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Figure 2. BNIP3 (BCL2 and adenovirus E1B 19-kDa-interacting protein 3) is
expressed in the granular layer of the human epidermis. (a—e) Human skin
epidermal equivalents were constituted from (a-d) normal human primary
epidermal keratinocytes (HPEKs) or (e) HPEKs transfected with EGFP-LC3 by
lentiviral vector. Cells were grown for (a, b) 18 days and (c—e) 24 days after
exposure at the air-liquid interface. (f—i) Normal human skin epidermis.

@, ¢, f) Expression pattern of loricrin (LOR). (b, e, h) Expression pattern of
BNIP3. (i) Control staining without BNIP3 antibody is shown. (d)
Autophagosome formation determined by EGFP-LC3 puncta. (g) Endogenous
expression pattern of LC3. The blue signals indicate nuclear staining. The
dotted lines indicate (a—e) the boundary between the epidermis and the
membrane or (f-i) the boundary between the epidermis and the dermis.
Scale bars=20um. BL, basal layer; GL, granular layer; SC, stratum corneum
(cornified layer); SP, spinous layer.

that ““sunburn-like cells”” existed in BNIP3 knockdown epi-
dermal equivalent (Figure 6a and b). We therefore hypothe-
sized that BNIP3 might play a key role in the survival of
epidermal keratinocytes. To evaluate this hypothesis, HPEKs
were irradiated with 20mJcm ™2 UVB. UVB irradiation
triggered the formation of autophagosome that was signifi-
cantly reduced by BNIP3 knockdown (Figure 6¢c-e). As shown
in Figure 6f, UVB irradiation induced cleavage of caspase3
and BNIP3 expression. Intriguingly, knockdown of UVB-
induced BNIP3 by RNAi further increased the amount of
cleaved caspase3, suggesting that BNIP3 is required for the
protection of keratinocytes from UVB-induced apoptosis
(Figure 6f).
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Figure 3. BNIP3 (BCL2 and adenovirus E1B 19-kDa-interacting protein 3)
stimulates autophagy. (a, b) EGFP-LC3-expressing human primary epidermal
keratinocytes (HPEKs) were transduced with DsRed (Cont) or BNIP3. As an
inhibitor of autophagy, 3-methyladenine 3-MA (5 mm) was added. Cells were
then stained with anti-EGFP at 24 hours after transduction. (a) EGFP-LC3
staining is shown in green. Scale bars=20um. (b) The percentage of EGFP-
LC3-positive cells with more than five puncta were quantified and are
presented as the mean of three independent experiments = SD. (c) HPEKs were
transduced with DsRed (Cont) or BNIP3. As an inhibitor of autophagy, 3-MA
(5mm) was added. Autophagy induction was determined by Cyto-ID staining
and quantified by flow cytometry. (d, e) EGFP-LC3-expressing HPEKs were
transduced with miR neg, miR BNIP3_1, or miR BNIP3_2 and induced to
differentiate. Cells were then stained with anti-EGFP at 8 hours after
differentiation induction. (d) EGFP-LC3 staining is shown in green. Scale
bars=20um. (e) The percentage of EGFP-LC3-positive cells with more

than five puncta were quantified and are presented as the mean of three
independent experiments + SD. (f) HPEKs were transduced with miR neg, miR
BNIP3_1, or miR BNIP3_2 and induced to differentiate. Autophagy induction
was determined by Cyto-ID staining and quantified by flow cytometry.

All the data represent the average of three independent experiments £ SD.
*P<0.01; *0.01 < P<0.05.
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Figure 4. Autophagy stimulates mitochondrial degradation. (a) Distribution pattern of mitochondria. The blue signals indicate nuclear staining. The

dotted lines indicate the boundary between the epidermis and the membrane. Scale bars=20pum. BL, basal layer; GL, granular layer; SC, stratum corneum
(cornified layer); SP, spinous layer. (b) Nondifferentiated control (Cont) or differentiated human primary epidermal keratinocytes (HPEKs; Dif) were subjected to
immunofluorescent staining 2 days after induction of differentiation. Mitochondrial staining is shown in red. The blue signals indicate nuclear staining. Scale
bar=20pm. The graph indicates the percent of median brightness calculated by BZ Analyzer Software (Keyence) as the mean of three independent
experiments £ SD. (c) EGFP-LC3-expressing HPEKs were differentiated. Cont or Dif were stained with anti-mitochondria (red) and anti-EGFP (green) 8 hours after
induction of differentiation. Graph indicates the linescan analysis of the red and green fluorescent channels. Initial point of linescan is indicated as 0, and terminal
point is indicated as 1. The arrows mark the colocalization of the two proteins. (d) HPEKs were transduced with enhanced green fluorescent protein (EGFP;
Cont) or BNIP3 (BCL2 and adenovirus E1B 19-kDa-interacting protein 3). As an inhibitor of autophagy, 3-methyladenine 3-MA (5 mm) was added. Cells were then
fixed and stained with anti-mitochondria 48 hours after transduction. Scale bar=20um. The graph indicates the percent of median brightness calculated

by BZ Analyzer Software (Keyence) as the mean of three independent experiments. **P<0.01; *0.01 < P<0.05. (e) EGFP-LC3-expressing HPEKs were
transduced with mock (Cont) or BNIP3. Cells were then fixed and stained with anti-mitochondria (red) and anti-EGFP (green) 24 hours after transduction. Graph
indicates the linescan analysis of the red and green fluorescent channels. Initial point of linescan is indicated as O, and terminal point is indicated as 1. The
arrows mark the colocalization of the two proteins.

