M.P.van lersel et al.

glyph with class ‘process’ (lines 14—18, in orange). Each glyph also
carries an ‘id’ attribute that can be referred from elsewhere in the
document, thus storing the network topology (in this case merely
the letter ‘f” for the sake of brevity). Each glyph must define a
‘bbox’ or bounding box, which allows the glyph to be placed at the
correct position. Its coordinates denote the smallest rectangle that
completely encompasses the glyph. Consumption and production
arcs connect to process nodes at a so-called ‘port’ just outside the
glyph. ‘Port’ elements are part of the network topology, so they carry
identifiers as well (lines 16 and 17). Another glyph in this example
represents the active form of hexokinase (lines 24-31). It carries
a label element, which should be positioned in the center of the
parent glyph, unless otherwise defined. Hexokinase also contains a
sub-glyph for a state variable (lines 27-30, in blue) to indicate that
it is the allosterically active form of the enzyme. ATP (lines 19—
23, in green) is a simple chemical, and uses a circle as its shape,
as opposed to macromolecules that use a rounded rectangle shape.
Small molecules often occur multiple times in a map, in which case
they must carry a clone marker, a black bottom half. In SBGN-
ML this is represented by the ‘clone’ element (line 21). Cellular
compartments are represented by glyphs as well (lines 32-35, in
yellow). Entities refer to their surrounding compartment using a
‘compartmentRef’ attribute.

Just like glyphs, arcs must define a ‘class’ attribute and an ‘id’
attribute. See for example the production arc (lines 84-87, in cyan).
Each arc must have a source attribute, referring to the identifier of a
glyph that the arc points from, as well as a target attribute, referring to
the identifier of the glyph that the arc points to. Source and target may
refer to identifiers of either glyphs or ports. Arcs must also define
start and end coordinates. Arcs can optionally include waypoints for
path routing as with the ‘catalysis’ arc (lines 88-92, in purple). It is
not possible to deduce the start and end coordinates from the source
and target glyphs, as there may be some white space between the
end of the arc and the border of the glyph.

Each element can be freely annotated with notes encoded with
valid XHTML elements (lines 3-5). Each SBGN-ML can also be
extended with elements in proprietary namespaces to add additional
features (not shown in this example).

3 THE LIBSBGN LIBRARY

A software library called LibSBGN complements the file format.
It consists of two parallel implementations in Java and C++. The
libraries share the same object model, so that algorithms operating
on it can be easily translated to different programming languages.

The primary goal of LibSBGN is to simplify the work for
developers of existing pathway tools. To reach this goal we
followed three design principles. First, we avoided tool-specific
implementation details. Implementation artifacts that are specific
for one bioinformatics tool would impose difficulties for adoption
by others. We sought input from several tool developers into the
LibSBGN effort early on.

Second, we do not want to force the use of a single rendering
implementation (meaning the software routine that translates
from memory objects to screen or graphic format). Early in the
development of LibSBGN, it became clear that for most pathway
drawing tools, the rendering engine is an integral part that is not
easily replaced by a common library. The typical usage scenario is
therefore to let LibSBGN handle input and output, but to translate

File f = new File (test-files/adh.sbgn")
Sbgn sbgn = SbgnUtil.readFromFile(f);

Map map = sbgn.getMap();

Ior (Glyph g : map.getGlyph())

+ g.getld());

System.out.print (" Glypt

if (g.getLabel() != null)
System.out.printin (and labe
else
System.out.println (", without label");

+ g.getlabel().getText());

for (Arc a

{

: map.getArc())

System.out.printin (+ a.getClazz());

Fig. 2. Example of reading a file using the Java version of LibSBGN.
Here an SBGN-ML file named ‘adh.sbgn’ (included in the LibSBGN source
distribution) is read, and some basic information about each glyph in that
file is printed to standard output. The complete program can be found as
ReadExample.java in the LibSBGN source distribution

to the application’s own object model, and display using the
application’s own rendering engine. Enforcing a common rendering
library would hamper adoption of LibSBGN. We instead opted to
build a render comparison pipeline to ensure consistency between
various renderers (this pipeline is described in more detail in
Section 3.2).

Third, we wish to provide optimal libraries for each development
environment. For both the C++ and Java versions, code is
automatically generated based on the XML Schema definition
(XSD). The method of generating code from XSD has reduced the
effort needed to keep the Java and C++ versions synchronized during
development. The generated Java code plus helper classes form a
pure Java library. The alternative possibility, to create a single C++
library and a Java wrapper around that, is not preferable because it
complicates multi-platform installation and testing. Our experience
with a related project, LibSBML (Bornstein et al., 2008), is that the
community has a need for a pure Java library in spite of existing
Java bindings for C++-, which has led to the development of the
pure Java JSBML (Driger et al., 2011) as an alternative. Although
both LibSBML and JSBML are successful projects, the maintenance
of two similar projects in different languages is costly in terms of
developer time. By generating native libraries for both environments
automatically, we hope to avoid that extra cost.

