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embers of the Emerging Regenerative Ap-
Mproaches for Periodontal Reconstruction con-

sensus group met and began with individual
introductions and provision of appropriate disclo-
sures. The authors of the written review provided
a summary of the construction and contents of
the review paper.! Each member of this consensus
group provided comments on the review.

As an overview, one of the issues arising was the
question of defining what constitutes an emerging
technology. The group considered two broad categories:
1) products and components of products approved
by the US Food and Drug Administration (FDA) and 2)
non-approved therapeutic modalities. For example,
components of FDA-approved products are being
examined for periodontal regeneration and thus were
considered an emerging therapeutic approach. In ad-
dition, currently available therapeutics that have limited
data supporting their use in periodontal regeneration
were also considered an emerging technology.

We discussed the contents of the review paper
and made suggestions for additions. The consensus
group agreed with the contents of the review paper
and the scope of products and technologies that were
covered in the paper with the additions and com-
ments noted below.

Most of the emerging approaches discussed in the
review paper were focused on the concepts of tissue
engineering® and also included other approaches.
The topics discussed included the following: 1)
protein and peptide therapy;>® 2) cell-based ther-
apy;? 3) genetic therapy; 4) scaffolds;!® 5) bone
anabolics; and 6) lasers. FDA-approved products
evaluated included the following: 1) enamel matrix
derivative; 2) recombinant human platelet-derived
growth factor; and 3) anorganic bone matrix. Non-
approved therapeutic modalities included the fol-
lowing: 1) recombinant human fibroblast growth
factor-2; 2) recombinant human growth differentia-
tion factor-5; 3) bone morphogenetic proteins (BMP-
2, BMP-7, BMP-6, and BMP-12); 4) parathyroid hormone/
teriparatide; 5) brain-derived neurotrophic factor; and
6) sclerostin antibodies.!! Cell-based therapies
included the following: 1) mesenchymal stem cells;
2) bone marrow stromal cells; 3) periodontal liga-
ment cells; 4) embryonic stem cells; and 5) induced
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pluripotent stem cells. Gene therapies included viral
and non-viral vectors. Scaffolds are also promising
for delivery of growth factors and gene therapy and
may be composed of either natural or synthetic
polymeric materials.!?!3 Finally, various types of
lasers were discussed.

In addition to the approaches highlighted in the
review, the consensus group recognized that many
of the therapeutics in current use are based on
fundamental knowledge and understanding of the
development of the periodontium.!4 16 Furthermore,
the host inflammatory response should also be con-
sidered, as well as such interactions between the host
genome, epigenetics, and the microbiome.!”-20 Areas
of future interest might include inflammatory regulators
such as resolvins?! and interleukin-17 antibodies, as
well as phosphate/pyrophosphate local regulation.2?

IMPLICATIONS OF REVIEW TO PATIENT-
RELATED CLINICAL OUTCOMES

The review did not identify any reports addressing
patient-reported outcomes. However, the review did
reveal clinical parameter-based outcomes of several
individualized approaches over various time periods,
with the longest follow-up being 3 years in one report
of 83 patients.?> Although there are multiple papers
focused on various emerging technologies, there are
no studies that allow for direct comparison of clinical
outcomes.

When dealing with emerging technologies, there
can be both positive and negative issues of clinician
adoption and patient acceptance of treatment.

Barriers to adopting this technology include lim-
ited evidence supporting efficacy and indications for
use. With emerging technologies, safety issues in-
clude unknown long-term effects along with known
risk for rare but serious side effects, such as sarcoma.
This is, in part, attributable to evaluation of such
emerging technologies in populations defined by
selected inclusion/exclusion criteria, further limiting
outcome assessments.

With any emerging technology, the cost-to-benefit
ratio for clinicians and patients must be determined.
For the clinician, peer and market pressures, surgical
time, technical complexity, healing times, pre-
dictability, liability, and cost must be considered.

For patients, experience of pain and morbidity,
adverse events, both short and long term, cost, time,
material (ethical and religious concerns), esthetic per-
ceptions, and satisfaction with treatment outcomes
should be considered.

RESEARCH PRIORITIES FOR THE FUTURE

With all emerging therapies, the prevalence, pre-
dictability, and efficacy of outcomes and safety
should be well defined. Future research should
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promote the goal of emerging technologies to re-
generate the periodontium as a functional organ
system. The review made a number of recommen-
dations, and the consensus group highlighted that
future studies should do the following: 1) develop
a non-invasive assessment of clinical periodontal
regeneration; 2) evaluate the efficacy and safety of
combining emerging and/or current therapies; 3)
validate existing and/or emerging therapies being
used “off label”; 4) explore therapies developed for
other purposes for their application to periodontal
regeneration; 5) define the individual’s genetic and
epigenetic profile so that it can be used to personalize
the choice of therapy; 6) assess the effect of in-
dividual disease pathogenesis, etiology, and healing
potential on therapeutic treatment selection; 7) op-
timize the understanding of risk factors to aid in the
selection of appropriate therapy and the achievement
of enhanced outcomes to restore the structure and
function of the periodontium; 8) define molecular and
cellular mechanisms of the emerging therapy using
in vitro and in vivo models; 9) identify developmental
pathways of the periodontium for potential applica-
tion in regenerative therapy; 10) focus on developing
minimally invasive technologies to minimize pain
and morbidity without compromising outcomes; 11)
define what constitutes clinical success; and 12)
characterize the effect of the selected therapy on the
patient’s quality of life.
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Review article 1

Cyclic depsipeptides as potential cancer therapeutics
Jirouta Kitagaki®®, Genbin Shi®, Shizuka Miyauchi?, Shinya Murakami® and

Yili Yang®

Cyclic depsipeptides are polypeptides in which one or more
amino acid is replaced by a hydroxy acid, resulting in the
formation of at least one ester bond in the core ring
structure. Many natural cyclic depsipeptides possessing
intriguing structural and biological properties, including
antitumor, antifungal, antiviral, antibacterial, anthelmintic,
and anti-inflammatory activities, have been identified from
fungi, plants, and marine organisms. In particular, the potent
effects of cyclic depsipeptides on tumor cells have led to
a number of clinical trials evaluating their potential as
chemotherapeutic agents. Although many of the trials have
not achieved the desired results, romidepsin (FK228),

a bicyclic depsipeptide that inhibits histone deacetylase,
has been shown to have clinical efficacy in patients with
refractory cutaneous T-cell lymphoma and has received
Food and Drug Administration approval for use in treatment.
In this review, we discuss antitumor cyclic depsipeptides
that have undergone clinical trials and focus on their
structural features, mechanisms, potential applications

Introduction

Cyclic depsipeptides are polypeptides in which one or
more amino acid is replaced by a hydroxy acid, resulting
in the formation of at least one ester bond in the core ring
structure. Many cyclic depsipeptides are natural products
initially isolated from fungi, plants, and marine organisms
(Table 1). As cyclic depsipeptides possess a number of
biological functions, including antitumor, antibacterial,
antifungal, and anti-inflammatory effects, several cyclic
depsipeptides have been identified [20,21]. For example,
the cyclic dodecadepsipeptide valinomycin was dis-
covered around 50 years ago and was isolated from the
genus Strepfomyces [12]. Valinomycin is an ionophore
specific for potassium that induces cell death by mito-
chondrial swelling and autophagy [22]. Valinomycin
possesses antitumor activity against several tumor cell
lines, including rat C6 glioma cells, human breast carci-
noma cells MCF-7, human ovarian carcinoma cells
A2780, and liver hepatocellular carcinoma cells HepG2,
with ICsg values of 0.0004, 2.18, 1.77, and 0.0008 pmol/l,
respectively [23]. Cyclic hexadepsipeptide enniatins
were first reported over 60 years ago and were isolated
from Fusarium spp. fungi [1]. Because enniatins have
diverse ionophoric activities specific for sodium, potas-
sium, and calcium, they have a wide range of biological
activities, including antifungal, antibiotic, and antitumor
activities [24,25]. Sansalvamide A is a cyclic pentadepsi-
peptide isolated from marine Fusarium spp. fungi [2].
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in chemotherapy, and pharmacokinetic and toxicity data.
The results of this study indicate that cyclic depsipeptides
could be a rich source of new cancer therapeutics. Anti-
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As sansalvamide A inhibits topoisomerase I, it is believed
to possess marked antitumor activity against the 60 can-
cer cell lines in the National Cancer Institute panel, such
as human prostate cancer PC3, human breast cancer
MDA-MB-231, and human melanoma WM-115 [2,26].
More recently, Zhang ez al. [27] identified that the san-
salvamide A derivative H-10 exhibits antiproliferative
effects against murine melanoma B16 cells.