DISCUSSION

In this study, we demonstrated that BNIP3, a potent inducer of
autophagy, plays a role in the terminal differentiation and
maintenance of epidermal keratinocytes. It has been suggested
that autophagy plays a role in the skin epidermis, but few

attempts have been made to clarify the involvement of
autophagy in skin epidermis.

We found that the HEST transcriptional repressor directly
suppressed BNIP3 expression in mouse epidermis and HPEKs
(Figure 1). Moreover, our results revealed that BNIP3 was

www jidonline.org 1631

117



M Moriyama et al.
Roles of BNIP3 in Keratinocytes

a BNIP3 Merge b
=
o
!‘D:
C
> .
e a3 Loricrin
o & -] ** \
= 2 24
©
Sy (]
o 3 16 -
Q 8
@ & g
i o
5 g
(\lI = Q_
2 miR $@Q o, ’b?
6 NS
c NS
Q Q Q
x
£
e Ph LOR f
‘g‘ Loricrin
8 9 30
‘g’ 25
8 20
B— g 15
,5 ‘g 10
g 5
< e o
UE.) Cont Bnip3 Bnip3
+ 3-MA
(50
2
c
i)

Figure 5. BNIP3 (BCL2 and adenovirus E1B 19-kDa-interacting protein 3) is
required for the differentiation of keratinocytes in vitro. (a, b) Human primary
epidermal keratinocytes (HPEKs) were differentiated and BNIP3 expression was
observed. (a) Nondifferentiated control (Cont) or differentiated HPEKs (Dif)
were subjected to immunofluorescent staining. BNIP3 staining is shown in
green. Mitochondrial staining is shown in red. The blue signals indicate
nuclear staining. Scale bar=20pm. (b) Western blot (WB) analysis. Proteins
extracted from Cont or Dif were probed with anti-BNIP3 or anti-actin.

(c, d) HPEKs were infected with adenoviral vectors expressing miR neg, miR
BNIP3_1, or miR BNIP3_2 followed by induction of differentiation. Cells were
then immunostained with a loricrin antibody 9 days after transduction.

(e, f) HPEKs were infected with adenoviral vectors expressing enhanced green
fluorescent protein (EGFP; Cont) or BNIP3 and subjected to immunofluorescent
staining against loricrin (LOR) 6 days after transduction. As an inhibitor of
autophagy, 3-methyladenine 3-MA (5 mm) was added. Phase contrast images
(Ph) and LOR staining are shown. Scale bars=200pum. (d, f) Percentages of
LOR-positive differentiated cells were calculated by computerized image
analysis. The data represent the average of three independent

experiments £ SD. **P<0.01.

expressed in the granular layers of mouse epidermis, its
human skin epidermal equivalent, and its normal human skin
epidermis (Figures 1 and 2). These data are consistent with our
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previous report showing that Hes1 is expressed in the spinous
layers, where it represses the regulatory genes for differentia-
tion to maintain the spinous cell fate (Moriyama et al., 2008).
Hence, it can be inferred that Bnip3 expression is suppressed
in the spinous layers by Hes1, whereas it is upregulated in the
granular layers where Hes1 expression is absent. In addition,
our finding that BNIP3 is required for keratinocyte differen-
tiation fits our idea that Hesl represses certain regulatory
genes to prevent the premature differentiation of spinous
cells. Our in vitro data suggest that BNIP3 is involved in
keratinocyte differentiation through autophagy (Figures 3-5).
The mechanisms underlying the involvement of autophagy in
keratinocyte differentiation remain elusive; however, consid-
ering that keratinocyte differentiation induced mitochondrial
clearance and BNIP3 expression (Figure 4 and 5), BNIP3-
induced autophagy may be responsible for the removal of
mitochondria that may be required for the terminal differentia-
tion of epidermal keratinocytes. During reticulocyte differen-
tiation, programmed clearance of mitochondria induced by
BNIP3L/Nix, a molecule closely related to BNIP3, has been
reported to be a critical step (Schweers et al., 2007).
Therefore, keratinocytes likely possess the same differen-
tiation mechanism that reticulocytes have, although further
investigation will be required for elucidation.