3.1 Code sample

See Figure 2 for an example of usage of LibSBGN in
practice. The Java library contains convenient helper functions
for reading, writing and validation. In the case of this example
the function readFromFile from the SbgnUtil class is used.
The source package contains example programs for common
operations, and the LibSBGN wiki includes a developer tutorial
(see http://sourceforge.net/apps/mediawiki/libsbgn/index.php ?title=

2018

~470-

Software support for SBGN maps

PathVisio

Fig. 3. Rendering comparison. A series of test-cases is rendered by all
supported tools in an automated render comparison pipeline. The rendering
results are compared with the reference map (top-left), in this case an
ER map. A couple of significant differences have been highlighted with
red circles. In the PathVisio case (top-right), arrowheads are drawn where
none is expected. In the SBML Layout example (bottom-right), the wrong
arrowheads are drawn for absolute inhibition and stimulation arcs. Note
that these are historical images for illustration purposes, and the highlighted
issues have already been fixed

Developer_tutorial) aimed at developers who want to include
LibSBGN into an existing bioinformatics application.

3.2 Rendering comparison

We created dozens of test-cases for each of the three languages
of SBGN, covering all aspects of the syntax. Each test-case
consists of a reference diagram in PNG format and a corresponding
SBGN-ML file. To test our software, all SBGN-ML files are
automatically rendered by the participating programs, currently
SBGN-ED (Czauderna et al., 2010), PathVisio (van lersel et al.,
2008) and SBML Layout (Deckard et al., 2006). The resulting
images are viewable side-by-side with the reference map. An
example of this can be found in Figure 3.

This pipeline was of tremendous value during development.
Typically, an observed difference between a given rendering and the
reference diagram could lead to several possible outcomes. Most
commonly, the difference indicated a mistake in the participating
renderer, which had to be fixed by the author of that software. A
second possibility is that the mistake is due to an ambiguity in
the interpretation of SBGN-ML. This could lead to a correction
in the specification or a clarification in the documentation, so that
all involved are in agreement. In several instances, the source
of ambiguity was derived not from SBGN-ML but from the
SBGN specification. This way, LibSBGN has led to feedback
on SBGN itself. A final possibility is that the difference was
deemed insignificant. Certain differences in use of color, background
shading and line thickness are not meaningful in terms of biological
interpretation of the SBGN map. An exception here is differences
in layout. As mentioned before, we consider layout valuable to
preserve even though it is not semantically significant. This pipeline

is now fully automated, and runs automatically, whenever new test-
cases are added to the source repository. It can be viewed online
at http://libsbgn.sourceforge.net/render_comparison/. We encourage
developers of software to contact us to add their tool to the gallery.

3.3 Validation

For syntactic validation of SBGN-ML documents, we created an
XML Schema definition (XSD). Unfortunately, XSD is not sufficient
to validate the many semantic rules defined in the SBGN
specification. To solve this we also developed higher level, semantic
validation using the Schematron (http://www.schematron.com)
language.

To give a few examples: in PD, a production arc should point from
a process towards an entity pool node. It is not allowed to draw the
arc in the other direction, or to connect two entity pools directly
without an intermediate process (see Figure 4). In ER, outcome
glyphs may be drawn on interaction arcs but not on influence arcs.
If such a rule were violated, the meaning of the map would be
ambiguous or contradictory.

LibSBGN provides functionality for users and developers to
validate diagrams against these rules. This validation capability is
built using Schematron language which has been previously used for
Molecular Interaction Map diagram validation (Luna et al., 2011).
Schematron rules are assertion tests written using XPath syntax.
Each rule possesses a role to denote the severity of failure, a human-
readable message and diagnostic elements to identify the source of
the error or warning. Rules in Schematron can be grouped in phases;
this feature can be used to denote subsets of rules to be activated
during validation. Schematron makes use of XML stylesheet
transformations (XSLT) and the validation process occurs in two
steps. The first step is the transformation of the rule sets written in
the Schematron language to an XSLT stylesheet, and the second step
is the transformation of an SBGN-ML file using the XSLT stylesheet
from the first step. The product of this second transformation is
a validation report that uses the Schematron Validation Report
Language (SVRL). The usage of Schematron rule sets allows for
validation to be flexibly incorporated into various environments
and using any programming language with an XSLT processor.
Command-line validation can be done using XSLT processors
such as Saxon (http://saxon.sourceforge.net/) by performing the
two transformation steps mentioned above. Alternatively, validation
can also be incorporated into automated pipelines using the Ant
task for Schematron (http://code.google.com/p/schematron/); an
example of this is provided in the distributed files. Lastly, validation
can be incorporated into projects by using provided utility Java
classes found in the LibSBGN API. The PathVisio-Validator plugin
(Chandan et al., 2011) is an example of diagram validation using
LibSBGN and Schematron.

There are three rule sets for SBGN-ML, one for each of the
SBGN languages. These rule sets validate syntactic correctness of
SBGN maps. An example validation is shown in Figure 4, where
a stimulation arc is incorrectly drawn by pointing to an entity pool
node, rather than a process node.

Unfortunately software can have bugs, and if the validation
routine does not report any validity errors, this could indicate that
either the diagram is indeed correct (true negative), or that there is
a bug in the software encoding the rules (false negative). To ensure
correctness of the validation rules themselves, we have created

-471-

2019

M.P.van lersel et al.

Wrong Correct

Fig. 4. Typical validator benchmark. This particular example tests the
software for rule pd10110: in PD maps, catalysis arcs must point to a process

node (not to an entity pool node). In the negative test-case on the left, the
enzyme GPI appears to ‘catalyze’ a molecule rather than a reaction. This is a
logical impossibility. The positive test-case on the right shows correctly how
the enzyme GPI catalyzes the reaction from glucose-6P to fructose-6P. Taken
together, these test-cases help to prevent bugs in the validation software

Fig. 5. Screenshots of a number of tools that use LibSBGN. Clockwise,
from the top: CellDesigner, SBGN-ED, VISIBIOweb and PathVisio. These
tools are able to use SBGN-ML for import, export or both. At the time of
writing, for some of these tools a version with SBGN support has not been
officially released, but is expected soon

benchmarks for each of them. For each rule there is a positive
test-case, for which the rule should pass, and a negative one, for
which the rule should fail, similar to the example given in Figure 4.