Interestingly, with the development and application of
high-performance liquid chromatography coupled with
tandem mass spectrometry, bioactivity screening has
often identified a group of cyclic depsipeptides differing
only in a few substitutions. For example, in the search for
potential antitumor compounds, an active fraction from
the Australian sponge Neamphius huxleyi was found to
contain three novel cyclic depsipeptides, namely,
neamphamides B, C, and D, which differ only in Ry
(NH,, OH, and NH,;, respectively) and R, (CH3, CH,,
and C,Hs, respectively; Fig. 1a) [11]. A minor structural
difference in cyclic depsipeptides could result in a sig-
nificant difference in biological activity. The substitution
of a lactyl-proline residue in didemnin B with a pyruvoyl-
proline residue forms aplidine, which has significantly
more potent antiproliferative activity than didemnin B
[8]. These interesting features are continuing to stimu-
late active research in medicinal chemistry, cell biology,
and oncology.

DOI: 10.1097/CAD.0000000000000183
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Table 1 Fungus, plant, marine source, and bacteria derived cyclic depsipeptides

Compound Source organism Biological activity References
Fungus-derived cyclic depsipeptides
Enniatins Fusarium spp. lonophore Gaumann et al, [1]

Sansalvamide A
Paecilodepsipeptide

Fusarium spp.
Paecilomyces cinnamomeus

Beauvericin Beauveria bassiana
Plant-derived cyclic depsipeptides
Celogentins Celosia argentea

Cyclolinopeptides F-1 Linum usitatissimum
Marine organism-derived cyclic depsipeptides

Aplidine Aplidium albicans
Kahalalide F Elysia rufescens
Didemnin B Trididemnum genus

Neamphamide Neamphius huxleyi

Bacteria-derived cyclic depsipeptides

Valinomycin Streptomyces spp.
Korkormicin A Micromonospora spp.
Luzopeptin Actinomycete spp.
Thiocoraline Actinomycete spp.
Romidepsin Chromobacterium violaceum
Cryptophycin 1 Genus Nostoc

LY355703 Genus Nostoc

Echinomycin Streptomyces spp.

Topoisomerase | inhibitor Hwang et al. [2]
Antitumor and antimalarial activity Isaka et al. [3]
lonophore Tonshin et al. [4]

Tumor growth inhibition
Immunosuppressive activity Matsumoto et al. [7]
Oxidative stress Urdiales et al. [8]
ErbB pathway
eEF1A Rinehart et al. [10]
Antitumor activity Tran et al. [11]

lonophore Azzi and Azzone [12]
DNA intercalator Lam et al. [13]
DNA intercalator

DNA intercalator Zolova et al. [15]

HDAC Ueda et al. [16]
Tubulin Schwartz et al. [17]
Tubulin Chen et al. [18]

DNA intercalator Mackedonski [19)

HDAC, histone deacetylase.

Fig. 1

Ry = >_H/ : Aplidine
H,C o
HO,

R, = /———H/ : Didemnin B
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Fig. 1 (Continued)

Cyclic depsipeptides for cancer therapy Kitagaki et al. 3

H,C
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Structure of cyclic depsipeptides. Structure of (a) neamphamides, (b) romidepsin, (c) aplidine and didemnin B, (d) kahalalide F, (e) PM02734,

(f) cryptophycin 1, and (g) LY385708.

Many different cyclic depsipeptides with antitumor
activity have been identified since the 1950s. They often
have potent cytotoxic effects on tumor cells in culture
and in xenografted mice. Korkormicin A, a cyclic depsi-
peptide from microorganisms, kills transformed cells with
an ICsg of ~ 2 nmol/l [28], as well as inhibits the growth of
inoculated tumor cells and significantly prolongs the
lifespan of tumor-bearing mice at a concentration of
0.05-0.2 mg/kg [13]. The core ring structure of cyclic
depsipeptides appears to be critical for their activity,
because luzopeptin, which has core ring structure similar
to that of korkormicin A, has similar antitumor activity to
korkormicin A [13,14]. It has been shown that fungus-
derived paecilodepsipeptide A exhibits potent cytotoxic
activity against several cancer cell lines (ICsq, ~ 6 umol/l),
whereas its linear analogs paecilodepsipeptide B and C
are inactive [3]. It has also been found that at least some
cyclic depsipeptides, such as enniatins and beauvericin,
possess ionophoric properties and can increase the per-
meability of the cell membrane toward various ions. The
ability of enniatins and beauvericin to affect the mito-
chondrial membrane likely contributes to their cytotoxic
activity [4]. Another group of cyclic depsipeptides,
including echinomyecin, luzopeptins, sandramycin, thio-
coraline, quinoxapeptin, and korkormicin A, character-
ized by the cyclic depsipeptide backbone and two planar
chromophores, has the ability to intercalate into DNA
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[15]. There is substantial evidence indicating that the
cytotoxicity of these compounds results from their ability
to interfere with DNA replication, repair, and/or tran-
scription [28,29]. It is conceivable that their selective
antitumor activity is related to their altered chromatin
structure and to epigenetic changes in various tumor cells.
The effects of some cyclic depsipeptides may also be
related to their ability to inhibit various proteases [30]. It
was found recently that a group of cyclic depsipeptides
from marine cyanobacteria, namely, grassypeptolides, are
able to inhibit dipeptidyl peptidase 8 and block T-cell
activation [31]. Interestingly, the bicyclic depsipeptide
romidepsin is an inhibitor of histone deacetylase (HDACQ),
a generally acknowledged target of chemotherapeutics
[32], and has received Food and Drug Administration
(FDA) approval for the treatment of patients with
refractory cutaneous T-cell lymphoma [33,34].

In this review, we will discuss cyclic depsipeptides that
are undergoing clinical evaluation for their antitumor
activities and focus on their structural features, possible
mechanisms of action, and potential applications in the
chemotherapeutic treatment of various cancers. With the
clinical success of romidepsin, it is conceivable that these
cyclic depsipeptides may be hopeful leads for more
effective chemotherapeutic agents.
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Romidepsin

In-vitro and animal studies

Romidepsin (also NSC-630176, depsipeptide, K228,
FR901228, and Istodax) was first isolated from
Chromobacterium violaceum as a novel compound that
could induce morphological reversion in Ha-ras-trans-
formed NIH3T3 cells. It is a bicyclic depsipeptide with
the molecular formula Cz3H36N406S; [molecular weight
(MW): 540; Fig. 1b; Table 2] [16]. Further studies
showed that intraperitoneal administration of romidepsin
prolonged the lifespan of mice implanted with murine
ascetic tumors, such as P388, 1.1210 leukemia, and B16
melanoma [35]. It was also demonstrated that intravenous
injection (i.v.) of the compound inhibited the growth of
xenografted solid tumors, including both murine (Colon
38 carcinoma, M5076 reticulum cell sarcoma, Meth A
fibrosarcoma) and human (Lu-65 and LC-6-JCK lung
large cell carcinomas, and SC-6 stomach adenocarcinoma)
cancer cells. Moreover, this agent exhibited potent anti-
tumor activity against the P388 cells that were resistant to
multiple drugs, including mitomycin C, cyclopho-
sphamide, vincristine, and 5-fluorouracil [16].