In contrast to the results from differentiation in two-dimen-
sional culture, we did not observe drastic differentiation
defects in the BNIP3 knockdown human epidermal equivalent
except for the existence of “sunburn-like cells” (Figure 6). This
might be because of the incomplete suppression of BNIP3 in
the BNIP3 knockdown keratinocytes, and/or might be because
of the redundancy between BNIP3 and BNIP3L/Nix, a homo-
log of BNIP3, as we found in our preliminary study that Bnip3|
is also expressed in the epidermis (data not shown). Although
the phenotypes of BNIP3-null mice were published in 2007,
these researchers found that BNIP3-null mice had no increase
in mortality or apparent physical abnormalities (Diwan et al.,
2007). Generally, impairment of epidermal differentiation
or skin barrier formation results in an obvious defect. Thus,
BNIP3-null epidermis seems to exhibit subtle, if any, abnor-
malities. On the basis of these findings, the involvement
of BNIP3 in epidermal differentiation must be investigated in
the future. In-depth analysis of the BNIP3-null epidermis
phenotype could help elucidate the role of BNIP3 in mouse
epidermal differentiation.

Despite the lack of obvious differentiation defects in the
human epidermal equivalent, our data showing that BNIP3
knockdown caused the appearance of ““sunburn-like cells” is
regarded as an example of apoptosis (Young, 1987), revealing
a new role of BNIP3 in keratinocyte maintenance.
Furthermore, requirement of BNIP3 for protection from
UV-induced apoptosis was confirmed in two-dimensional
keratinocyte cultures (Figure 6e). The underlying mechanism
of this prosurvival function of BNIP3 in keratinocytes remains
unclear; however, previous reports have demonstrated that
hypoxia-induced autophagy through BNIP3 is critical for the
prosurvival process (Bellot et al., 2009). Recently, it has been
reported that UVA induces autophagy to remove oxidized
phospholipids and protein aggregates in epidermal keratino-
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Figure 6. BNIP3 (BCL2 and adenovirus E1B 19-kDa-interacting protein 3) promotes cell survival in the reconstituted epidermis and keratinocytes.

(@) Morphology of the human skin epidermal equivalents from human primary epidermal keratinocytes (HPEKs) infected with lentivirus expressing miR neg,
miR BNIP3_1, or miR BNIP3_2. Arrowheads indicate sunburn-like cells. (b) The number of sunburn-like cells per mm was counted and plotted as the means
of 10 sections + SD. (c—e) HPEKs were infected with adenovirus expressing miR neg, miR BNIP3_1, or miR BNIP3_2, and irradiated with UVB. (c) Cells were
stained with anti-EGFP at 8 hours after UVB irradiation. (d) The percentage of EGFP-LC3-positive cells with more than five puncta were quantified and are
presented as the mean of three independent experiments + SD. (e) Autophagy induction was determined by Cyto-ID staining and quantified by flow cytometry.
The data represent the average of three independent experiments + SD. () Cells were subjected to western blot analysis at 8 hours after irradiation. The blot
shown is representative image of three independent experiments. Graphs indicate relative band intensities as determined by ImageJ software and plotted

as the means of three independent experiments. Scale bars =20 pm. **P<0.01.

cytes (Zhao et al, 2013). Because our data indicate that
UVB-induced autophagy is mediated by BNIP3 (Figure 6¢ and
d), it is possible that autophagy induced by BNIP3 also plays a
role in the maintenance of keratinocytes. Further analysis is
required to confirm these results.

UV-induced apoptotic cells appear within 12 hours and
are predominately located in the suprabasal differentiated
keratinocyte compartment of human skin (Gilchrest et al.,
1981). Moreover, differentiated keratinocytes appear to be
most sensitive to the UV light that induces p53-dependent
apoptosis (Tron et al., 1998). Tron et al. (1998) demonstrated
that differentiated keratinocytes in p53-null mice exhibited
only a small increase in apoptosis after UVB irradiation
compared with the increase observed in normal control
animals (Tron et al, 1998). Interestingly, because p53 has
been reported to directly suppress BNIP3 expression (Feng
et al., 2011), BNIP3 might be abundantly upregulated in
suprabasal cells in p53-null animals, resulting in the resistance
to UVB-induced apoptosis. Indeed, our preliminary study

showed that p53 knockdown enhanced UV-induced BNIP3
expression in HPEKs (data not shown). Therefore, BNIP3
expression in suprabasal cells appears to be important for
the protection of differentiated keratinocytes from normal
environmental stress such as weak UV exposure in vivo.

A recent report on a role for autophagy in epidermal barrier
formation and function was identified in atg7-deficient mice
(Rossiter et al., 2013). The authors showed that autophagy was
constitutively active in the suprabasal epidermal layers as we
report in this study (Figure 2). However, in contradiction to
our results, the authors concluded that autophagy was not
essential for the barrier function of the skin. This may
be because of the presence of an alternative Atg5/Atg7-
independent autophagic pathway (Nishida et al., 2009) in
the epidermis. This Atg5/Atg7-independent pathway is also
independent of LC3, but forms Rab9-positive double-
membrane vesicles. Moreover, protein degradation via this
pathway is inhibited by 3-MA and is dependent on Beclin 1.
Our data demonstrate that: (1) BNIP3 induced the formation of
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EGFP-LC3 puncta (Figure 4) and (2) 3-MA significantly
diminished the formation of GFP-LC3 puncta and keratinocyte
differentiation induced by BNIP3 (Figure 5). These findings
suggest that BNIP3 in the epidermis induced both conven-
tional and Atg5/Atg7-independent autophagy. Intriguingly,
GFP cleaved from GFP-LC3 also accumulates in the Atg7-
deficient epidermis (Rossiter et al., 2013), thereby
demonstrating the existence of an alternative autophagic
pathway (Juenemann and Reits, 2012) in the epidermis.
Further investigation will be required to determine whether
Beclin 1 and Rab9 are indispensable for the BNIP3-induced
autophagy and subsequent differentiation of keratinocytes.

