC class I in dendritic cells (19). HHV-6 U21 binds
to and diverts MHC class I molecules to an endolyso-
somal compartment, effectively removing them from the
cell surface and providing a possible means of immune
escape (20).

Here, we show that expression of MHC class I
molecules by infected cells is downregulated with
incorporation into HHV-6 viral particles, suggesting a
possible mechanism by which the virus escapes host
immune surveillance.

MATERIALS AND METHODS
Cells and viruses

CBMCs were prepared as described previously (21). CBMCs
were provided by K. Adachi (Minoh Hospital, Minoh,
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List of Abbreviations: CBMC, umbilical cord blood mononuclear cell; LC-MS/MS, liquid chromatography-tandem mass spectrometry; HHV-6A,
human herpesvirus-6A; HHV-6B, human herpesvirus-6B; MVB, multivesicular body; TGN, trans-Golgi network.
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Japan) and H. Yamada (Kobe University Graduate
School of Medicine, Kobe, Japan) and purchased from
the Cell Bank of the RIKEN BioResource Center,
Tsukuba, Japan. Virus stocks were also prepared as
described previously (21, 22). HSB-2 and MT-4 cell lines
were used in this study (23). HHV-6A (strain GS)} and
HHV-6B (strain HST) were prepared as previously
described (21).

Antibodies

Monoclonal antibody (Mab) OHV-1 (24) and a
polyclonal antibody against gB (23, 25) have been
described previously. The following other Mabs were
purchased: MHC class I (clone: W6/32; Bio Legend, San
Diego, CA, USA), CD63 (clone: CLB-gran/12, 435;
Sanquin Blood Supply, Amsterdam, the Netherlands),
and a-tubulin (clone: B-5-1-2; Sigma, St Louis, MO,
USA). The following secondary antibodies were used:
Alexa Fluor 488- or 594-conjugated F(ab’)2 fragment of
goat anti-mouse or rabbit immunoglobulin G (IgG)
(Invitrogen, Tokyo, Japan) and anti-mouse IgG, horse-
radish peroxidase-linked whole antibody (from sheep)
(GE Healthcare, Piscataway, NJ, USA).

Virion and exosome isolation

Virions and exosomes were purified as previously
described (23, 26). The collected fractions were used
for western blotting, electron microscopy or liquid
chromatography-tandem mass spectrometry (LC-MS/
MS).

Liquid chromatography-tandem mass
spectrometry

The fractions described above were analyzed by LC-MS/
MS. Proteins were diluted tenfold with 9.8 M urea. The
solutions were adjusted to pH 8.5, reduced with 13 mM
dithiothreitol at 37°C for 1.5 hr and alkylated with 27 mM
iodoacetamide in the dark for 1 hr. The protein mixtures
were further diluted with 100mM triethylammonium
bicarbonate (pH 8.5) to reduce urea to 1 M, and digested
with 4 pL of 1 mg/mL trypsin—tosyl phenylalanyl chlor-
omethyl ketone solution. Samples were digested over-
night at 37°C. Following digestion, lysates were acidified
by adding 10% trifluoroacetic acid. The samples were
desalted using peptide cleanup C18 spin tubes (Agilent
Technologies, Santa Clara, CA, USA) and vacuum-dried.
NanoLC-MS/MS analyses were performed on an LTQ-
Orbitrap XL mass spectrometer (Thermo Fisher Scien-
tific, Waltham, MA, USA) as described previously (27),
while spray voltage was changed to 1800 V. Peptides and
proteins were identified by automated database searches

120

using Proteome Discoverer v.1.1 (Thermo Fisher Scien-
tific) against all entries of the Swiss Prot protein database
(version 3.26) with a precursor mass tolerance of 10 p.p.m.,
a fragment ion mass tolerance of 0.8 Da, and strict trypsin
specificity, allowing for up to two missed cleavages.
Cysteine carbamidomethylation was set as a fixed
modification, and methionine oxidation was allowed as
a variable modification.

Western blotting

Western blotting was performed as described previously
(28, 29).

Electron microscopy

Electron microscopy was performed as described
previously (30).