3.4 Supporting tools

As mentioned earlier, we seek support from a wide community of
tool developers. The following tools are already using LibSBGN:
PathVisio (van Iersel et al, 2008), SBGN-ED (Czauderna et al.,
2010), SBML Layout (Deckard et al, 2006) and VISIBIOweb
(Dilek et al., 2010). We are aware of two other tools with
LibSBGN support in development: Arcadia (Villéger et al., 2010)
and CellDesigner (Funahashi ez al., 2008). Desktop applications
using LibSBGN are shown in Figure 5.

4 DISCUSSION

We have set out to fulfill the dual goals of simplifying SBGN support
as well as standardizing electronic exchange of SBGN. The first goal

has been addressed with an open-source software library, which can
be used to read, write, manipulate and validate SBGN. The second
goal has been addressed with a file format named SBGN-ML.

SBGN-ML fills a pragmatic need for a format that can be mapped
directly to concepts from the SBGN specification. We see the
rapid adoption of SBGN-ML by a number of tools as proof of the
pragmatic need for it.

A potential criticism of SBGN-ML is the addition of yet
another file format to the repertoire of file formats in systems
biology. Different approaches have been explored for electronically
representing SBGN: from graphical file formats such as SVG,
or graph representation stored as GraphML files, to additional
information on top of an existing model, such as the Systems
Biology Markup Language (SBML) layout extension (Gauges et al.,
2006). All these approaches have limitations, as they have been
developed independently of SBGN. A new format was needed to
support all characteristics of SBGN maps (graphics, relationships
and semantics). The other formats could be extended to cover these
concepts, but at the expense of brevity and clarity.

So we created a new format for the following reasons. First,
SBGN-ML focuses on the domain of visualization of SBGN
concepts. This sets it apart from existing exchange formats for
pathways. BioPAX is a pathway exchange format that occupies
the domain of knowledge management, and has close relations to
the semantic web. SBML occupies the domain of computational
modeling of systems biology. The latter two could be extended to
accommodate SBGN concepts, but there is not a straight one-to-one
mapping. For example, there is no good equivalent for the AND/OR
gates which can be drawn in SBGN. Furthermore, omitted/uncertain
processes can be drawn in SBGN but have no direct equivalent in
BioPAX.

Second, SBGN-ML is easier to validate against the SBGN
specification. As mentioned before, the complexity of SBGN makes
software support for validation a must. Rules describing validation
of SBGN-ML are simpler and more concise than they would be if
they were encoded on top of an existing format.

Third, the rendering comparison pipeline has ensured that
conversion of SBGN-ML to graphical formats is straightforward.
On the other hand, conversion from a graphical format such as SVG
to SBGN-ML requires inferring the meaning of lines, glyphs and
symbols, which is bound to lead to loss of information.

Fourth, by making SBGN independent, it is not tied to either the
SBML, BioPAX or any other research community. We observe that
currently LibSBGN is being used by both BioPAX-oriented tools
such as ChIBE and PaxTools as well as SBML-oriented tools such
as CellDesigner or GraphML-oriented tools such as SBGN-ED.

SBGN-ML is officially endorsed by the SBGN scientific
committee as a reference implementation and the best way to
exchange diagrams between applications. It is orthogonal to specific
formats used to represent pathways and models such as BioPAX
(Demir et al., 2010) and SBML (Hucka et al., 2003), and thus follows
the vision of the COMBINE initiative (http://co.mbine.org/about).

In the field of bioinformatics, it occurs all too often that the lack
of a feature in an existing piece of software is used to justify the
development of a complete new bioinformatics tool, which will in its
turn lack features in another area. The end result is the current state
of affairs: a balkanization of bioinformatics tools, or in other words,
many fragmented tools that integrate poorly. One of the goals of
LibSBGN is to improve existing software. LibSBGN could serve

2020

-472-

Software support for SBGN maps

as a model to counter the balkanization trend. We prefer to see
the development of software libraries instead of incomplete tools.
Libraries, especially if they are open source, can be shared, re-used
and adopted by developers.

5 CONCLUSION

The SBGN-ML file format and LibSBGN library provide open-
source software support for SBGN maps. They have been adopted
by several tools already, and development is ongoing. It is expected
that the availability of a community-supported API will significantly
expedite SBGN’s adoption. We use the word ‘Milestone’ for
versioning purposes—the latest release is Milestone 2, which was
released in December 2011.

LibSBGN is primarily focused on exchanging between SBGN
software. Other functionalities, such as conversion to other formats,
or generating suitable layout, are not currently supported. It is
certainly likely that some or all of these functionalities will be added
in the future as optional modules. SBGN-ML will likely see the
addition of fine-grained graphics specification, support for linking
between files, and improved usage of ontologies. Additionally,
LibSBGN will see expansion to other programming languages
beyond Java and C++-, such as for example Javascript.