In summary, our data reveal that expression of BNIP3 in
granular cells induces autophagy and is involved in the
terminal differentiation and maintenance of skin epidermis.
Studies on the involvement of autophagy in skin epidermis
have attracted considerable attention recently. In addition,
increasing evidence suggests the involvement of BNIP3 in the
differentiation of several cell types, including oligodendro-
cytes (Itoh et al., 2003), osteoclasts (Knowles and Athanasou,
2008), and chondrocytes (Zhao et al., 2012); however, the
precise role of BNIP3 in this process remains to be
investigated. Our study thus provides new insights into the
functions of BNIP3 in differentiation and homeostasis.

MATERIALS AND METHODS

Histology and immunofluorescent analysis

Samples and embryos were fixed in 4% paraformaldehyde,
embedded in optimal cutting temperature compound, frozen, and
sectioned at 10 um. Sections were then either subjected to hematox-
ylin and eosin staining or immunohistochemical analysis as pre-
viously described (Moriyama et al., 2006). Details are described in
Supplementary Materials Online.

Cell culture

HPEKs were purchased from CELLnTEC (Bern, Switzerland) and
maintained in CnT-57 (CELLNTEC) culture medium according to the
manufacturer’s protocol. For induction of differentiation, the medium
was changed to CnT-02 (CELLnTEC) at confluent monolayers of
HPEKs, followed by adding calcium ions to 1.8 mm. The generation of
human skin equivalents was performed using CnT-02-3DP culture
medium (CELLNTEC) according to the manufacturer’s protocol.

Design of artificial microRNAs and plasmid construction

Oligonucleotides targeting a human BNIP3 sequence compatible for
use in cloning into BLOCK-IT Pol Il miR RNAi expression vectors
(Invitrogen, Carlsbad, CA) were obtained using the online tool
BLOCK-T RNAi Designer. The oligonucleotide sequences used in
this study are shown in Supplementary Table ST online. Cloning
procedures were performed following the manufacturer’s instructions.

Adenovirus and lentivirus infection

Adenoviruses expressing EGFP, Hes1, BNIP3, and miR BNIP3 were
constructed using the ViraPower adenoviral expression system (Invi-
trogen) according to the manufacturer’s protocol. Lentivirus expressing
EGFP-LC3 (from Addgene plasmid 21073, Cambridge, MA) and miR
BNIP3 plasmid was constructed and used to infect keratinocytes as
previously described (Moriyama et al., 2012; Moriyama et al., 2013).
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RNA extraction, complementary DNA generation, and Q-PCR
Total RNA extraction, complementary DNA generation, and Q-PCR
analyses were carried out as previously described (Moriyama et al.,
2012). Details of the primers used in these experiments are shown in
Supplementary Table S2 online.

Western blot analysis

Western blot analysis was performed as previously described
(Moriyama et al, 2012; Moriyama et al, 2013). Details are
described in Supplementary Materials Online.

ChIP assay

The ChIP assay was performed using the SimpleChIP Enzymatic
Chromatin IP Kit (Magnetic Beads) (Cell Signaling Technology,
Danvers, MA) according to the manufacturer’s instructions. Hemag-
glutinin-tagged Hes1 was immunoprecipitated with rabbit polyclonal
antibody against hemagglutinin tag (ab9110, Abcam, Cambridge, MA).
Immunoprecipitated DNA was analyzed by Q-PCR. Relative quantifi-
cation using a standard curve method was performed, and the
occupancy level for a specific fragment was defined as the ratio of
immunoprecipitated DNA over input DNA. Details of the primers used
in these experiments are shown in Supplementary Table S2 online.

Flow cytometry analysis

For autophagy detection, Cyto-ID Autophagy detection kit (Enzo Life
Sciences, Plymouth Meeting, PA) was used according to the manu-
facturer’s instructions. Details are described in Supplementary
Materials Online.
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Human adipose tissue-derived multilineage progenitor cells (hRADMPCs) are attractive for cell therapy and
tissue engineering because of their multipotency and ease of isolation without serial ethical issues. However,
their limited in vitro lifespan in culture systems hinders their therapeutic application. Some somatic stem cells,
including hADMPCs, are known to be localized in hypoxic regions; thus, hypoxia may be beneficial for ex vivo
culture of these stem cells. These cells exhibit a high level of glycolytic metabolism in the presence of high
oxygen levels and further increase their glycolysis rate under hypoxia. However, the physiological role of
glycolytic activation and its regulatory mechanisms are still incompletely understood. Here, we show that Notch
signaling is required for glycolysis regulation under hypoxic conditions. Our results demonstrate that 5% O,
dramatically increased the glycolysis rate, improved the proliferation efficiency, prevented senescence, and
maintained the multipotency of hADMPC:s. Intriguingly, these effects were not mediated by hypoxia-inducible
factor (HIF), but rather by the Notch signaling pathway. Five percent O, significantly increased the level of
activated Notchl and expression of its downstream gene, HESI. Furthermore, 5% O, markedly increased
glucose consumption and lactate production of hADMPCs, which decreased back to normoxic levels on
treatment with a y-secretase inhibitor. We also found that HES1 was involved in induction of GLUT3, TPI, and
PGK1 in addition to reduction of TIGAR and SCO2 expression. These results clearly suggest that Notch
signaling regulates glycolysis under hypoxic conditions and, thus, likely affects the cell lifespan via glycolysis.

