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Figure 2 Circadian pattem of acute myocardial infarction (AMI) onset according to the day of the week. Circadian patterns of AMI
onset based on the day of the week are shown. The estimated peak onset time and 95% Cls are shown below each circular plot.
*p Values from the likelihood ratio test to examine whether the circadian pattern of AMI onset was uniform, unimodal or bimodal.

status had a statistically significant association with the  dyslipidaemia were not related to the observed patterns
circadian pattern of AMI onset, whereas several other (figure 3, supplementary table 1).

known risk factors for AMI, including HDL and LDL Among the positively associated factors, serum TG levels
cholesterol, HbAlc, hypertension, diabetes and on admission had the greatest association with the
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Figure 3 Circadian pattern of acute myocardial infarction (AMI) onset based on lifestyle-related factors. (A) Circular plots of the
circadian pattern of AMI onset in the subpopulation with triglyceride (TG) levels >150 and <150 mg/dL, and the circular plot of the
corresponding fitted von Mises distributions for each subgroup are shown. (B—M) Circular plots of the fitted von Mises
distributions of each subgroup based on smoking habit, age, drinking habit, blood glucose levels, gender and working status,
low-density lipoprotein (LDL) levels, high-density lipoprotein (HDL) levels, glycated haemoglobin (HbA1c) levels, hypertension,
diabetes and dyslipidaemia. *p Values from the likelihood ratio (LR) test to examine whether the circadian pattern of AMI onset
was uniform, unimodal or bimodal in each subgroup. tp Values from the hierarchical LR test to examine whether each factor

affected the circadian pattern of AMI onset.

circadian pattern of AMI onset. Although the likelihood
ratio test demonstrated that patients with admission serum
TG levels of >150 mg/dL (N=1473) had two characteristic
peaks during the day, the peak pattern clearly differed
from the other subpopulation groups. In patients with
admission serum TG levels of >150 mg/dL, both peaks

occurred in the morning and nearly overlapped (8:18 and
8:47; figure 3A). Therefore, the subpopulation with admis-
sion TG levels >150 mg/dL was considered to have a high
frequency of AMI onset only in the morning.

The baseline characteristics and laboratory data of
patients with serum TG levels of >150 and <150 mg/dL
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Figure 3 Continued.

on admission are shown in supplementary table 2. In
the subpopulation with higher TG levels, the circadian
patterns of AMI onset were characterised by a large,
sharp peak in the morning from Monday to Friday, but
no peaks were detected on Saturday and Sunday
(bimodal: p=0.32 and 0.133, respectively; supplementary
figure 1). In contrast, patients with admission serum TG
levels of <150 mg/dL (N=5055) had onset peaks that
occurred in the morning and evening consistently
throughout the week (supplementary figure 1).

A likelihood ratio test demonstrated that all other sub-
populations had two AMI onset peaks during the day:
one in the morning and the other in the evening
(figure 3, supplementary table 1). The subpopulations
that were grouped according to smoking habit, age
<65 years, male gender and active employment had a cir-
cadian pattern of AMI onset with a sharper primary
peak and a less-defined sharp secondary peak compared
with the other subpopulations (figure 3B, C, F, G, sup-
plementary table 1), although the peak heights were
similar between the subpopulations, with the exception
of the smoker/non-smoker subpopulations. The primary
AMI onset peak in the subpopulation of smokers was
higher than that among non-smokers, whereas the
secondary peaks were similar. Drinkers had a circadian

pattern of AMI onset that was characterised by a lower
and less sharp peak in the morning and a higher,
sharper and later peak in the evening (9:00 (95% CI
8:48 to 9:13, 20:54 (95% CI 20:29 to 21:20)) compared
with non-drinkers (9:03 (95% CI 8:53 to 9:14), 19:27
(95% CI 18:50 to 20:04); figure 3D, supplementary
table 1). The subpopulation with admission blood
glucose >140 mg/dL exhibited a circadian pattern of
AMI onset with a higher and sharper primary peak and
a less-defined secondary peak compared with the subpo-
pulation of patients with AMI with blood glucose
<140 mg/dL on admission (figure 3E).