The SBGN-ML file format is represented as an XML schema
(SBGN.XSD). Examples are available as test files (XML, PNG). The
accompanying documentation reflects the content of the schema,
and clarifies a number of additional rules and -conventions (e.g..
coordinate system). This set of resources constitutes the SBGN-ML
specifications. The LibSBGN library (in C++ and Java) and the
file format have been released on Sourceforge, under a dual license:
the Lesser General Public Licence (LGPL) version 2.1 or later, and
Apache version 2.0.

The development process is an active community effort, organized
around: regular online meetings, discussions on the mailing list, and
development tools on Sourceforge (bug tracker, SVN repository and
documentation wiki). New developers are very welcome.

ACKNOWLEDGEMENTS

The authors thank their individual sources of funding. Authors are
grateful for useful feedback from the Path2Models project.

Funding: This work was in part supported by the Biotechnology and
Biological Sciences Research Council (BBSRC); the Netherlands
Consortium for Systems Biology (NCSB), which is part of
the Netherlands Genomics Initiative/Netherlands Organisation for
Scientific Research; BioPreDyn which is a grant within the Seventh
Framework Programme of the EU, the Intramural Research Program
of the NIH, National Cancer Institute, Center for Cancer Research;
and the German Ministry of Education and Research (BMBF).

Conflict of Interest: none declared.

REFERENCES

Bornstein,B.J. er al. (2008) LibSBML: an API library for SBML. Bioinformatics, 24,
880-881.

Chandan,K. er al. (2011) PathVisio-Validator: A rule-based validation plugin for
graphical pathway notations. Bioinformatics, 28, 889-890.

Czauderna,T. et al. (2010) Editing, validating, and translating of SBGN maps.
Bioinformatics, 26, 2340-2341.

Deckard,A. et al. (2006) Supporting the SBML layout extension. Bioinformatics, 22,
2966-2967.

Demir,E. et al. (2010) The BioPAX community standard for pathway data sharing. Nat.
Biotechnol., 28, 935942,

Dilek,A. et al. (2010) VISIBIOweb: visualization and layout services for BioPAX
pathway models. Nucleic Acids Res., 38, W150-W 154.

Driger,A. et al. (2011) JSBML: a flexible Java library for working with SBML.
Bioinformatics, 27, 2167-2168.

Funahashi,A. er al. (2008) CellDesigner 3.5: a versatile modeling tool for biochemical
networks. Proc. IEEE, 96, 1254-1265.

Gauges.R. er al. (2006) A model diagram layout extension for SBML. Bioinformatics,
22, 1879-1885.

Hucka,M. et al. (2003) The Systems Biology Markup Language (SBML): a medium
for representation and exchange of biochemical network models. Bioinformatics,
9, 524-531.

Kitano,H. et al. (2005) Using process diagrams for the graphical representation of
biological networks. Nat. Biotechnol., 23, 961-966.

Kohn,K.W. er al. (2006) Molecular interaction maps of bioregulatory networks: a
general rubric for systems biology. Mol. Biol. Cell, 17, 1-13.

Le Novere,N. er al. (2009) The systems biology graphical notation. Nat. Biotechnol.,
27, 753-741.

Luna,A. et al. (2011) A formal MIM specification and tools for the common exchange
of MIM diagrams: an XML-Based format, an API, and a validation method. BMC
Bioinformatics, 12, 167.

van Jersel, M.P. er al. (2008) Presenting and exploring biological pathways with
PathVisio. BMC Bioinformatics, 9, 399.

Villéger,A.C. er al. (2010) Arcadia: a visualization tool for metabolic pathways.
Bioinformatics, 26, 1470~1471.

-473-

2021

Molecular Systems Biology 8; Article number 578; doi:10.1038/msb.2012.12
Citation: Molecular Systems Biology 8: 578

© 2012 EMBO and Macmillan Publishers Limited Al rights reserved 1744-4292/12
www.molecularsystemsbiology.com

molecular
systems
hio|ogy

A framework for mapping, visualisation and automatic
model creation of signal-transduction networks

Carl-Fredrik Tiger'*®, Falko Krause®?, Gunnar Cedersund™*, Robert Palmér®, Edda Klipp?, Stefan Hohmann', Hiroaki Kitano

and Marcus Krantz'25*

3,5,6,7

! Department of Cell and Molecular Biology, University of Gothenburg, Goteborg, Sweden, 2 Theoretical Biophysics, Humboldt-Universitat zu Berlin, Berlin, Germany,
8 Department of Clinical and Experimental Medicine, Diabetes and Integrative Systems Biology, Linkdping University, Linkdping, Sweden, * Freiburg Institute of
Advanced Sciences, School of Life Sciences, Freiburg, Germany, 5 The Systems Biology Institute, Tokyo, Japan, 5 Sony Computer Science Laboratories, Inc., Tokyo,

Japan and ” Okinawa Institute of Science and Technology, Okinawa, Japan
®These authors contributed equally to this work

* Corresponding author. Theoretical Biophysics, Humboldt-Universitat zu Berlin, Invalidenstr. 42, Berlin 10115, Germany. Tel.. + 49 30 2093 8389;