Introduction

UMAN ADIPOSE TISSUE-DERIVED mesenchymal stem

cells (MSCs), also referred to as human adipose tissue-
derived multilineage progenitor cells (hADMPCs), are mul-
tipotent stem cells that can differentiate into various types of
cells, including hepatocytes [1], cardiomyoblasts [2], pan-
creatic cells [3], and neuronal cells [4-6]. They can be easily
and safely obtained from lipoaspirate without posing serious
ethical issues and can also be expanded ex vivo under ap-
propriate culture conditions. Moreover, MSCs, including
hADMPCs, have the ability to migrate to injured areas and
secrete a wide variety of cytokines and growth factors that are
necessary for tissue regeneration [7-11]. In addition, due to
their hypoimmunogenicity and immunomodulatory effects,
hADMPCs are good candidates as gene delivery vehicles for
therapeutic purposes [12]. Thus, hADMPCs are attractive
seeding cells for cell therapy and tissue engineering. How-
ever, similar to other somatic stem cells or primary cells,

hADMPCs have limited growth potential and ultimately stop
proliferation as a result of cellular senescence [13], which
hinders their therapeutic application.

Conversely, embryonic stem cells (ESCs) and induced
pluripotent stem cells (iPSCs) are immortal under standard
culture conditions. Recently, several groups have reported
that these cells greatly rely on glycolysis for energy pro-
duction even under high-oxygen conditions [14~16]. This
phenomenon is known as the Warburg effect and was
originally described for cancer cells by Otto Warburg in the
1920s [17]. Although mitochondrial respiration is more ef-
ficient than glycolysis in generating ATP (net yield of 30
ATPs vs. 2 ATPs), glycolysis is able to produce ATP con-
siderably faster than mitochondrial respiration as long as
glucose supplies are adequate. Thus, a metabolic shift from
mitochondrial respiration to glycolysis would provide a
growth advantage for actively proliferating cells. Moreover,
Kondoh et al. demonstrated that enhanced glycolysis is also
involved in cellular immortalization through reduction of
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intrinsic reactive oxygen species (ROS) production [14,18,19].
Since accumulation of intrinsic ROS levels could be a major
reason for replicative senescence [20], enhancing glycolysis
in cultured cells might improve the quality of the cells by
suppressing premature senescence. One candidate method for
induction of glycolysis is application of low-oxygen condi-
tions to activate the transcription factor, hypoxia-inducible
factor (HIF). HIF-1 is known to increase the expression of
most glycolytic enzymes and the glucose transporters GLUT1
and GLUT3 [20]. Thus, several studies have reported that
hypoxia is beneficial for the maintenance of hESCs in a plu-
ripotent state [21,22]. Moreover, low oxygen tension has been
reported to enhance the generation of iPSCs both from mouse
and human primary fibroblasts [23].

Recently, hypoxic culture conditions have also been re-
ported to confer a growth advantage, prevent premature
senescence, and maintain undifferentiated states in somatic
stem cells; for example, hematopoietic stem cells (HSCs)
[24], neural stem cells [25], and bone marrow-derived
MSCs [26]. These stem cells reside in their local microen-
vironments called the “‘stem cell niche,” where the oxygen
tension is relatively low (in the range of 1%-9%). Thus,
hypoxic culture may be beneficial to these stem cells with
regard to in vitro proliferation, cell survival, and differen-
tiation. Takubo et al. reported that HSCs activated Pdk
through HIFlo in hypoxic culture conditions, resulting in
maintenance of glycolytic flow and suppression of the influx
of glycolytic metabolites into mitochondria, and this gly-
colytic metabolic state was shown to be indispensable for
the maintenance of HSCs [27]. Several studies have reported
that MSCs exhibit a high level of glycolytic metabolism in
the presence of high oxygen levels and further increase their
rate of glycolysis on culture under hypoxia [28,29]. How-
ever, a relationship between beneficial effects of hypoxic
conditions and metabolic status in addition to involvement
of HIFs in the metabolic changes has not been investigated
in these reports.