One-year mortality according to onset time of AMI

One-year mortality was compared among four patient sub-
populations that were grouped according to the time
range of AMI onset. The baseline characteristics and
laboratory data for the four groups are presented in sup-
plementary table 3. A total of 753 deaths were recorded
during a median follow-up period of 365 days. The
Kaplan-Meier survival analysis demonstrated that the
afternoon-onset (12:00-17:59) group had worse l-year
mortality than the other three groups (logrank test,
p=0.032; figure 4A). In the subgroup of patients with
STEMI, the result was similar (log-rank test, p=0.007). The
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Figure 4 One-year mortality according to the onset time of AMI onset. (A) One-year mortality among the four subgroups based
on AMI onset time. (B) HRs for 1-year mortality in the afternoon-onset group versus the other three onset time groups. The
Kaplan-Meier survival curves of 1-year mortality among the four AMI onset time subgroups (A). A p value from the log-rank test
was used to examine difference in the Kaplan-Meier curves. The HR and 95% ClI, and p value for the overall population was
calculated using univariable Cox regression analysis. The HRs and 95% Cls, and p values for the individual potential
confounding variables were calculated using stratified Cox regression analysis, in which the variables were included into the
model as stratification factors (B). AMI, acute myocardial infarction; BMI, body mass index; CK, creatine kinase; STEMI,
ST-elevation MI.
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univariable Cox regression analysis revealed that the HR of
1-year mortality in the afternoon-onset group as compared
with the other three groups was 1.20 (95% CI 1.02 to 1.40,
p=0.030, figure 4B). This result did not generally change
after stratification with potential confounding factors that
showed a different trend between the afternoon-onset
group and the other three groups (figure 4B).

DISCUSSION

In the present study, we confirmed that AMI onset exhi-
bits a circadian pattern characterised by bimodality, with
a definite morning peak and a less-defined evening
peak. Notably, several lifestyle-related factors were asso-
ciated with variation in the circadian pattern of AMI
onset. In particular, serum TG levels on admission for
AMI were associated with a unique pattern of AMI onset
that is characterised by augmented unimodal peaks on
weekday mornings, suggesting that an individual’s life-
style may affect the onset pattern of AMIL.

Bimodal pattern of AMI onset: morning and

night-time peaks

AMI onset in our large patient cohort generally followed
a circadian pattern that was characterised by a high and
sharp morning peak and a lower and less-defined sharp
nighttime peak (figure 1), a finding that is consistent
with the results of previous investigations.'~” Interestingly,
the time of two peaks shifted in a synchronous fashion
during weekdays; the secondary peaks generally occurred
around 11-12 h after the morning peaks on Monday
through Friday (figure 2). For example, AMI onset exhib-
ited early morning and night-time peaks on Monday and
Thursday, whereas that on Tuesday exhibited late
morning and night-time peaks. Although this finding is
partly consistent with the observation of Peters et al,” who
reported that a secondary peak in AMI onset occurs 11—
12 h after waking, the present study first demonstrated
that this synchrony was present on weekdays, but absent
on weekends.

Several physiological processes are considered to con-
tribute to the bimodal pattern of AMI onset. For
example, Stergiou et al'®> demonstrated that the two-peak
diurnal variation in stroke onset occurs in parallel with
variation in blood pressure, pulse rate and physical activ-
ity. Thus, the bimodality of blood pressure and heart
rate'® '* is the most likely explanation for the circadian
patterns of AMI onset observed in the present study. A
greater morning surge of blood pressure and heart
rate’” may explain why the night-time peak of AMI onset
was lower and less-defined than the morning peak. In
addition, increased blood viscosity'” and thrombogen-
icity due to morning hypercoagulability16 and hypofibri-
nolysis'” also likely increased the frequency of AMI
onset in the morning. It is also possible that external
factors, such as physical exertion and mental stress,
could be triggers for the morning onset of AML'® In the
present study, the younger (<65 years old), working,

male and smoker subpopulations had a sharp morning
peak of AMI onset compared with the elderly, non-
working, female and non-smoking subpopulations
(figure 3B, G, E, G). The sharpness of the morning peak
might be related to increased susceptibility to physical
and mental stress in these subpopulations, when they
are more likely to start activities or go to work soon after
waking up. Similarly, the sharp and early morning peak
of AMI onset that was detected on Monday may be due
to the increased physical and mental stress that is asso-
ciated with the first morning of the week (figure 2). We
also found that the morning peak occurred latest on
Sunday (figure 2). Together, these findings strongly
suggest that mental and physical activity and/or stress
may act as a trigger for the morning onset of AMI.