Fax: +49 30 2093 8813; E-mail: marcus.krantz@biologie.hu-berlin.de

Received 8.7.11; accepted 16.3.12

Intracellular signalling systems are highly complex. This complexity makes handling, analysis and
visualisation of available knowledge a major challenge in current signalling research. Here, we
present a novel framework for mapping signal-transduction networks that avoids the combinatorial
explosion by breaking down the network in reaction and contingency information. It provides two
new visualisation methods and automatic export to mathematical models. We use this framework to
compile the presently most comprehensive map of the yeast MAP kinase network. Our method
improves previous strategies by combining (I) more concise mapping adapted to empirical data, (II)
individual referencing for each piece of information, (III) visualisation without simplifications or
added uncertainty, (IV) automatic visualisation in multiple formats, (V) automatic export to
mathematical models and (VI) compatibility with established formats. The framework is supported
by an open source software tool that facilitates integration of the three levels of network analysis:
definition, visualisation and mathematical modelling. The framework is species independent and

we expect that it will have wider impact in signalling research on any system.
Molecular Systems Biology 8: 578; published online 24 April 2012; doi:10.1038/msb.2012.12
Subject Categories: metabolic and regulatory networks; computational methods; simulation and data

analysis

Keywords: combinatorial complexity; mathematical modelling; network mapping; signal transduction;

visualisation

Introduction

All living cells interact with and respond to their environment
via the cellular signal-transduction network. This network
encompasses all cellular components and processes that are
required to receive, transmit and interpret information. Due to
its key role in cellular physiology, the signalling network, and
several of its subnetworks, have been intensely studied in a
range of organisms. However, such networks are highly
complex and difficult to analyse due to the so-called
combinatorial explosion (Hlavacek et al, 2003). This explosion
refers to the fact that the specific state of each component is
determined by multiple covalent modifications or interaction
partners, and that these possibilities rapidly combine to a very
large number of possible specific states. Experimental data do
not generally distinguish between all these specific states, but
instead focus mostly on reactions between pairs of compo-
nents, usually giving no or limited information on other
modifications or interaction partners of the reactants. Hence,

© 2012 EMBO and Macmillan Publishers Limited

there is a discrepancy between the granularity of the empirical
data and the highly defined specific states used in most
mathematical models. This makes the interpretation and use
of empirical data in the context of such model states
ambiguous and often arbitrary. These problems pose major
challenges for systems biology, as they prevent us from (i)
unambiguously describing a network, (ii) visualising it with-
out simplifications or unsupported assumptions and (iii)
automatically generating mathematical models from knowl-
edge in data repositories.

Large efforts have been invested in addressing these issues.
Signalling systems are commonly visualised through the
informal ‘biologist’s graph’ that is simple and intuitive, but
lacks the stringent formalism and precision required to meet
the three criteria above (exemplified by Thorner et al, 2005).
The lack of standardised glyphs (defining e.g., mechanism of
information transfer and how edges combines to regulate
target nodes) makes the information in the ‘biologist’s graph’
ambiguous and difficult to reuse. To address this, the

Molecular Systems Biology 2012 1

~474-

A framework for mapping, visualisation and automatic model creation
C-F Tigeret al

community has developed the Systems Biology Graphical
Notation, SBGN (Le Novere et al, 2009). This includes three
visual formats; the activity flow diagram, the entity relation-
ship diagram and the process description (or process
diagram). The activity flow diagram shares many properties
with the ‘biologist’s graph’, but the entity relationship diagram
and process description allow precise representations. The
process description corresponds to the state transition reaction
format used in most models developed by the systems biology
community, and which have been standardised in the Systems
Biology Markup Language (SBML; Hucka et al, 2003). The
process description could meet each of the three criteria above
but its utility is severely affected by the combinatorial
explosion. It is based on a specific state description, which
means that, for each component, each possible combination of
modifications and interaction partners must be accounted for
explicitly. Hence, only very simple systems can be described
completely and only very few models include the entire state
space (Kiselyov et al, 2009) while the vast majority include
simplifying omissions. While simplifications are often neces-
sary, the lack of discrimination between arbitrary omissions
and exclusions based on experimental evidence is a significant
shortcoming. These issues are partially addressed in the entity
relationship diagram, or molecular interaction map, which
comes in two flavours; explicit and implicit (called heuristic
and combinatorial by the author (Kohn et al, 2006)). The
explicit version requires all specific states to be displayed and
hence share the limitations of the process description. In
contrast, the implicit version displays only the possible
reaction types (or elemental reactions, as we will call them
below) and hence largely avoids the combinatorial explosion.
The entity relationship diagram represents each component as
a single node and reactions in a condensed format. While not
as intuitive as the other SBGN formats, it has the advantage of
concentrating all information on a given protein and works
especially well for simple regulatory circuits, as the concen-
trated information makes it difficult to trace the order of events
in more complex networks. The three SBGN format has
complementary strengths, but there is currently no software
available for conversion between the three different visualisa-
tion formats. However, the SBGN standards are under
continuous development and these issues will likely be
addressed in the future through the SBGN markup language,
SBGN-ML.

Similar efforts on the modelling side have resulted in rule-
based modelling and associated visualisation formats (Faeder
et al, 2005). Briefly, rules are defined as reactions that are valid
under a particular set of contingencies, and each reaction is
specified for each such contingency set. This means that when
a reaction’s rate is increased by phosphorylation of one
component it will be defined by two rules; one where that
component is phosphorylated and one where it is not. While
these rules define the entire state space and the system stays
subject to the full combinatorial explosion, the rule description
has alleviated the combinatorial problem in two respects: (1)
the system has been described more compactly and (2) the
actualised state space might be significantly reduced by
introducing only those states that are actually populated
(Lok and Brent, 2005), or by using agent-based stochastic
modelling (Sneddon et al, 2011). The rule definition format is