Clinical trials

As romidepsin possesses both in-vitro and in-vivo anti-
tumor activity, the compound was entered into phase I
clinical trials. Four patients with T-cell lymphoma
received 12.7 or 17.8 mg/m* romidepsin as a 4-h infusion
on days 1 and 5 of a 21-day cycle. Three patients with
cutaneous T-cell lymphoma (CTCL) showed a partial
response, whereas one patient with peripheral T-cell
lymphoma (PTCL) had a complete response [32]. As the
first trial was successful for T-cell lymphoma, a number
of phase I clinical studies were subsequently performed.
The maximum tolerated dose (MTD) in phase II against
advanced refractory neoplasms was 17.8 mg/m?* with a 4-h
i.v. administration on days 1 and 5 of a 21-day cycle [36]
and 13.3 mg/m?* against advanced cancer with a 4-h i.v.
administration for 3 weeks and a 1-week break during
week 4 [37]. On the basis of these results, a number

Table 2 Summary of romidepsin

Indications
Approved by the FDA in 2009 for the treatment of CTCL
Mode of action
HDAC inhibitor
Recommended initial dosage
14 mg/m? as an intravenous infusion over 4 h on days 1, 8, and 15 of a 28-day
cycle
Pivotal trials
Phase [l multi-institutional trial [33]
71 patients with CTCL
Overall response rate 34%
Median duration of response 13.7 months
Phase Il multicenter international pivotal trial [34]
96 patients with CTCL
Overall response rate 34%
Median duration of response 15 months

CTCL, cutaneous T-cell lymphoma; HDAC, histone deacetylase.

of phase II clinical trials of romidepsin were performed.
Seventy-one CTCL patients were entered into a phase 11
multi-institutional clinical trial and received a 4-h iv.
infusion of romidepsin at 14 mg/m2 ondays 1, 8, and 15 of
a 28-day cycle; complete responses were observed in four
patients and partial responses in 20. The overall response
rate was 34%, with a median duration of response of
13.7 months [33]. Another international, pivotal, single-
arm, open-label phase II study was conducted on 96
patients with refractory CTCL, in whom romidepsin was
administered as a 4-h i.v. infusion at 14 mg/m? on days 1,
8, and 15 of each 28-day cycle for up to six cycles. Of the
patients, 27 had a partial response and six had a complete
response, yielding an overall response rate of 34% and a
median duration of response of 15 months [34]. Next, 47
patients with PTCL were enrolled in this trial and
received romidepsin as a 4-h i.v. infusion on days 1, 8,
and 15 of a 28-day cycle with a straight dose of 14 mg/m?.
Complete response was seen in eight patients and partial
response in nine, whereas the overall response rate was
38% and the median duration of overall response was
8.9 months [38]. On the basis of these encouraging phase
11 results, romidepsin was approved by the FDA in 2009
for the treatment of patients with relapsed and/or
refractory CTCL [39]. Unfortunately, romidepsin has not
shown promising activity against most solid tumors thus
far [40-42].

Interestingly, a number of studies have demonstrated
that romidepsin synergistically increases the antitumor
activity of other agents. The proteasome inhibitor bor-
tezomib (Velcade), approved by the FDA in 2008 for the
treatment of patients with multiple myeloma, showed
synergistic activity with romidepsin toward oxidative
injury and cell apoptosis [43]. A phase I study of romi-
depsin and bortezomib was conducted on 25 patients
with relapsed or refractory multiple myeloma.
Bortezomib (1.3 mg/mz), dexamethasone (20 mg/mz), and
romidepsin (10 mg/m?) were injected iv. over a 4-h
period every 28 days. Two patients showed complete
remission, 13 showed partial response, and three showed
minor responses; the overall response rate was 72%, with
a median time to progression of 7.2 months [44]. On the
basis of these results, phase I/II clinical trials are ongoing.

Pharmacokinetics and toxicity

Pharmacokinetic data on romidepsin were documented
in a number of phase I and II trials [45]. The phase I
dose-escalation study evaluated pharmacokinetics in
patients with refractory neoplasms. Thirty-seven patients
received romidepsin as a 4-h i.v. infusion on days 1 and 5
of a 21-days treatment cycle, and the MTD was defined
at 17.8 mg/m? The mean values of volume of distribu-
tion and clearance (CL) at the 17.8 mg/m2 dose were
8.61/m? and 11.6 l/h/mz, respectively. The distribution
half-life (#,) and elimination #, were 0.42 and 8.1 h,
respectively. The mean volume of maximum plasma

184



concentration (Cha) was 473 ng/ml. Toxicity at the
MTD included anorexia, fatigue, fever, nausea, and
vomiting [36].

Two phase II studies assessed pharmacokinetics in 71
patients with CTCL and 36 patients with PTCL.
Romidepsin was administered as a 4-h i.v. infusion at
14 mg/m? on days 1, 8, and 15 of a 28-day cycle. The half-
life and C,,x at a dose of 14 mg/m* were 2.95-3.04 h and
362427 ng/ml, respectively. The area under the curve
extrapolated to infinity (AUG;,s) was 1457-1899 h ng/ml.
The volume of distribution during the terminal phase
was 19—411/m® The systemic clearance was 7.37-9.61 1/
h/m? [33,38]. Nonhematologic side effects included fati-
gue, nausea, vomiting, and anorexia. Hematologic
adverse events included leukopenia, granulocytopenia,
lymphopenia, thrombocytopenia, and anemia [33,38].
The overall response rate for CTCL was 34%, with a
median duration of response of 13.7 months [38], whereas
the overall response rate for PTCL was 38%, with a
median duration of response of 8.9 months in phase II
clinical trials [33].

Mode of action

Romidepsin belongs to a class of drugs known as inhi-
bitors of HDAC [46]. This agent is known to possess
actvity restricted to class 1 HDAC. However, it was
recently reported that whereas a low dose of romidepsin
inhibited activity of class I HDAG, high doses of romi-
depsin (>2 nmol/l) possessed activity against both class 1
and 2 HDAGs [47]. Similar to other HDAC inhibitors,
romidepsin regulates the expression of several genes
linked to the cell cycle and apoptosis. A comprehensive
analysis of the gene expression profile regulated by
romidepsin with regard to human esophageal squamous
cancer cell lines showed that the drug upregulated 11
genes and downregulated four. One of the highly upre-
gulated genes is the cyclin dependent kinase inhibitor
p21 [48]. p21 is a key regulator that promotes cell cycle
arrest by inducing growth arrest in the G2 phase of the
cell cycle [49]. Romidepsin was found to upregulate p21
expression in a pS3-dependent or p53-independent
manner and to inhibit cyclin dependent kinase activity,
leading to the progression of cell cycle arrest [50-52].

Romidepsin was also shown to induce apoptosis by
depletion of proto-oncogene epidermal growth factor
receptor (EGFR). This depletion leads to the inhibition
of several EGFR-related pathways including Src, extra-
cellular signal-regulated kinase (ERK) 1/2, and
phosphatidylinositol-3 kinase (PI3K)/AKT, leading to
downregulation of the antiapoptotic proteins myeloid cell
leukemia-1 (Mcl-1), B-cell lymphoma-2 (bcl-2), and
B-cell lymphoma-extra large (Bcl-xL), and upregulation
of the proapoptotic protein bel-associated x (Bax) [53,54].
However, romidepsin upregulates the proapoptotic bcl-2
homology 3 (BH3)-only proteins bcl-2 interacting med-
iator of cell death (Bim) and bcl-2 modifying factor (Bmf)
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in a broad range of cancer cells, leading to a distinct loss
of mitochondrial membrane potential (A¥m) [55,56].