Although many reports have examined the primary
peak of AMI onset, relatively little attention has been
paid to the secondary peak. We demonstrated that drin-
kers had a higher, sharper and later night-time peak of
AMI onset than non-drinkers (figure 3D). Moreover, the
night-time peak on Saturday was the highest and shar-
pest among the 7 days of the week (figure 2). This obser-
vation may be explained by the fact that people might
likely consume alcohol and engage in social activities on
Saturday night in Japan. Thus, these evening activities
can result in increased sympathetic nerve activity and
therefore may have contributed to the increased fre-
quency of AMI onset at night. Taken together, our find-
ings suggest that the morning and nighttime peaks of
AMI onset are influenced by physiological and socio-
economic factors.

Associations of lifestyle-related factors with the circadian
patterns of AMI onset

Many previous studies on the circadian pattern of AMI
onset considered gender, age, working status as potential
factors affecting the circadian patterns of AMI onset." *°
We additionally incorporated laboratory data, disease and
other socioeconomic factors into our analyses and found
that several lifestyle-related factors, including admission
serum TG and blood glucose levels, age, gender, working
status and smoking and drinking habits had statistically
significant associations with the circadian pattern of AMI
onset. Among these factors, elevated serum TG levels
(=150 mg/dL) on admission had the largest associations
with the circadian patterns of AMI onset, while the ampli-
tude of serum TG levels on admission in patients with
AMI did not have circadian variation (p=0.52; supple-
mentary figure 2).

There are several evidences to support our findings.
First, fasting hypertriglycaemia and postprandial hyper-
lipidaemia, which is characterised by postprandial accu-
mulation of TGrich lipoproteins and their partially
hydrolysed products, are closely related to the develop-
ment of atherosclerotic cardiovascular diseases.'®™"
Several studies have also reported that elevated serum TG
levels are associated with an increased risk of ML.** **
Hypertriglycaemia is  associated  with  increased
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thrombogenicity,”!
increased plasminogen activator inhibitor-1 (PAI-1)
and factor VII coagulant activities,” *’ and viscosity.”’
These three factors have also been reported to affect the
development of MI.”**! Moreover, hypertriglyceridaemia
is also related to endothelium dysfunction,” *° which
contributes to the pathogenesis of coronary artery
disease.”” In healthy participants, serum TG levels also
exhibit circadian variation with a peak around 3:00.”
Thus, it is conceivable that patients with hypertriglycae-
mia have further augmented TG levels and are therefore
exposed to increased thrombogenicity and endothelium
dysfunction in the early morning hours before dawn,
which may explain the accentuated morning peak of AMI
onset in patients with admission TG >150 mg/dL. Finally,
it is reported that high plasma PAI-1 levels and excessive
surges in morning blood pressure are independently and
additively associated with increased risk of stroke in older
patients with hypertension.”” Thus, these lines of evi-
dence strongly support our observation of a higher
morning risk of AMI onset in the subpopulation with
admission hypertriglyceridaemia.

Altered circadian patterns of AMI onset in patients with
increased TG levels on admission

To the best of our knowledge, this is the first study to
demonstrate an association between admission serum TG
levels and the circadian patterns of AMI onset, as charac-
terised by a lack of an evening peak in AMI onset in the
subgroup of serum TG levels on admission >150 mg/dL
compared with all other subgroups (figure 3). While
LDL/HDL levels are considered to be closely associated
with the development of atherosclerosis, LDL/HDL
levels were not associated with onset patterns of AMI in
the present study. Although the precise mechanisms for
altered circadian patterns of AMI onset in patients with
increased admission serum TG levels are unclear,
increased serum TG might have influenced peripheral
clocks residing in various tissues throughout the body, dis-
rupting the circadian patterns of AMI onset. Indeed,
recent studies have shown that energy metabolism is an
important modulator of peripheral circadian clock in car-
diovascular tissues. '’ *!