2 Molecular Systems Biology 2012

also a significant step towards the granularity of empirical
data, as compared with the abstract-specific states. These
advantages are mirrored on the visualisation side by graphical
reaction rules, which use the process description format to
display individual rules (Blinov et al, 2006). Network level
visualisation has used either topological contact maps (Danos,
2007) or entity relationship diagrams (Le Novere et al, 2009),
and these complementary visualisation formats have recently
been combined in the extended contact map (Chylek et al,
2011). Contact maps have software support, but neither entity
relationship diagrams nor extended contact maps can be
generated automatically from the rule-based models. Hence,
the rule-based format partially addresses the automatic
creation of models from data repositories (iii), as it provides
the tools to generate mathematical models automatically once
the knowledge has been reformulated as rules. However, the
rule-based system provides a cumbersome format for (i)
unambiguous network description and is not developed for (ii)
comprehensive visualisations. Taken together, this raises the
question whether graphical- and model-based formats are the
most appropriate for stringent network definition, or whether
there are more suitable network definition formats that allow
both visualisation and automatic model generation.

Here, we present a new framework to describe cellular
signal-transduction networks. Our network definition has the
same granularity as experimental data, avoids the combina-
torial complexity, can be automatically visualised in comple-
mentary graphical formats including all three SBGN formats
and unambiguously defines mathematical models. The rxncon
software tool complements the framework by automating
visualisation and model creation. The key feature of our
framework is the strict separation of elemental reactions (and
their corresponding states); which defines the possible
signalling events in the network, from contingencies; which
describes the contextual constrains on these reactions.
Importantly, each elemental reaction corresponds directly to
a single empirical observation, such as a protein-protein
interaction or a specific phosphorylation. The contingencies
define the constraints on these elemental reactions in terms of
one or more elemental states, for example, by defining the
active state of a protein kinase or the composition of a
functional protein complex. Hence, the format directly link
model states to empirical observations at the same level of
granularity, which pre-empts the need for additional assump-
tions or extrapolations. Moreover, the separation between
reactions and contingencies largely avoids the combinatorial
explosion as only combinatorial states with known functional
influence are considered. The rxncon tool provides automatic
export to established visual formats and to two new visualisa-
tion methods, which allow compact comprehensive represen-
tation. Finally, the framework is stringent and unambiguously
defines a mathematical model, and the rxncon tool support
export to SBML and rule- or agent-based models. This allows
coding of models in a format that mirrors empirical data,
which can be automatically visualised and which is highly
suitable for iterative model building. We illustrate our new
approach by conducting the most comprehensive literature
survey to date of the complete MAP Kinase signalling network
of Saccharomyces cerevisiae. Taken together, we provide a
framework that integrates the three levels of network analysis;

© 2012 EMBO and Macmillan Publishers Limited

-475-

definition, visualisation and mathematical modelling and a
supporting software tool for automatic visualisation and
export to mathematical models. We expect this to be highly
useful for the community and envision a common framework
to bridge different standards as well as experimental and
theoretical systems biology efforts.

Results

This section describes the architecture of the framework,
including its data structure, the different methods of visualisa-
tion and how it relates to a mathematical model (Figure 1A). In
the first part, we present the results of the methods
development and describe the system in detail. In the second
part, we present our results using the MAP kinase network.
The framework has been implemented in the rxncon software
tool that is distributed freely under the open source LGPL
licence and can be downloaded from www.rxncon.org.

The data structure

The events in a signal-transduction network can be categorised
in four types: (1) catalytic modifications, (2) bindings and
interactions, (3) degradation and synthesis and (4) changes in
localisation. Due to the limited information on spatial
(re)distribution of components, we have focused on types
1-3 here (Table I). However, the framework is fully capable to
include localisation reactions and the rxncon tool will be
upgraded to encompass these in the future. The first step of the
network definition is to distil the available knowledge into two
distinct categories of information: what can happen, and when
it can happen. The what-aspect (referred to as C1, or elemental
reactions) specifies the possible events, including the event
type (1-3 above), and which components and sites that are
involved. The when-aspect (referred to as C2, or contingencies)
specifies how the reaction rate is affected by the state of the
involved components. For instance, the MAP kinase Hogl
phosphorylate its target Hotl (C1—‘what’; Figure 1B), and this
reaction only occurs when Hogl is phosphorylated on both
Thr174 and Tyr176 (C2—‘when’). This second category of
knowledge therefore represents the causal relationships, or
contingencies, between the reactions characterised in the first
class of knowledge. The separation of C1 from C2 allows us to
define even large complex networks stringently in a concise
format, as exemplified with the yeast MAP kinase network
below.

The what-aspects of the knowledge are represented in the
reaction list (Figure 1C; simplified example). Importantly, we
have broken down the reaction network in elemental
reactions, which change elemental states. An elemental state
is similar to an empirical observation, such as an interaction
between two proteins or a specific modification at a specific
site on a specific protein. If a protein has been phosphorylated
on two sites, this corresponds to two different elemental states.
In other words, the elemental states correspond to overlapping
(non-disjoint) sets. This is different from the specific states in
ordinary state transition models, but analogous to the
macroscopic states used in the works by Conzelmann et al
(2008) (Borisov et al, 2008). An elemental reaction is similarly

© 2012 EMBO and Macmillan Publishers Limited

A framework for mapping, visualisation and automatic model creation
C-F Tigeret al

defined as a two-component reaction that modifies a single
elemental state. Note that this precludes lumped reactions and
that, for example, a kinase-substrate interaction and phos-
phorylation must be described by two different elemental
reactions. Hence, the reaction list has the same granularity as
typical empirical data, which pre-empts the need for assump-
tions in the mapping process. It also allows us to use the
established format for high-throughput data (Stark et al, 2006),
including specific referencing of each reaction with PubMed
identifiers and complemented with additional details such as
active domains, subdomains and residues (Supplementary
Tables S1 and S2).