In this study, we aimed at investigating the effect of 5%
oxygen on hADMPCs. Our results demonstrate that culture
under 5% oxygen increased the glycolysis rate, improved the
proliferation efficiency, prevented the cellular senescence,
and maintained the undifferentiated status of hADMPCs.
Intriguingly, these effects were not mediated by HIF, but
rather by Notch signaling, an important signaling pathway
required for the development of many cell types and main-
tenance of stem cells [30,31]. Five percent oxygen activated
Notch signaling, resulting in the upregulation of SLC2A3,
TPI, and PGK] in addition to the downregulation of TIGAR
and SCO2, which may contribute to the increase in the gly-
colysis rate. These observations, thus, provide new regulatory
mechanisms for stemness maintenance obtained under 5%
oxygen conditions.

Materials and Methods
Adipose tissue samples

Subcutaneous adipose tissue samples (10-50 g each) were
resected during plastic surgery from five female and two
male patients (age 20-60 years) as discarded tissue. The
study protocol was approved by the Review Board for
Human Research of Kobe University Graduate School of
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Medicine Foundation for Biomedical Research and In-
novation, Osaka City University Graduate School of Med-
icine, and Kinki University Pharmaceutical Research and
Technology Institute (reference number: 12-043). Each
subject provided signed informed consent.

Cell culture

hADMPCs were isolated as previously reported [11,32—
34] and maintained in a medium containing 60% DMEM
low glucose, 40% MCDB-201 mediam (Sigma Aldrich),
Ix insulin-transferrin-selenium (Life Technologies), 1nM
dexamethasone (Sigma Aldrich), 100 mM ascorbic acid 2-
phosphate (Wako), 10ng/mL epidermal growth factor (Pe-
proTech), and 5% fetal bovine serum. The cells were plated
to a density of 5x10° cells/cm® on fibronectin-coated
dishes, and the medium was replaced every 2 days. For
hypoxic culture, cells were cultured in a gas mixture com-
posed of 90% N, 5% CO,, and 5% O,. For maintenance of
the hypoxic gas mixture, a ProOx C21 carbon dioxide and
oxygen controller and a C-Chamber (Biospherix) were used.

Senescence-associated f-galactosidase staining

Cells were fixed with 2% paraformaldehyde/0.2% glutar-
adehyde for Smin at room temperature and then washed
twice with phosphate-buffered saline (PBS). The cells were
then incubated overnight at 37°C with fresh senescence-
associated B-galactosidase (SA-B-Gal) chromogenic substrate
solution (1 mg/mL Bluo-gal (Life Technologies), 40 mM
citric acid (pH 6.0), SmM potassium ferrocyanide, 5mM
potassium ferricyanide, 150 mM NaCl, and 2 mM MgCl,).

Measurement of ROS production

Cells were harvested and incubated with 10 pM 5-(and-
6)-chloromethyl-2’,7-dichlorodihydrofluorescein diacetate,
acetyl ester (CM-H,DCFDA). The amount of intracellular
ROS production was proportional to the green fluorescence,
as analyzed using a Guava EasyCyte 8HT flow cytometer
(Millipore) using an argon laser at 488 nm and a 525/30 nm
band pass filter, and dead cells were excluded using the
Live/Dead Fixable Far Red Dead Cell Stain Kit (Life
Technologies).

EdU proliferation assay

For assessment of cell proliferation, hADMPCs were seeded
on a fibronectin-coated six-well plate at a density of 5x 10>
cells/cm? and cultured for 3 days. Cell proliferation was de-
tected by incorporating of 5-ethynyl-2’-deoxyuridine (EdU)
and using the Click-iT EdU Alexa Fluor 488 Flow Cytometry
Assay Kit (Life Technologies). Briefly, according to the
manufacturer’s protocol, cells were incubated with 10uM
EdU for 2h before fixation, permeabilized, and stained with
EdU. EdU-positive cells were then analyzed using the 488 nm
laser of a Guava EasyCyte 8HT flow cytometer (Millipore).

Flow cytometry analysis

Flow cytometry analysis was performed as previously
described [34]. Briefly, hADMPCs were harvested and re-
suspended in staining buffer (PBS containing 1% BSA,
2mM EDTA, and 0.01% sodium azide) at a density of
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1x10° cells/mL, incubated for 20min with a fluorescein
isothiocyanate (FITC)-conjugated antibody against CD49b
or CD98 (BioLegend) or a phycoerythrin (PE)-conjugated
antibody against CD10, CD13, CD29, CD44, CD49a,
CD49c, CD49d, CD49e, CD51/61, CD73, CD90, CD105,
CD117, SSEA4, HLA-A,B,C (BioLegend), CD133/1 (Mil-
tenyi Biotec), or CD166 (Beckman Coulter). Nonspecific
staining was assessed using relevant isotype controls. Dead
cells were excluded using the Live/Dead Fixable Far Red
Dead Cell Stain Kit (Life Technologies). FlowJo software
was used for quantitative analysis.

RNA extraction, cDNA generation, and quantitative
polymerase chain reaction

Total RNA was extracted using the RNeasy Mini Kit
(Qiagen) accroding to the manufacturer’s instructions. cDNA
was generated from 1pg of total RNA using the Verso
c¢DNA Synthesis Kit (Thermo Scientific) and purified using
the MinElute PCR Purification Kit (Qiagen). Quantitative
polymerase chain reaction (Q-PCR) analysis was conducted
using the SsoFast EvaGreen supermix (Bio-Rad) according
to the manufacturer’s protocols. The relative expression
value for each gene was calculated using the AACt method,
and the most reliable internal control gene was determined
using geNorm Software (http://medgen.ugent.be/ ~ jvdesomp/
genorny/). Details of the primers used in these experiments are
available on request.