Didemnin B/Aplidine

Didemnin B

Didemnin B is a cyclic depsipeptide that was initially
isolated from a Caribbean tunicate (Trididemnum genus),
and it belongs to the ‘didemnidae’ family, with the
molecular formula Cs;HgoN;0;5 (Fig. 1c¢). Preclinical
studies have shown that it effectively inhibits the growth
of LL1210 leukemia cells, with an ICsy value of 0.001
ug/ml iz oitro, and increases the survival of P388
leukemia-bearing mice [10]. Didemnin B has been tested
in phase I and II clinical trials against a number of human
tumors, including epithelial ovarian cancer [57], renal cell
carcinoma [58], breast cancer [59], melanoma [60], small-
cell lung cancer [61], myeloma [62], prostate cancer [63],
and lymphoma [64]. However, because of severe sec-
ondary effects, it failed in those trials, and clinical studies
were stopped in order to identify an analog of didemnin
B harboring more effective antitumor activity. One pro-
mising analog of didemnin B is aplidine. Aplidine has a
pyruvyl group instead of a lactyl group in the linear
peptide moiety of didemnin B (Fig. 1¢) [8].

Aplidine

In-vitro and animal studies

Aplidine (also plitddepsin, dehydrodidemnin B, or
Aplidin) was first isolated from the Mediterranean tuni-
cate Aplidium albicans, although it is currently being
produced by chemical synthesis. Aplidine is a cyclic
depsipeptide with the molecular formula Cs;Hg,N;0O;5
(MW: 1110; Fig. 1c; Table 3) and belongs to the
‘didemnidae’ family, similar to didemnin B [8]. This
agent possesses a pyruvoyl-proline residue instead of the
lactyl-proline residue seen in didemnin B. In addition,
aplidine is more sensitive than didemnin B in terms of its
antiproliferative activity against Ehrlich carcinoma cells
in vitro [8].

Aplidine has been shown to have potent antitumor
activity against several freshly explanted human tumors,
including melanoma, lymphoma, and breast, ovarian,

Table 3 Summary of aplidine

Indications B
Currently, aplidine is in a phase Il clinical trial for treatment of refractory/
relapsed multiple myeloma in combination with dexamethasone
Mode of action
Interferes with DNA and protein synthesis and induces cell cycle arrest
Recommended initial dosage
5mg/m? as a 3-h intravenous infusion every 2 weeks, with an addition of
20 mg/day of oral dexamethasone on days 1-4 of every cycle
Trials
Phase Il prospective multicenter open-label single-arm trial [65]
47 patients with refractory/relapsed multiple myeloma
Overall response rate 22%
Duration of response 2.8-5.7 months
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lung, colorectal, and gastric carcinomas, as determined by
a soft agar cloning assay i# vitro, with an 1Cs, value of
0.001 pmol/l [66]. This agent also possesses in-vitro
cytotoxic activity against several human tumor cell
lines, including murine lymphoma (P388 cells), melan-
oma (MEL-28 cells), and lung (A549 cells) and colon
(HT-29 cells) carcinomas, with ICsq values of 0.2, 0.5, 0.2,
and 0.5 ng/ml, respectively [67,68]. However, human
normal hematopoietic progenitors (bone marrow and cord
blood) were found to be resistant to aplidine, with ICsy
values ranging from 150 to 2250 nmol/l [69]. In a mouse
xenograft model, this agent exhibited potent antitumor
activity against melanoma (B16 cells), leukemia (P388
cells), Lewis lung carcinoma [67], anaplastic thyroid
cancer [70], and multiple myeloma (5T33MM cells) [71].

Clinical trials

As aplidine showed in-vitro and in-vivo antitumor activ-
ities in a mouse xenograft model, it was entered into a
phase I clinical trial to examine its effects on solid tumors.
Thirty-seven patients with refractory solid tumors
received a 1-h L.v. infusion daily for 5 days every 3 weeks
[72], whereas another 48 received a 1-h weekly iv.
infusion for three continuous weeks of a 4-week treat-
ment cycle [73]. On the basis of the findings of the study,
it was concluded that the recommended dose for a phase
IT clinical trial should be 1.2 mg/m%day or 3.2 mg/m*
/week. Sixty-six patients with advanced malignancies
(such as colon cancer and non-Hodgkin’s lymphoma)
were entered into another phase I clinical trial. They
received aplidine as a 24-h i.v. infusion every 2 weeks.
The recommended dose for phase II clinical trials was
shown to be between 5 and 7 mg/m? with and without
L-carnitine to prevent aplidine-induced side effects on
muscle tissues [74]. Another group performed a phase I
clinical trial of children (between 2 and 17 years old).
Thirty-eight patients were enrolled in this trial to inves-
tigate the effects of aplidine on advanced tumors, and
they were treated with a 3-h i.v. infusion every 2 weeks.
The recommended dose for phase II trials was found to
be 5 mg/m?® [75].

On the basis of the results of this study, aplidine was
entered into phase II clinical trials, and several trials were
performed against advanced malignant melanoma [76],
advanced medullary thyroid carcinoma [77], advanced
renal cell carcinoma [78], and small-cell lung cancer [79].
However, aplidine showed only limited antitumor activ-
ity in those studies. Most recently, a multicenter, open-
label, single-arm phase II clinical trial of aplidine was
performed in 47 patients with relapsed/refractory multi-
ple myeloma. They were given aplidine at 5 mg/m? as a
3-h iv. infusion every 2 weeks with or without 20 mg
daily of oral dexamethasone (days 1-4 of every cycle).
The overall response rate was 22% with and 13% without
dexamethasone, and the duration of response was 1.8-6.2
and 2.8-5.7 months with and without dexamethasone,

respectively [65]. Furthermore, 67 patients with relapsed/
refractory non-Hodgkin’s lymphoma were entered into
another phase I trial of aplidine and administered a dose
of 3.2 mg/m? aplidine as a 1-h i.v. infusion weekly on days
1, 8, and 15 every 4 weeks. Six patients had a response,
with an overall response rate of 20.7%, including two
complete responses and four partial responses [80].
These results suggest that aplidine has limited but
reproducible antitumor activity against multiple myeloma
or non-Hodgkin’s lymphoma. Currently, aplidine is in a
phase III clinical trial for relapsed/refractory multiple
myeloma in combination with dexamethasone.

Pharmacokinetic and toxicity data

Several studies of phase I and II clinical trials have
described the pharmacokinetics of aplidine. Forty-nine
patients with solid tumors were enrolled in this dose-
escalating phase I trial and received 1-h weekly iv.
infusion for three consecutive weeks during a 4-week
treatment cycle. The mean values of G, and AUGC;¢ at
an MTD of 3.2 mg/m?* are 46.8 ng/ml and 209.6 ng h/ml,
respectively. The mean values of 7, CL, and volume of
distribution in steady state (V) are 16.8 h, 34 1/h, and
5251, respectively [73]. Sixty-seven patients with non-
Hodgkin’s lymphoma in a phase II trial received a dose of
3.2 mg/m? aplidine as a 1-h i.v. infusion weekly on days 1,
8, and 15 every 4 weeks. The mean 4, CL, and V,; were
36.5h, 7.451/h, and 3551, respectively [80]. The most
common nonhematologic adverse events were nausea,
fatigue, vomiting, anorexia, and myalgia. Some patients
had grade 3/4 aplidine-related adverse events [73,80].
Hematologic abnormalities included grade 3 anemia and
grade 3/4 lymphopenia, leukopenia, neutropenia, and
thrombocytopenia. The most common biochemical
abnormalities were grade 3 aspartate transaminase/ala-
nine transaminase (AL'T/AST) increase and grade 3/4
creatine phosphokinase increase [80].