Briefly, the virion-containing pellets were resuspended
in 2% (w/v) paraformaldehyde solution buffered with
0.1 M phosphate (pH 7.2). Next, 5 pL of the resuspended
pellet was loaded onto formvar—carbon-coated grids to
adsorb the virions. Immunostaining was then performed.
The virions were incubated with mouse anti-gB, anti-
MHC class I or anti-CD63 antibody for 1 hr at room
temperature, followed by goat anti-mouse IgG conjugat-
ed to 10 nm colloidal gold particles (GE Healthcare) for a
further 1 hr at room temperature. After immunolabeling,
the samples were washed in distilled water, stained for
Smin with uranyl oxalate, pH 7.0, washed again,
embedded in a mixture of 1.8% methylcellulose and
0.4% uranyl acetate, pH 4.0, at 4°C, air-dried, and
observed under a Hitachi H-7100 electron microscope
(Hitachi, Tokyo, Japan). For the control experiments,
samples were incubated with the secondary antibody
alone.

Flow cytometry

MT-4 cells were infected with HHV-6B. At 72 hr post-
infection, the cells were fixed with 4% (w/v) paraformal-
dehyde at room temperature for 15 min and incubated
with anti-MHC class I Mab at 37°C for 1 hr. The cells were
then stained with an appropriate secondary antibody at
37°C for 30 min. For the control experiments, samples
were incubated with the secondary antibody alone.
Stained cells were analyzed using a flow cytometer (ec800;
Sony, Tokyo, Japan).

Immunofiuorescence assay

Immunofluorescence assay was performed as described
previously (28). Briefly, MT-4 cells were infected with
HHV-6B. At 72 hr post-infection, the cells were fixed
with cold acetone—methanol (7:3) and incubated at 37°C
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for 1 hr with an anti-HHV-6 gB rabbit antibody or an
anti-MHC class [ Mab. After washing for 10 min with PBS
containing 0.02% Tween-20, the cells were incubated
with an appropriate secondary antibody at 37°C for
30 min, followed by Hoechst33342 at 37°C for 40 min.
After washing as described above, signals were detected
by a confocal laser-scanning microscope (Olympus
FluoView FV1000; Olympus, Tokyo, Japan).

RESULTS
Virion and exosome isolation

Extracellular viral particles containing exosomes were
purified from the culture supernatant of HHV-6A (strain
GS)-infected HSB-2 or HHV-6B (strain HST)-infected
MT-4 cells. The particle-containing fractions were
confirmed by western blotting with an anti-gB anti-
body (23, 25). Next, the particle-containing fractions
were analyzed by LC-MS/MS (27), which detected many
cellular proteins (unpublished data). Of the host proteins
detected, our analyses focused on MHC class I molecules.

Virion- or exosome-associated fractions
contain MHC class | molecules

To verify expression of MHC class I within viral particles,
the proteins in fractions 3—10 were separated by SDS-PAGE
and analyzed by western blotting with anti-gB rabbit, anti-
MHC class I or anti-CD63 antibodies. As shown in
Figure 1, gB protein was detected in fractions 5-6 whereas
MHC class I was detected primarily in fractions 6-8. We
have previously reported that the MVB marker, CD63, is
incorporated into virions and exosomes (23); therefore,
expression of CD63 was also examined. As expected, CD63
was detected in fractions 5-10 (Fig. 1c). To confirm
expression of MHC class I within both virions and
exosomes, negative staining of fractions 6 and 7 were
performed, followed by electron microscopy (30). Fraction
6 contained mainly viral particles of diameter approxi-
mately 200 nm. Both MHC class I (Fig. le) and gB protein
(Fig. 1d) were present in these particles. Fraction 7
contained mainly exosomes of diameter approximately 50—
100 nm (Fig. 1f). These exosomes contained MHC class I,
which confirmed the results of the western blotting
experiments. Taken together, these results indicate that
MHC class I molecules are present in exosomes and virions
released from HHV-6B-infected cells.

Downregulated expression of MHC class |
molecules on the surface of HHV-6B-
infected cells

Downregulation of MHC class I occurs in many different
virus-infected cells (31-37). Because MHC class 1
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molecules were incorporated into virions, HHV-6-
infected MT-4 cells might show an apparent down-
regulation in cell surface expression. To confirm this,
HHV-6B- or mock-infected cells harvested 72 hr post-
infection were fixed and then stained with an anti-MHC
class I antibody. Surface expression of MHC class I was
then analyzed by flow cytometry. As expected, HHV-6B-
infected cells showed downregulated cell surface expres-
sion of MHC class I when compared with mock-infected
cells (Fig. 2a). This reduced expression was confirmed by
western blot analysis (Fig. 2b), indicating that expression
of MHC class T molecules within HHV-6-infected cells
(not just expression on the cell surface) was also
downregulated. Next, the localization of MHC class I
molecules in these cells was assessed after they had been
fixed and co-stained with anti-MHC class I and gB
antibodies. MHC class I in infected cells was localized
mainly within intracellular compartments, and colocal-
ized with the envelope glycoprotein gB during the later
stages of infection; however, MHC class I was mainly
localized to the plasma membrane in mock-infected cells
(Fig. 2¢).