Western blot analysis

Whole cell extracts were prepared by washing cells with
ice-cold PBS and lysing them with M-PER Mammalian
Protein Extraction Reagent (Thermo Scientific Pierce) ac-
cording to the manufacturer’s instructions. Nuclear and
cytosolic extracts were prepared as follows. Cells were
washed with ice-cold PBS and lysed with lysis buffer
(50 mM Tris-HC1 (pH 7.5), 0.5% Triton X-100, 137.5mM
NaCl, 10% glycerol, 5SmM EDTA, 1 mM sodium vanadate,
50 mM sodium fluoride, 10 mM sodium pyrophosphate, and
protease inhibitor cocktail). Then, insoluble nuclei were
isolated by centrifugation and lysed with lysis buffer con-
taining 0.5% SDS. Equal amounts of proteins were separated
by sodium dodecyl sulfate polyacrylamide gel electropho-
resis (SDS-PAGE), transferred to polyvinylidene fluoride
membranes (Immobilon-P; Millipore), and probed with
antibodies against cleaved Notchl (#2421; Cell Signaling
Technology), HIF-1a (#610959; BD Bioscience), hypoxia-
inducible factor 2o (MAB3472; Millipore), Akt (#9272;
Cell Signaling Technology), and phospho Akt (Ser473)
(#4060; Cell Signaling Technology). Horseradish peroxi-
dase (HRP)-conjugated anti-mouse or -rabbit IgG antibody
(Cell Signaling Technology) was used as a secondary anti-
body, and immunoreactive bands were visualized using
Immobilon Western Chemiluminescent HRP substrate
(Millipore). The band intensity was measured using the
Image] software.

Fluorescence microscopy

Phase-contrast and fluorescence images were obtained
using a fluorescence microscope (BZ-9000; Keyence) using
BZ Analyzer Software (Keyence).
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Adipogenic, osteogenic, and chondrogenic
differentiation procedures

For adipogenic differentiation, cells were cultured in
differentiation medium (Zen-Bio). After 7 days, half of the
medium was exchanged for adipocyte medium (Zen-Bio)
and this was repeated every 3 days. Three weeks after dif-
ferentiation, adipogenic differentiation was confirmed by a
microscopic observation of intracellular lipid droplets with
the aid of Oil Red O staining. Osteogenic differentiation was
induced by culturing the cells in osteocyte differentiation
medium (Zen-Bio). Differentiation was examined by Ali-
zarin Red staining. For chondrogenic differentiation, 2 x 10°
hADMSCs were centrifuged at 400 g for 10min. The re-
sulting pellets were cultured in chondrogenic medium
(Lonza) for 21 days. The pellets were fixed with 4% para-
formaldehyde in PBS, embedded in OCT, frozen, and sec-
tioned at 8 pm. The sections were incubated with PBSMT
(PBS containing 0.1% Triton X-100, and 2% skim milk) for
1h at room temperature, and then incubated with a mouse
monoclonal antibody against type II collagen (Abcam) for
1h. After washing with PBS, cells were incubated with
Alexa 546-conjugated anti-mouse IgG to identify chon-
drocytes (Life Technologies). The cells were counterstained
with 4’-6-diamidino-2-phenylindole (DAPI) (Life Technol-
ogies) to identify cellular nuclei. The sections were also
stained with 1% alcian blue (Sigma Aldrich) in 3% acetic
acid, pH 2.5 for 30 min.

Determination of HK, PFK, LDH, PDH,
and Cox 1V activities

Cells (2% 106) were lysed, and HK, PFK, LDH, or PDH
activity was measured using the Hexokinase Colorimetric
Activity Kit, Phosphofructokinase (PFK) Activity Colori-
metric Assay Kit, Lactate Dehydrogenase (LDH) Activity
Assay Kit, or Pyruvate Dehydrogenase Activity Colori-
metric Assay Kit (all from BioVision), respectively, accord-
ing to the manufacturer’s instructions. To measure Cox IV
activity, mitochondria were isolated from 2 x 107 cells using a
Mitochondria Isolation Kit (Thermo Scientific) and lysed
with buffer containing n-Dodecyl B-D-maltoside, followed by
measurement with the Mitochondria Activity Assay (Cyto-
chrome C Oxidase Activity Assay) Kit (BioChain Institute),
according to the manufacturer’s instructions.