Mode of action

The primary mode of action of aplidine has not been
fully explained, although several studies have been
published. The agent induces early oxidative stress,
leading to depletion of glutathione, which then activates
EGFR, Src, c-Jun NHj,-terminal kinase (JNK), and p38
mitogen-activated protein kinase. Aplidine induces
tumor cell apoptosis by inducing mitochondrial dys-
function, cytochrome ¢ release, and caspase-3 or caspase-
9 activation in several cell lines, including human breast
MDA-MB-31, cervical HelLa, renal cancer, and multiple
myeloma 5T33MM cell lines [71,81,82]. Notably, JNK
activation through Racl GTPase activation and MKP-1
phosphatase downregulation is the primary target related
to its sensitivity, as JNK1-deficient and JNK2-deficient
mouse embryo fibroblasts were found to be much less
sensitive to aplidine [83,84]. In addition to its effect on
cell apoptosis, aplidine possesses antiproliferative effects
[85-87]. Studies have shown that it causes blockage
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of the cell cycle by inducing G, arrest and G,/M blockade
in acute lymphoblastic leukemia and human Molt-4
leukemia [85-87]. Interestingly, a lower concentration
(<45 nmol/l) of aplidine inhibited the cell cycle in SK-
MEL-28 and UACC-257 melanoma cells by inducing G,
arrest and G,/M blockade, whereas a higher concentra-
tion induced cell apoptosis in melanoma cells [88].
Another mechanism of action for its antitumor activity is
its antiangiogenic function. Aplidine inhibited the
secretion of the angiogenic factor vascular endothelial
growth factor (VEGF) in human leukemia cells
(MOLT-4), leading to blockage of the VEGF/VEGF
receptor-1 autocrine loop [89]. Moreover, it inhibited
spontaneous angiogenesis induced by exogenous VEGF
and FGF-2, assessed by a cell invasion assay ## viro and
a chick embryo allantoic membrane assay i vive [9].

Kahalalide F/PMO02734

Kahalalide F

In-vitro and animal studies

Kahalalide F, a cyclic depsipeptide with the molecular
formula C75H124N14016 (MW 1477) (Flg ld), was first
isolated from the Hawaiian sacoglossan mollusk E/ysia
rufescens, which feeds on a green alga Bryopsis spp. [9].
Kahalalide F belongs to the kahalalide family of com-
pounds, whose members include kahalalides A-H, ], K,
and O-Q [90]. Kahalalide F is the largest compound in
the family and possesses potent antitumor activities
in vitro against several cell lines, including prostate (PC3,
DU145, LNCaP), breast (SKBR-3, BT474, MCF-7,
MDA-MB-231), and colon (LoVo) cancer cell lines, with
1Cso values of 0.07, 0.18, 0.26, 0.23, 0.28, 0.39, and 0.16
pmol/l, respectively. However, kahalalide F is much less
sensitive to human nontumor cell lines, such as the
mammary epithelial (MCF10A), endothelial umbilical
cord (HUVEC), endothelial dermal microvascular
(HMEC-1), and human diploid fibroblast (IMR90) cell
lines, with ICsq values of 2.44, 1.62, 1.88, and 3.13 pmol/l,
respectively [82]. Another study investigated a number of
cell lines, including breast (HS578T), colon (HCC-2998,
HCT-15, HT-29, KM12), non-small-cell lung (NSCLGC;
A549, NCI-H322M), central nervous system (SNB-75),
and ovarian (SK-OV-3) cancer cell lines, and reported
ICsq values for those ranging from 0.162 to 0.288 pmol/l
[91]. In addition, kahalalide F showed antitumor activity
against human breast cancer, NSCLC, and colon cancer
cell lines 7z vivo in an animal xenograft model [92].
Structurally, L-Val(3) and D-Val(4) of kahalalide F are
crucial for its antitumor activities [93].

Clinical trials

On the basis of these observations, kahalalide F has been
selected for at least two phase I clinical trials. Thirty-two
patients with advanced androgen refractory prostate
cancer received kahalalide F as a 1-h 1.v. infusion for five
consecutive days every 3 weeks at nine different doses
(20-930 pg/m*/day). The recommended dose for a phase
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1T trial was 560 pg/m?/day as a 1-h iv. infusion daily for
5 days in cycles of 3 weeks. Importantly, one patient who
received the agent at 80 pg/m*/day showed a significant
decrease (at least 50%) in prostate specific antigen levels
over 4 weeks [94]. In another trial, 38 patients with
advanced solid tumors received kahalalide F as an i.v.
infusion once weekly at several different doses between
266 and 1200 mg/m® One patient with a metastatic
malignant melanoma who received kahalalide F for up to
80 cycles of weekly administration at 600 pg/m?* had an
unconfirmed partial response. The recommended dose
for a phase II trial from those findings was 650 pg/m?
administered as a 1-h i.v. infusion once weekly [95]. A
total of 106 patients with advanced solid tumors entered
another phase I trial and received a 3-h or 24-h weekly 1.
v. infusion at several different doses. The MTD for the
3-h and 24-h weekly schedules was 1200 and 6650 pg/m?,
respectively [96]. In a phase II clinical trial, 24 patients
with advanced malignant melanoma received 650 pg/m?
of kahalalide F as a 1-h weekly i.v. infusion. However,
because of the lack of an objective response, this trial was
closed [97].

Pharmacokinetic and toxicity data

Patients with advanced solid tumors received kahalalide
F at a recommended dose of 650 ug/m? in a phase I
clinical trial. The mean pharmacokinetic parameters Vg
and /5, after the first infusion of kahalalide F were 5.61
and 0.5 h, respectively. The Cpax, AUCi,p, and CL were
124.5 ng/ml, 170 ng h/ml, and 7.4 l/h, respectively [95]. In
another trial, patients with advanced androgen refractory
prostate cancer received kahalalide F at a recommended
dose of 560 pg/m? The median pharmacokinetic vari-
ables Vg and #;, were 7.11 and 0.5 h, respectively. The
Cimaxy AUC;, and CL were 86.3 ng/ml, 105.1 ng h/ml,
and 11.11/h, respectively [94]. The most common non-
hematologic kahalalide F-related adverse events were
grade 1/2 pruritus, paresthesia, and fatigue. The most
frequent biochemical abnormalities were grade 3/4
AST/AL'T and y-glutamyl transferase increases [97].

Mode of action

A number of studies on the mechanism of antitumor
activity of kahalalide F have also been performed.
Kahalalide F-treated COS-1 cells became significantly
swollen and developed large vacuoles, suggesting that
the agent may change the lysosomal membrane [98].
Moreover, kahalalide F primarily induced cell death
through oncosis in several types of tumor cells, as it
induced disruption of mitochondrial membrane potential
(A¥m) and altered lysosomal membrane permeability
[82]. The oncosis induced by kahalalide F seemed to be
dependent on receptor tyrosine kinase ErbB3 protein
levels, because kahalalide F-sensitive tumor cells were
shown to be positively correlated with ErbB3 protein
expression. It also decreased the expression of Erb3B
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protein, leading to inhibition of the PI3K-Akt down-
stream signaling cascade [99].

PMO02734

In-vitro studies

Unfortunately, because of the unavailability of a natural
source of kahalalide I, its development as a therapeutic
agent was halted. PM02734 (also elisidepsin and Irvalec)
is a novel compound related to kahalalide I¥ and pro-
duced by solid-phase synthesis [100]. PM02734 is a cyclic
depsipeptide with the molecular formula
CoysH 25F 3N 14015 (MW: 1591; Fig. le; Table 4). It pos-
sesses in-vitro antitumor activities against a number of
human cell lines, including prostate, pancreatic, ovarian,
lung, liver, leukemia, kidney, stomach, colon, and breast
cancer cell lines, with a mean 1Csq of 2.3 pmol/l. Whereas
prostate cancer cell lines (PC3, 22RV1) were shown to be
sensitive to PMO02734, pancreatic cancer cell lines
(PANC-1, MiaPaCa-2) were relatively resistant [102]. [
vivo, PM02734 administered in combination with the
EGFR inhibitor erlotinib prolonged the lifespan of mice
implanted with NSCL.C A549 cells [103].