The when-aspect of the knowledge is described in the
contingency list (Figure 1D; simplified example). This list
defines the contextual constraints on all elemental reactions.
Most contingencies will correspond to the direct effect of single
elemental states of the components involved in the particular
elemental reaction, but Boolean states allow for combinatorial
effects and indirect effects in, for example, scaffolds that
cannot be directly attributed to a single elemental state in one
of the reactants. There are six distinct reaction contingencies;
the Effector can be absolutely required (!), positive (K+),
completely neutral (0), negative (K —), absolutely inhibitory
(x) or of unknown effect (?). These overlap partially with the
influences of entity relationship diagrams (Le Novere et al,
2011), but distinguish between no effect (0) and no known
effect (2). The Boolean states provide a middle layer between
reaction contingencies and a combination of elemental states
and/or inputs, using either ‘AND’ or ‘OR’ to define, for
example, large complexes or alternative mechanisms. In
addition, inputs and outputs function as elemental states and
reactions, respectively, at the interface between the network
and the external environment. Each row in the contingency list
contains a Target (elemental reaction, output or Boolean
state), an Effector (elemental state, input or Boolean state) and
a symbol describing how the Effector influences the Target
(Contingency) that is a contingency symbol (!, K+, 0, K—, x,
?2) when the Target is an elemental reaction or an output and a
Boolean operator (AND, OR) when the Target is a Boolean
state. The data structure is illustrated with a simplified version
of the Sho branch of the HOG pathway (Figure 1B). The
reaction list state that, for example, Hogl phosphorylates
(‘P+") Hotl (Figure 1C; eighth reaction; on the last row), and
the contingency list state that this reaction requires (‘!”) that
Hogl is phosphorylated on both Thr174 and Tyrl76
(Figure 1D, last two rows). These states in turn correspond
to the reactions six and seven, respectively (Figure 1C). Hence,
the reaction and contingency information suffice to describe
the network and their separation keeps the description concise
and at the granularity of empirical data. Consequently, the data
structure addresses the first issue; unambiguous network
definition.

Visualising the signal-transduction network

We address the second issue; comprehensive visualisation,
with two novel forms of visualisation; the contingency matrix
and the regulatory graph. These also keep reactions and
contingencies separate and hence avoid the combinatorial

Molecular Systems Biology 2012 3

-476-

A framework for mapping, visualisation and automatic model creation
C-F Tigeretal

Plasma membrane

Reaction graph

A Reaction Contingency’ =
list list |
| Reaction | Equation |
E graph <+ ‘ rxncon ‘ > ‘ system
| | software |
[|
| Process |
e SBML
| description “ * * *
i Entity rel. ‘Contingency; Regulatory | Interaction
L diagram matrix graph matrix |
SabiacTes el I R bl | St e e e o
(o3 Reaction list
Comp. A Re.type Comp. B ;” State
Sho1l ppi Stell S ishoils tell
shot ppi Pos2 | shol ppi Pbsa [_Shol-Pbsa
Ste20 = steld’ [tell | Stell-p
Stell P+ Pbs2 [s514] | 1| Pbs2 [s514]-P
Stell P+ Pbs2_[T518] | Stell P+ Pbs2 [T518] Pbs2 [T518]P
Pbs2 P+ Hogl [T174] | | i -
Pbs2 P+ Hogl [Y176] | Pbs2 P+ Hogl [Y176] Hogl [Y176]-P
Hogl P+ Hotl 4 Hogl P+ Hotl Hotl-P a
E Contingency matrix F
T ara
Lo E X
= o T © ¥ ©
® B o m o OEE Sho1
5 EESEE S & 3
LI A e A A)
Dol i oV o R Ll
2 o p v w Y O I
£ £ = 0 Q9 o (=] o
v » Hha o T I I &
Sho1 ppi Ste1 X
L

Sho1 ppi Pbs2
Ste20
Stet1

P+ Stet1

P+ Pbs2_[Ssi4]
P+ Pbs2 [Ts1g] I
P+ Hog1 [T1741]
P+ Hog1_[Yi7s]
P+ Hot1

Stet1
Pbs2
Pbs2
Hog1

H

S &
[(E
S514 | 17’8514
Pbs2 |— L7 Pbs2
J518 r\T51 B
\O*A(%
S514
Pbs2
T518

®

b
Hogtisa—|
T174 Y17EQ
') G

J Hogt |
T174 Y176
O ®

L.
»| Hogt
e T174 Y176
@ ,—‘ Q

Hot1 —é}—» Hot1

4 Molecular Systems Biology 2012

Interaction/distance

matrix

Contingency list

Target | Cont. | Effector

_ Shol-Pbs2
_ Shol-Stell
cosotel b
_ Shol=Pbs2

— o+t

Hogl [1174} |

Hogl_[VL76]P

-

Ste20 |

i

Pbs2,

Hog1.4]-(P}

Shol
Ste20
Stell

Pbs2

Hogl

Shol

Ste20

! |' Target

P+

J

Entity relationship diagram

Stell
Pbs2 e
ogr [-] -]-

Hotl

Ste20

Pbs2

IShol

ISte20

fste1s

Pbs2

==] shol
1
ORIl e i Ste 1T

[T [[N =%

= o |w | | Hogl

Hogl

| | R S Target

Hotl

Syl g

-477-

© 2012 EMBO and Macmillan Publishers Limited

explosion and implicit assumptions. Both include the com-
plete information about reactions (C1) and contingencies (C2).
This data structure is also well suited for visualisation in entity
relationship diagrams or extended contact maps, and the
rxncon software tool supports export to the entity relationship
format (Chylek et al, 2011; Le Novere et al, 2011). We also
provide export to the reaction graph/activity flow diagram and
the process description, though neither of these can fully and
accurately represent the network as discussed below. Never-
theless, they all provide their unique advantages and can be
automatically generated with the rxncon tool and the
information in the reaction and contingency lists.

