[31]. Our study showed a decrease in the number of acti-
vated microglia by UCBC administration in the early
phase of neonatal HI (fig. le, 2¢). Pimentel-Coelho et al.
[13] also reported that intraperitoneal administration of
UCBCs 3 h after insult decreased apoptosis and microg-
lial activation, and improved primitive reflexes in a neo-
natal HI rat model. Therefore, to suppress the elevation
of such proinflammatory cytokines, which lead to de-
creased apoptosis, UCBC administration in the early
phase may be a reasonable therapeutic approach, as dem-
onstrated in the present study.

Oxidative stress plays an important role in HI brain
damage [32]. Here, we demonstrated a decrease in 4-HNE-
and nitrotyrosine-positive cells in the dentate gyrus fol-
lowing UCBC administration (fig. lc, d, 2¢, d). To our
knowledge, this study is the first to report antioxidative
effects of UCBCs in a neonatal HI rat model. Arien-Zakay
et al. [33] reported antioxidative effects of UCBC-derived
neural progenitor cells on insulted PC12 cell lines. Fur-
ther, suppression of oxidative stress after adult transient
focal ischemia was observed in an interleukin-1 knockout
murine model [34]. As described above, UCBC adminis-
tration can decrease the elevated expression of proinflam-
matory cytokines including interleukin-1 [31]. Moreover,
the decreased expression of EDI in the present study
(fig. 1e, 2e) indicates that UCBC administration decreased
HI-induced inflammation. Thus, the antioxidative effect
of UCBC administration might be exerted directly and/or
via suppression of inflammation.

Calculations of the immunohistochemically stained
cells were focused on the dentate gyrus of the hippocam-
pus, which is one of the most vulnerable areas to hypox-
ic ischemic insult. Although we calculated the immuno-
histochemically stained cells with density counts, which
is less sensitive than stereological counts, the results re-
vealed that UCBC administration suppressed apoptosis,
as indicated by the decrease in the number of cells posi-
tive for active caspase-3 and AIF (fig. 1a, b, 2a, b). In the
present study, we performed high-resolution analyses of
walking patterns using the CatWalk system; however,
they were not sensitive enough to detect motor impair-
ment after HI injury. In contrast to human neonates, rat
pups after HI injury did not show obvious locomotor
abnormalities, as in other studies using the same model
[35]; this may have been because of the higher degree of
plasticity of the immature rat brain [36]. We also evalu-
ated the learning memory after HI with the shuttle avoid-
ance test and found only a mild tendency to improve the
learning memory in the UCBC group; the difference was
not significant. This may be a type 2 error, and further
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studies are required to clarify the potential effects of
UCBC therapy on motor impairment and cognitive def-
icits after HI. In addition, we found no differences be-
tween the vehicle and UCBC groups in absolute tissue
loss or the number of neurons in the cortex, corpus cal-
losum or hippocampus (fig. 5). Similarly, some former
studies failed to show histological improvement follow-
ing UCBC therapy [12, 16], whereas others did [14, 15].
We have summarized the experimental protocols and re-
sults [37]. In many previous reports, 1 x 107 mononucle-
ar cells were administered intraperitoneally 24 h after the
insult. We administered the same dose of cells at an ear-
lier time point. Pimentel-Coelho et al. [13] administered
UCBCs even earlier (3 h after the insult) using a lower
dose (2 x 10°) of cells, and showed improvement in mor-
phology and behavior. It is still unclear how the differ-
ences between protocols can affect the results. Other pos-
sible reasons for the different outcomes can be the sever-
ity of the insult and other experimental settings.
Considering the fact that the present study failed to show
any effect on morphological changes in the chronic phase
or improvement of behavioral impairments, despite the
fact that several acute injury markers were suppressed, a
modified protocol (e.g. repeated administration, combi-
nation with some other treatments) should be tried with
an aim to achieve sustained neuroprotection.

In the present study, cryopreserved mononuclear cells
were used. Even frozen-thawed UCBCs are known to
produce various cytokines and chemokines [38], and ex-
ert a neuroprotective effect in various animal models [13,
37,39]. Moreover, from the viewpoint of clinical applica-
tions, cryopreservation is essential in the case of alloge-
neic transplantation, which may be applicable for patients
without access to their own cord blood cells.

We used human UCBCs in a rodent injury model. It
might have been more suitable to use rat UCBCs. How-
ever, it was very difficult to get sufficient numbers of cells
from the umbilical cord of rats without expansion in cul-
ture. Because the purpose of the present study was to eval-
uate the treatment effect of mononuclear cells from the
umbilical cord without using culture procedures, we used
human cells, as in previous publications [13-18].

Another possible limitation in the present study is that
we could not monitor/control body temperature in each
pup. We placed the pups on/into the temperature-con-
trolled plate/chamber during the HI insult, and returned
them to the dam in a temperature-controlled room after
the insult. There might be some variation in brain tem-
perature, leading to variation in the degree of brain dam-
age [40].
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The choice of injection site is an important issue when
using cell infusion for the treatment of brain injury. We
administered UCBCs intraperitoneally, as in most previ-
ous studies. According to our recent unpublished results,
only a small number of cells either injected intraperitone-
ally or intravenously could be found in the brain, and cells
injected intraperitoneally were less seen in the liver, lung
or spleen than cells injected intravenously, indicating that
many intraperitoneally injected cells might have stayed in
the peritoneal cavity. The treatment effect might be
through trophic factors secreted by the cells [41]. The ex-
tent of brain damage can be influenced by the peripheral
inflammatory response [42]. Modulating peripheral in-
flammation can be a therapeutic target. In a traumatic
brain injury model, multipotent adult progenitor cells ex-
erted a neuroprotective effect through interaction with
resident splenocytes [43].

6 h after HI reduced caspase-3, AIF, microglial activa-
tions and oxidative stress, but it did not induce morpho-
logical or functional protection. Repeated administration
or a combination treatment may be required to achieve
sustained protection.
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