Results

5% oxygen hypoxic culture condition increases
proliferation capacity and decreases senescence

hADMPCs were cultured under 20% oxygen (normoxia;
Nx) or 5% oxygen (hypoxia; Hx), and their proliferation
capacities were examined based on the relationship between
the number of cultivation days and the population doubling
level (PDL). Nx-cultured hADMPCs ceased proliferation at
a PDL of 35-40 (between 46-70 days), whereas continuous
cell proliferation beyond 45 PDL was observed when
hADMPCs were cultured in the Hx condition (Fig. 1A). To
investigate whether this increase of PDL in the Hx culture
condition resulted from an increase in cell cycle progression
and increase in survival rates, EdU, an alternative to 5-
bromo-2’-deoxyuridine (BrdU), was incorporated into the
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FIG. 1. Hypoxia increases proliferation capacity and de-

creases senescence in tissue-derived multilineage progenitor
cells (hAADMPCs). (A) Growth profiles of hADMPCs under
normoxic (red square) and hypoxic (blue square) condi-
tions. The population doubling level (PDL) was determined
to be 0 when cells were isolated from human adipose tissue.
Cells were maintained until they reached PDL13-15 (pas-
sage 3) and then split into four aliquots of equal cell den-
sities. PDL was calculated based on the total cell number at
each passage. (B) Detection of normoxic (Nx) and hypoxic
(Hx) cells by flow cytometry after incorporation of EdU. (C)
Percentages of apoptotic cells with sub-G1 DNA under Nx
and Hx conditions. The results are presented as the mean of
three independent experiments. (D) hADMPCs cultured
under Nx and Hx conditions were harvested by trypsin-
EDTA and then imaged using a phase-contrast microscope.
Arrowheads indicate cells with a larger and more irregular
shape. (E) Cells expanded under Nx and Hx conditions were
stained with SA-B-gal. (F) Cellular reactive oxygen species
detection by the oxidative stress indicator CM-H,DCFDA in
hADMPCs under Nx or Hx. Data are presented as the mean
fluorescence intensity of three independent experiments.
Error bars indicate SD. **P <0.01 indicates significant dif-
ference (independent z-test) between Nx and Hx. Scale bars;
100 um. Color images available online at www.liebertpub
.com/scd
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genomic DNA of the hADMPCs, and the amount of incor-
porated EdU was quantified by flow cytometry. As shown in
Fig.1B, the EdU incorporation rate was significantly higher
in Hx-cultured hADMPCs than in Nx-cultured hADMPCs,
suggesting that cell growth was increased in the Hx culture
condition. In addition, measurement of DNA content in
hADMPCs revealed a slight but significant decrease of sub-
G1 peaks, which indicates the existence of apoptotic cells
with degraded DNA, when the cells were cultured in the Hx
condition (Fig. 1C). These data suggest that the Hx culture
condition increases the proliferation capacity of hADMPCs
by promoting their cell growth and survival rates. We also
found that Nx-cultured hADMPCs were larger with a more
irregular shape (Fig. 1D), which suggests that the Hx culture
condition prevented hADMPCs from entering senescence
[35]. To further investigate this phenomenon, cellular senes-
cence was measured by staining for SA-B-Gal, which revealed
that SA-B-Gal activity was increased in Nx-cultured hADMPCs
at passage 17 (Fig. 1E). Since it has been hypothesized that
senescence results from oxidative stress [20], accumulation of
ROS in hADMPCs was detected using the nonfluorescent
probe, CM-H,DCFDA. Flow cytometry analysis revealed that
ROS were generated at higher levels in hADMPCs when cul-
tured in the Nx condition (Fig. 1F), suggesting that reduced
production of ROS in the Hx condition may prevent the cells
from entering replicative senescence.

Hypoxic culture maintains some MSC properties
and increases differentiation

We then examined the cell properties of hADMPCs
under Nx and Hx conditions. Initially, cell surface antigens
expressed on hADMPCs were analyzed by flow cytometry.
No significant difference in expression profile between
hADMPCs cultured in Nx and Hx was observed; the cells
were consistently positive for CD10, CD13, CD29, CD44,
CD49a, CD49b, CD49c, CD49d, CD49e, CD51/61, CD54,
CD59, CD73, CDY0, CD98, CD105, CD166, and HLA-A,
B, C, but negative for CD34, CD45, CD117, and CD133
(Fig. 2 and data not shown). These data were consistent with
previous reports describing the expression profiles of cell
surface markers of hMSCs [36,37]. To further examine the
stem cell properties of hADMPCs, their potential for dif-
ferentiation into adipocyte, osteocyte, and chondrocyte lin-
eages was analyzed at passage 8. Hx-cultured hADMPCs
presented enhanced differentiation into various lineages
(Fig. 3A, B), indicating that the Hx culture condition im-
proved the stem cell properties of hADMPCs.

Hypoxic culture condition activates Notch signaling

To reveal the molecular mechanism by which the Hx
culture condition increased the proliferative capacity and
maintained the stem cell properties of hADMPCs, we next
examined Notch signaling, which is required for maintain-
ing stem-cell features of various types of stem cells [30,31].
As expected, levels of cleaved NOTCHI, an activated form
of NOTCH1, were significantly increased (greater than
twofold) in the Hx culture condition (Fig. 4A). Q-PCR
analysis revealed that HES1, a downstream target of Notch
signaling, was upregulated in Hx-cultured hADMPCs,
which also indicated that Notch signaling was activated in
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