Clinical trials, pharmacokinetics, and toxicity data
Forty-two patients with advanced solid tumors were
enrolled in a phase I clinical trial and administered a 24-h
i.v. infusion every 3 weeks at doses ranging from 0.5 to
6.8 mg/m®. Of those patients, one with metastatic eso-
phageal adenocarcinoma achieved a complete response.
The recommended dose for a phase 11 study was 5.5 mg/
m®. The Cpax and AUC were 32.3 ng/ml and 772 h ng/ml,
respectively. The 7, CL, and Vi were 100 h, 15.4 I/h,
and 5021, respectively. The most frequent non-
hematologic adverse events included grade 1/2 fatigue,
headache, rash, vomiting, and alopecia. The most com-
mon hematologic and biochemical abnormalities were
anemia, leukopenia, lymphopenia, and ALT/AST
increase [101].

Table 4 Summary of PM02734

Indications
Currently, PM02734 is in phase /1] clinical trials for treatment of advanced
solid tumors
Mode of action
Induces necrotic cell death through severe plasma membrane damage
In-vitro activity
Possess antiproliferative activity against a number of tumor cell lines, including
breast, colon, lung, neuroblastoma, prostate, sarcoma, and thyroid cancer
cell lines, with ICsq values ranging from 1078 to 10~ mol/!
Recommended initial dosage
10 mg/m? as a 24-h intravenous infusion every 3 weeks
Trials
Phase | trial against advanced solid tumors [101]
42 patients with advanced solid tumors
One patient with esophageal adenocarcinoma achieved complete
response

Mode of action

Similar to kahalalide F, PM02734 induces necrotic cell
death by severe plasma membrane damage [102]. In
contrast, it has also been shown that PM02734-induced
antitumor activity is associated with autophagy. This
agent inhibited the Akt/mTOR signaling pathway and
activated death-associated protein kinase in a mouse
xenograft model [104]. Whereas kahalalide F decreased
ErbB3 protein levels, PM02734 also induced the dis-
tribution of ErbB3 from the plasma membrane to the
intracellular space or the nucleus [105]. The antitumor
activity of PMO02734 appeared to depend on the hydro-
xylase FAZH. In another study, overexpression of FAZH
was found to increase the sensitivity of PM02734 against
human colon cancer HCT116 cells, whereas knockdown
of FA2H was found to relatively increase the resistance
of those cells [106].

Cryptophycin 1/LY355703

Cryptophycin 1

In-vitro and animal studies

Cryptophycin 1 (also named cryptophycin A) is a cyclic
depsipeptide that was originally isolated from cyano-
bacteria of the genus Nostoc, with a molecular formula of
C35H43CIN,Og MMW: 655; Fig. 1f) [17], and is currently
produced by chemical synthesis [107]. /» vitro, crypto-
phycin 1 inhibited the proliferation of the L1210 murine
leukemia cell line, the human nasopharyngeal carcinoma
cell line KB, and the human colorectal adenocarcinoma
cell line LoVo, with ICsy values of 4 pmol/l, and 3 and
5 pg/ml, respectively [108,109]. In a mouse xenograft
model, cryptophycin 1 injected 1.v. was found to exhibit
antitumor activity against a number of cell lines, includ-
ing colon adenocarcinoma, mammary adenocarcinoma
M16, MX-1 human breast carcinoma, and pancreatic
ductal adenocarcinoma cell lines [109,110]. However,
when administered by intraperitoneal or subcutaneous
injection, or by oral gavage, cryptophycin 1 was found to
be inactive or only modestly active [110]. Because of
these in-vivo results, efforts were undertaken to develop
a number of analogs in the cryptophycin series.
Cryptophycin 8 and cryptophycin 55 are chlorohydrin
analogs of cryptophycin 1 and LY355703 (also named
cryptophycin 52) that have markedly improved antitumor
activity. Unfortunately, however, cryptophycin 8 and
cryptophycin 55 were not sufficiently stable in solution to
be a clinical candidate [111]. Cryptophycin 24 (also
named arenastatin A) is another analog that possesses
potent antitumor activity against epidermal carcinoma
KB cells [112]. However, cryptophycin 24 showed only
marginal in-vivo antitumor activity, making it ineligible
as a clinical candidate [113].

LY355703

In-vitro studies

One of the most promising candidates is L.Y355703 (also
named cryptophycin 52), with a molecular formula of
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C36H4sCIN,Og (MW: 669; Fig. 1g; Table 5). In-vitro
studies have shown its antiproliferative activity against
the human leukemia cell line THP-1, the human lung
cancer cell line H-125, and the human leukemia cell line
CCRF-CEM, with ICsq values of 0.1 ng/ml, 20 pg/ml,
and 22 pmol/l, respectively [18,114]. Another study also
reported antiproliferative effects against a number of cell
lines, including leukemia (U937, CCRF-CEM, HL60),
colon carcinoma (HT-29, GC3, Caco-2), mammary car-
cinoma (MCF-7, MDA-MB-231), and cervical carcinoma
(HeLa) cell lines, with ICso values in the range of
0.013-0.232 nmol/1 [115].

Clinical trials, pharmacokinetics, and toxicity data

In a phase I clinical trial study, 25 patients with NSCLC
received LLY355703 as a 2-h i.v. infusion on days 1 and 8
every 3 weeks, and the recommended dose for phase 11
evaluation was shown to be 1.5 mg/m® The mean values
of the pharmacokinetic parameters CL. and volume of
distribution were 51.51/h and 1311/m? respectively
[116]. In another phase I study, 35 patients with solid
tumors received LY355703 as a 2-h i.v. infusion on days
1, 8, and 15 every 4 weeks, and the recommended dose
for a phase II trial was 1.48 mg/m®. The mean values of
the pharmacokinetic parameter CL. and volume of dis-
tribution were 54.9 I/h and 139 I/m? respectively [117].

On the basis of those phase I studies, phase II clinical
studies were conducted. Twenty-five patients with
NSCLC [118] and 24 with platinum-resistant ovarian

Table 5 Summary of LY355703

Indications
Phase /Il trials were performed. However, LY355703 has shown no antitumor
activity clinically thus far
Mode of action
Interacts with microtubules, leading to the induction of cell cycle arrest at the
Go/M phase and to cell apoptosis
In-vitro activity
Possess antiproliferative effects against leukemia, lung cancer, and colon,
mammary, and cervical carcinoma
Recommended initial dosage
1.5 mg/m? as a 2-h intravenous infusion on days 1 and 8 every 3 weeks
Trials
Phase [l trials
25 patients with non-small-cell lung cancer
24 patients with platinum-resistant ovarian cancer
LY355703 has shown no antitumor activity

Cyclic depsipeptides for cancer therapy Kitagaki et al. 9

cancer [119] were enrolled and received 1.5 mg/m2
LY355703 as a 2-h i.v. infusion on days 1 and 8 every
3 weeks. Unfortunately, the results of those studies were
disappointing. It seems that LY355703 has limited
activity against NSCLC and platinum-resistant ovarian
cancer, and no other clinical trials have been conducted
to date. The most frequent nonhematologic adverse
events included neuropathy, constipation, fatigue, and
nausea [118,119].