DISCUSSION

Here, we used mass spectrometry-based proteomics
analysis to show that MHC class I molecules are
incorporated into HHV-6 viral particles. Downregulation
of MHC class I molecules in virus-infected cells is an
important mechanism by which viruses evade immune
surveillance (31-37). We showed that downregulation of
MHC class I molecules occurs in T cells infected by HHV-
6. MHC class I molecules are incorporated into viral
particles and exosomes and then released into the
extracellular environment, suggesting a possible strategy
for escaping host immune responses. In addition, MHC
class I molecules incorporated into virions and exosomes
may assist viral entry. Further studies are needed to
address this question.

We have previously reported that immature HHV-6
particles bud into TGN or TGN-derived vesicles (which
are produced in HHV-6B-infected cells), that vesicles
containing mature virions become MVBs, and that
virions and exosomes are released into the extracellular
environment via an exosomal secretary pathway (23). It is
possible that MHC class I molecules are transported into
the TGN-derived membranes from which the virions bud
and then incorporated into virions within infected cells
without being recycled (Fig. 3).

Within infected cells, MHC class I molecules colo-
calized with the gB protein in the cytoplasm indicating
that, like viral glycoproteins, they are sorted into vesicles.
The reduction in the total (both cell surface and
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(d) HHV-6 gB
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(e).MHC class
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Fig. 1. MHC class | molecules are incorporated into virions and exosomes and released from HHV-6B-infected cells. Virions and
exosomes were collected from the culture medium of HHV-6B-infected cells by sucrose density gradient centrifugation and examined by (a—c)
western blotting and (d—f) electron microscopy. Western blots with (a) anti-gB rabbit, (b) anti-MHC class | (W6/32) or (c) anti-CD63 (CLB-gran/12,
435) antibodies are shown. The same amount of each protein fraction was added to each well of the gel. Immunogold labeling of (d) gB in
fraction 6 and of (e,f) MHC class | in fractions 6 and 7. The fractions were collected from the bottom of tube. Hollow arrowheads, labeled virions;

filled arrowheads, exosomes. Scale bars: 200 nm (d-f).

intracellular) expression of MHC class 1 in HHV-6-
infected cells suggests that some of them may be
transported to lysosomes and degraded, as this route is
the same as that used to transport particles to MVBs.
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Although several host proteins are usually expressed on
the surfaces of uninfected cells, they are expressed in the
same intracellular compartments as those in which viral
particles incorporated. Newly formed compartments
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Fig. 2. Expression of MHC class | in HHV-6B-infected cells. (a) Expression of MHC class | on the surface of HHV-6B-infected cells is
downregulated. HHV-6B-infected or mock-infected cells were harvested at 72 hr post-infection and fixed with 4% (w/v) paraformaldehyde. Fixed
cells were stained with an anti-MHC class | antibody followed by staining with a secondary antibody prior to flow cytometric analysis. Control
samples were incubated with the secondary antibody alone. Black histogram, mock-infected cells; blue histogram, HHV-6B- infected cells. (b) The
total expression of MHC dlass | in HHV-6-infected cells was reduced. HHV-6B-infected or mock-infected cells were harvested at 72 hr post-infection
and cell lysates prepared for western blotting. Purified HHV-6B virions were also used for western blotting. () MHC class | colocalizes with HHV-6B
gB in intracellular compartments. HHV-6B-infected or mock-infected cells were harvested at 72 hr post-infection and fixed in cold acetone-methanol.
Fixed cells were stained with antibodies against HHV-6 gB or MHC class | and with Hoechst33342. The stained cells were observed under a confocal
microscope. The merged panels show the colocalized HHV-6 gB and MHC class | molecules. Single sections are shown. Scale bars: 5 micro meter.
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HHV-6-infected cell

U

Golgi TGN

¥ MHC class 1
HHV-6 virion

Exosome

Fig. 3. Scematic representation of the fate of MHC class | molecules in HHV-6-infected cells. MHC class | molecules are transported to
TGN- or post-TGN-derived vacuoles in HHV-6-infected cells and then incorporated into virions and intracellular small vesicles, which later become
exosomes. Finally, MHC class | molecules are released from HHV-6-infected cells along with virions and exosomes.

within HHV-6-infected cells may show the combined
characteristics of early and late endosomes. Recycling to
early endosomes in HHV-6-infected cells may be
modified or defective; therefore, several cellular proteins
that use the same recycling system may be incorporated
into virions and exosomes.
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