Our subpopulation analyses also revealed that the cir-
cadian patterns of AMI onset in patients with admission
TG levels of >150 mg/dL had a sharp morning peak
during weekdays, whereas no such peak was detected on
Saturday or Sunday. This observation strongly suggests
that increased thrombogenicity and endothelium dys-
function was a factor, but not the trigger, for the
morning onset of AMI in our study cohort. Thus, it is
conceivable that the accentuated morning peak of AMI
onset in patients with admission TG >150 mg/dL may
be due to the combination of the following three
factors: (1) increased hypercoagulability, hypofibrinoly-
sis, viscosity and endothelium dysfunction resulting from
elevated serum TG levels, (2) increased risk of a

morning surge of blood pressure and heart rate and (3)
mental and physical stress.

One-year mortality according to AMI onset time

The association between AMI onset time and mortality
is controversial. For example, Manfredini et al® reported
that patients with a morning onset of AMI are charac-
terised by higher fatal outcome, independent of site and
size of infarction, while Bae et al" reported that patients
with an evening-onset AMI had the worst I-year mortal-
ity in association with poor baseline clinical character-
istics. On the other hand, Holmes et al'* observed no
significant association between the circadian patterns of
onset time and in-hospital mortality in patients with
STEMI after adjusting for clinical risk factors.

In the present study, patients with an afternoon onset of
AMI had the worst l-year mortality (figure 4A). However,
the baseline clinical characteristics were comparable
among the four onset time groups in our study cohort.
Indeed, stratification for potential confounding variables
did not generally change the results, suggesting that the
increased prognostic risk of AMI in the afternoon-onset
group was not simply explained by differences in baseline
characteristics in the present study (figure 4B). Anyway, a
patient’s background and physiological circadian rhythms
might complexly interact with each other and affect mor-
tality after AMI, which could lead to these different results
among the studies and difficulty in interpreting the
results. Further investigations are required to clarify the
association of mortality after AMI and onset time.

Limitations

A few limitations of the present study warrant mention.
First, this was an analysis of a prospective observational
study and the results may have therefore been influ-
enced by potential confounding factors, even after
adjustment for baseline clinical and angiographic
characteristics. Thus, caution is needed when interpret-
ing the data and making generalisations to other
cohorts. Second, the laboratory findings, including
serum TG levels, were evaluated on admission.
Therefore, we could not exclude the influence of food
consumption and circadian variation of several factors,
particularly serum TG levels, making interpretation of
the data difficult. However, our results also demon-
strated that serum TG levels were not likely the final
trigger for AMI onset, as patients with TG >150 mg/dL
on admission did not exhibit a morning peak of AMI
onset on the weekend. In patients with hypertriglycae-
mia, hypercoagulability, hypofibrinolysis, viscosity and
endothelium dysfunction are generally increased during
the early morning hours before dawn,”*™" 7 %0 7 result-
ing in enhanced susceptibility to AMI onset. Thus,
under such conditions, it is conceivable that increased
sympathetic activity, which was further enhanced in asso-
ciation with mental, physical and/or other factors, could
be the final trigger for AMI onset on weekday mornings
in patients with TG >150 mg/dL on admission. Based
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on these findings, the influence of meal intake and cir-
cadian variation of serum TG levels on the morning
peak of AMI onset in the population with TG >150 mg/
dL may be minimal, if not negligible.

CONCLUSIONS

In our large cohort of consecutive patients with AMI, the
circadian pattern of AMI onset exhibited bimodality and
was shown to be associated with several lifestyle-related
factors. Among these factors, increased serum TG levels
on admission had the most marked association with circa-
dian variation, which was characterised by an increased
morning risk of AMI onset during weekdays in this subpo-
pulation. Our findings may help to identify the under-
lying triggers and substrates of AMI onset and help
suggest preventive measures of AMI. However, caution is
warranted to interpret our results and confirmation in
other cohorts is required.
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