Mode of action

Cryptophycins interact with microtubules at the vinca
alkaloid-binding domain and are more potent than other
vinca alkaloids [120,121]; they also potently induce bel-2
phosphorylation, leading to cell cycle arrest and apoptosis
[122]. LY355703 was found to inhibit the proliferation of
HeLa cells at mitosis, with an ICsq value of 11 pmol/l.
This agent exerts a cytotoxic effect by depolymerizing
spindle microtubules and disrupting chromosome orga-
nization at high concentrations (30-300 pmol/l), and it
also inhibits Hel.a cell proliferation without depolymer-
ization of microtubules at low concentrations (3—30 pmol/
1). LY355703 at low concentrations also appears to reduce
the rate and extent of growth and shorting of the
microtubule ends, which is termed as dynamic instability.
On using [PH]LY355703, the binding of five to six
molecules of LY355703 to microtubules was sufficient to
reduce those dynamics by 50% [123]. Similar to other
cryptophycins, [.Y355703 induces G/M cell cycle arrest,
phosphorylation of bcl-2, and activation of caspase-3,
leading to apoptosis [124-126].

Conclusion

In this review, we have summarized seven cyclic depsi-
peptides that have been found to possess antitumor
activity in clinical trials. One compound, romidepsin, was
approved by the FDA for the treatment of relapsed/
refractory CTCL in 2009 (Table 2). Aplidine is currently
under phase I1I clinical trial for the treatment of relapsed/
refractory multiple myeloma in combination with dex-
amethasone (Table 3). PM02734 is currently under phase
I/II clinical trial for the treatment of advanced solid
tumors (Table 4). Didemnin B, kahalalide F, crypto-
phycin 1, and L.Y355703 are under phase I/II clinical
trials. However, because of the lack of promising

Table 6 List of cyclic depsipeptides that have entered phase Il clinical trials and beyond

Compound Source organism Molecular target Current status Oncological use

Romidepsin Bacteria (Chromobacterium violaceum) ~ HDAC Available for clinical use CTCL/PTCL

Aplidine Marine animal (Aplidium albicans) Oxidative stress Phase Ill (NCT01102426)  Multiple myeloma

PM02734 Synthesis (kahalalide F derivative) ErbB pathway Phase Il Non-small-cell lung, esophageal, and gastric cancers
Didemnin B Marine animal (Trididemnum genus) eEF1A Phase Il (discontinued) Solid tumors

Kahalalide F Marine animal (Elysia rufescens) ErbB pathway Phase Il (discontinued) Psoriasis

Cryptophycin 1 Bacteria (genus Nostoc) Tubulin Phase Il (discontinued) Solid tumors

LY355703 Bacteria (genus Nostoc) Tubulin Phase Il (discontinued) Solid tumors

CTCL, cutaneous T-cell lymphoma; HDAC, histone deacetylase; PTCL, peripheral T-cell lymphoma.
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responses or because of severe secondary effects, these
trials have currently been closed (Tables S and 6).

Natural products have been the major source of anti-
tumor drugs, and ~ 80% of the chemotherapeutic agents
are classified as natural products or mimicked natural
products [127], propelling continued efforts to discover
and isolate new active components from various biolo-
gical sources. A large number of cyclic depsipeptides
have been identified from fungi, plants, and marine
organisms. The unique structures, diversified cellular
targets, and potent biological activities of these com-
pounds make them attractive candidates as novel ther-
apeutic agents. With the success of romidepsin and the
lessons learnt from other clinically failed compounds, it is
conceivable that more natural or semisynthetic cyclic
depsipeptides will be evaluated and hopefully succeed in
preclinical and clinical studies.
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Emerging innovation towards safety in the clinical
application of ESCs and iPSCs

Shigeo Masuda, Shigeru Miyagawa, Satsuki Fukushima, Nagako Sdugawa, Emiko Ito, Maki Takeda, Atsuhiro Saito

and Yoshiki Sawa

The Review by Behfar and colleagues (Cell
therapy for cardiac repair—lessons from
clinical trials. Nat. Rev. Cardiol. 11, 232-246;
2014)" summarized that ‘first-generation’
cell therapies for heart failure” using autolo-
gous cells are safe for use in humans. Con-
versely, ‘next-generation’ cell therapies,
which include pluripotent stem cells such as
embryonic stem cells (ESCs) and induced
pluripotent stem cells (iPSCs), have major
safety concerns, because contamination of
undifferentiated cells might lead to tera-
toma formation.® However, novel and effi-
cient protocols for selective shutdown of
tumour formation in these cells have been
reported in several studies, which merit
discussion (Table 1).

Firstly, chemical inhibitors of survivin
potently induce selective and complete cell
death of undifferentiated human ESCs or
iPSCs.** A single pretreatment exposure
to survivin inhibitors is sufficient to com-
pletely inhibit teratoma formation after
transplantation.® Importantly, differenti-
ated cells derived from human ESCs or
iPSCs maintain their functionality after
treatment with survivin inhibitors.* The
survivin inhibitor QC has been widely
used as nutritional supplement and no
adverse effects have been reported. Sec-
ondly, chemical inhibitors of oleate syn-
thesis have been identified as compounds
for selective elimination of human ESCs or
iPSCs.%7 Oleate synthesis inhibitors lead to
apoptosis in human ESCs or iPSCs through

lipid metabolism, revealing a dependence
of these cells on oleate. At present, applica-
tion of oleate synthesis inhibitors is limited
to in vitro culture before transplantation;
whether these inhibitors might be applied
in vivo remains to be determined. Thirdly,
the diabetes mellitus drug metformin® can
reduce tumour forming potential of iPSCs
without affecting pluripotency;’ however,
in this study only mouse iPSCs were inves-
tigated. Metformin, an agonist of AMP-
activated protein kinase, suppresses the
expression of Oct4 and survivin thereby
showing previously unrecognized stem-
cell toxicity." Finally, an antibody against
stage-specific embryonic antigen-5 (a newly
identified PSC-specific surface antigen) can
be used to remove undifferentiated cells
by fluorescence-activated cell sorting."
However, because this method depends on
cell sorting, which includes ex vivo manipu-
lation (such as single-cell dissociation and
cell-staining techniques), cells might lose
viability. New synthesized small molecules
(such as JCO11), which selectively induce
a cytotoxic endoplasmic reticulum stress
response in ESCs and iPSCs, have also been
reported, but further studies should reveal
the precise mechanisms of this pathway.'?
We believe that two issues relating to the
use of ESC or iPSC therapies need to be
addressed. After treating cells with chemi-
cal inhibitors to prevent teratoma, these
cells should be tested to ensure that they
have maintained functional properties,

Table 1 | Novel strategies for selective elimination of teratoma

Reference Chemical or antibody Mode of action Drug

Lee et al.* Chemical inhibitor Survivin inhibition QC; YM155

Ben-David et al.® Chemical inhibitor Oleate synthesis inhibition PluriSin #1

Vazquez-Martin et al.°  Chemical inhibitor AMP-activated protein kinase ~ Metformin
activation

Tang et al.'t Antibody SSEA-5 purging Anti-SSEA-5

monoclonal antibody
Richards et al.2 Chemical Endoplasmic reticulum stress JCO11

Abbreviations: PluriSIn, pluripotent cell-specific inhibitor; SSEA-5, stage-specific embryonic antigen-5.
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including differentiation capacity' and
engraftment potential. Efficiency, as well as
safety, is required for ideal cell transplanta-
tion. A second problem is that malignant cell
transformation, other than teratoma form-
ation, after transplantation of PSC-derived
cells might also exist. Pluripotent tumour
forming potential can be divided into two
categories: malignant transformation of
differentiated PSCs, and benign teratoma
formation from residual undifferentiated
PSCs.!*"* The former should be also investi-
gated for safety. For example, CD30, which
is a biomarker for transformed human ESCs,
is correlated with karyotype abnormalities
such as partial duplication of chromosome.'®
Further elucidation of this issue is needed
before a judgement on iPSC clinical safety
can be made.
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Regulating ES or Induced Pluripotent Stem Cells by Innate Lymphoid Cells

To The Editor:
atural killer (NK) cells are innate
lymphocytes that are able to be

stem cell (ESC) rejection; they show that,
after injecting anti—asialo-GM-1 or anti-
Ly49G2 into mice, ESC rejection rate was
remarkably decreased, suggesting that a
subset of Ly49G2" NK cells would play a
crucial role in killing ESCs (1).

Recently, innate lymphoid cells
(ILCs) are emerging as novel modula-
tors of innate immunity, enabling early
immune responses (2). Actually, conven-
tional NK cell is a member of ILCs. It
has been proposed that ILCs should be
classified into three distinct groups based
on functional characteristics and cyto-
kines that they can produce. Group 1
ILCs are defined by production of Thl
cell-associated cytokine interferon-vy, and
include NK cells and ILCls. Group 2
ILCs produce Th2 cell-associated cyto-
kines (interleukin [IL]-5 and IL-13), and
include ILC2s. Group 3 ILCs secrete
IL-17 and/or IL-22, and include lymphoid
tissue inducer (LTi) cells and natural
cytotoxicity receptor (NCR) " ILC3s (2).

Are there any cells that express NK
cell receptors other than conventional
NK cells? Recent evidence suggests that
an NK cell receptor-expressing innate
lymphocyte subset has been identified as
intraepithelial ILC1-like cells (3). More-
over, NCR+ ILC3s could be converted
to ILCls under the influence of IL-12
(ref. 4). These cells are expressing NK
cell receptors, but their functions remain
poorly understood.

In the present study by Perez-
Cunningham et al. (I), it would be
critical to explore whether not only
conventional NK cells but also ILCls
(if expressing NK cell receptors) can be
depleted by treatment with anti-Ly49G2;
whether a subset of mouse ILCls express
Ly49G2 NK receptor would be interest-
ing. One hypothesis is that interferon-
y-secreting ILCls would also have a
pivotal role in regulating immune re-
sponses in transplantation, although

cytotoxic via perforin and granzyme B
to cells with low expression of major his-
tocompatibility complex class I molecules.

ILCls lack perforin and granzyme B.
It would be meaningful if some ILCs
might have a novel role in immunity
during allogeneic transplantation, such
as rejecting ES cells. Interestingly, it
has been reported that RORyt-NKR-LT1i
cells express perforin and granzyme B,
leading to cytotoxicity (5). Regarding
specificity of antibodies, for example,
anti—asialo-GM-1, which is well known
to be capable of depleting NK cell sub-
sets, has been revealed to also deplete
basophils as off-target effect (6). It would
be essential to understand expression
patterns exactly.

When we transplant human ES-
derived or induced pluripotent stem
(iPS)-derived cells into patients in al-
logeneic settings in clinical trials, we
will, under treatment with immunosup-
pressants, use differentiated cells (express-
ing major histocompatibility complex
class T molecules) but not undifferen-
tiated cells. Indeed, recent studies have
shown that terminally differentiated cells
derived from ES or iPS$ cells elicit neg-
ligible immune rejection in their host,
although recipients are syngeneic (7-9).
Therefore, condition in the present study
(1), where undifferentiated cells were
used, would be quite different from that
of clinical settings. However, in view of
removal of undifferentiated cells, we can
apply a strategy of regulating immune
responses as shown in the present study
(1). Collectively, it could be rational
hypothesis to modulate ILC function in
transplantation immunity, thereby pro-
viding principle of concept.
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In a study by Perez-Cunningham et al. (1),
the authors demonstrate that a subset of
NK cells is responsible for embryonic
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N-Glycans: Phenotypic Homology and Structural
Differences between Myocardial Cells and Induced
Pluripotent Stem Cell-Derived Cardiomyocytes
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Abstract

Cell surface glycans vary widely, depending on cell properties. We hypothesized that glycan expression on induced
pluripotent stem cells (iPSCs) might change during cardiomyogenic differentiation toward the myocardial phenotype. N-
glycans were isolated from iPSCs, iPSC-derived cardiomyocytes (iPSC-CM), and original C57BL/6 mouse myocardium (Heart).
Their structures were analyzed by a mapping technique based on HPLC elution times and MALDI-TOF/MS spectra. Sixty-
eight different N-glycans were isolated; the structures of 60 of these N-glycans were identified. The quantity of high-
mannose type (immature) N-glycans on the iPSCs decreased with cardiomyogenic differentiation, but did not reach the low
levels observed in the heart. We observed a similar reduction in neutral N-glycans and an increase in fucosylated or sialyl N-
glycans. Some structural differences were detected between iPSC-CM and Heart. No N-glycolyl neuraminic acid (NeuGc)
structures were detected in iPSC-CM, whereas the heart contained numerous NeuGc structures, corresponding to the
expression of cytidine monophosphate-N-acetylneuraminic acid hydroxylase. Furthermore, several glycans containing
Gala1-6 Gal, rarely identified in the other cells, were detected in the iPSC-CM. The expression of N-glycan on murine iPSCs
changed toward the myocardial phenotype during cardiomyogenic differentiation, leaving the structural differences of
NeuGc content or Gala1-6 Gal structures. Further studies will be warranted to reveal the meaning of the difference of N-
glycans between the iPSC-CM and the myocardium.

Citation: Kawamura T, Miyagawa S, Fukushima S, Yoshida A, Kashiyama N, et al. (2014) N-Glycans: Phenotypic Homology and Structural Differences between
Myocardial Cells and Induced Pluripotent Stem Cell-Derived Cardiomyocytes. PLoS ONE 9(10): e111064. doi:10.1371/journal.pone.0111064

Editor: Toru Hosoda, Tokai University, Japan
Received April 30, 2014; Accepted September 19, 2014; Published October 30, 2014

Copyright: © 2014 Kawamura et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
Supporting Information files.

Funding: YS received the funding to support this work from the Research Center Network for Realization of Regenerative Medicine managed by Centers for
Clinical Application Research on Specific Disease/Organ and funded by Japan Science and Technology Agency. The funders had no role in study design, data

collection and analysis, decision to publish, or preparation of the manuscript.

* Email: sawa-p@surg1.med.osaka-u.ac.jp

Competing Interests: The authors have declared that no competing interests exist.

Introduction

In vitro generation of cardiac myocytes by reprogramming is a
promising technology in developing cell-transplant therapy for
advanced cardiac failure [1] and drug discovery for a variety of
cardiac diseases [2]. For both purposes, induced pluripotent stem
cells (iIPSCs) are most useful, since generation and cardiomyogenic
differentiation of iPSCs has been standardized in human and a
number of animals [3,4]. In fact, derivatives of iPSCs have been
developed to the pre-clinical stage for cell transplantation therapy
[5], while cardiac myocytes generated from patient-specific iPSCs
have been studied to explore pathologic mechanisms and guide
drug discovery [6,7]. However, cardiac myocyte preparations from
iPSCs contain immature phenotypes, observed by electrophysiol-
ogy, electron microscopy, and immunohistochemistry [8,9]; this
may limit the safety and efficacy of cell transplantation therapy or
reduce the accuracy and efficiency of drug discovery. The

PLOS ONE | www.plosone.org

maturity of iPSC-derived cardiac myocytes (IPSC-CMs) has not
been comprehensively or quantitatively evaluated.

Cell surface glycans have several important functions interacting
with numerous proteins, including growth factors, morphogens
and adhesion molecules, modulating dynamic cellular mechanisms
such as cell-cell adhesion, cell activation, and malignant alterations
[10-12]. In early mammalian embryos, associated with fertiliza-
tion, some N-glycans play important roles of cell-cell adhesion
[13-15]. In addition, cellular responsiveness to growth or arrest
depends on total N-glycan number and the degree of branching of
cell surface glycoproteins [16]. Furthermore, heparan sulfate, a
kind of glycans, is required for embryonic stem cell (ESC)
pluripotency, in particular lineage specification into mesoderm
through facilitation of FGF and BMP signaling by stabilizing BMP
ligand [17], leading the evidence that the expression patterns of
cell surface glycans on ESCs changes during differentiation [18].
Thus, we hypothesized that cell surface glycan expression may
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