The contingency matrix integrates the information in the
reaction and contingency lists (Figure 1E). The matrix is
spanned by the reactions and their corresponding states (C1)
and populated by the contingencies of reactions on states (C2).
Each row corresponds to one elemental reaction and each
column corresponds to one elemental state. The symbol in
each reaction-state intersection specifies how that specific
reaction depends on that specific state. Together, one row

A framework for mapping, visualisation and automatic model creation
C-F Tiger et al

contains the complete set of rules a reaction follows, and
hence describes how it works in every specific state. This is
related to a dependency matrix (Yang et al, 2010), although
the entries in the contingency matrix are more detailed
and unambiguous. In the example (Figure 1E), the first row
shows that (a) the binding of Shol to Stell cannot occur if
either of the components is already part of such a dimer
(column 1), (b) that we do not know whether the prior binding
of Shol to Pbs2 (column 2) or phosphorylation of Stell
(column 3) effects the Shol-Stell binding and (c) that the
other states appearing in the row are irrelevant for this specific
binding reaction—as they do not describe properties of Shol or
Stell. The primary advantages of the contingency matrix are
that it (1) allows a comprehensive documentation/visualisa-
tion of all reactions and dependencies within the network, (2)
that it does so without requiring assumptions, (3) that it
explicitly defines unknowns and hence gaps in our knowledge
and (4) that the matrix constitutes a template from which
mathematical models can be derived automatically (see
below).

Table I Thirteen reaction types were used to map the MAP kinase network

Modifier
Reaction Category Category Subclass Subclass or Reaction Reaction name
type ID boundary type ID

P4 1 Covalent modification 1.1 (De)Phosphorylation P 1.1.1 Phosphorylation

P 1 Covalent modification 1.1 (De)Phosphorylation P 1-1.2 Dephosphorylation

AP 1 Covalent modification 1.1 (De)Phosphorylation P 1 Autophosphorylation

PT 1 Covalent modification 1.1 (De)Phosphorylation P 1.1.4 Phosphotransfer

GEF 1 Covalent modification® 1.2 GTP/GDP hydrolysis/ P 1:2:1 Guanine Nucleotide
exchange Exchange

GAP 1 Covalent modification® 1.2 GTP/GDP hydrolysis/ P 1:2::2 GTPase Activation
exchange

Ub + 1 Covalent modification 1.3 (De)Ubiquitination Ub 1.3.1 Ubiquitination

CUT 1 Covalent modification 1.4 Proteolytic processing Truncated 1.4 Proteolytic cleaveage

ppi 2 Association 2.1 ppi N/A gl Protein-protein interaction

ipi 2 Association . | ipi 2.1.2 Intra-protein interaction

i 2 Association 2.2 i N/A 2.2 Interaction (non-proteins)

BIND 2 Association 2.3 BIND N/A 2.3 Binding to DNA

DEG 3 Synthesis/degradation 3.3 DEG N/A 3.3 Degradation

The table indicates reaction type and classification. Additional details are provided in the ‘Reaction Definition” sheet of Supplementary Tables S1 and S2.
“For convenience, the G-protein cycle is approximated as a covalent modification by addition/removal of phosphate to/from a basic, GDP-bound form.

Figure 1 Schematic representation of the data structure. (A) The input data are the reaction and contingency lists, which contains the ‘what-aspects’ and ‘when-
aspects’ of the reaction network, respectively. The rxncon software uses these lists to create a range of visualisations as well as computational models. These
conversions require no additional information and are fully automated. (B) A simplified version of the Sho1 branch of the Hog pathway in S. cerevisiae will be used to
illustrate the data structure. This ‘biologist’s graph’ shows the activating phosphorylation cascade (arrows) from Ste20 to Hot1. Scaffolding and membrane recruitment by
Shof facilitates the first two phosphorylation events (grey lines). (C) The (simplified) reaction list defines the elemental reactions between pairs of components. Itincludes
the two components (columns | and lll), reaction type (column II; ‘ppi’ = protein—protein interaction, ‘P + ' = phosphorylation; see Table | for complete list of reactions),
reaction (column 1V, a concatenation of the components and the reaction type) and resultant state (column V; protein dimers or phosphorylated states). Note that each
elemental state only defines a single aspect of each component's specific state. (D) The (simplified) contingency list defines the relationship between states and
reactions. It contains the affected reaction (Target, column 1), the influencing state (Effector, column Ill), and the effect this particular state has on that reaction
(contingency, column Il). (E) The reaction and contingency information is summarised in the contingency matrix. The matrix is defined by elemental reactions (rows) and
states (columns). The cells define how (if) each reaction (row) is affected by each state (column); that is, the reactions’ contingencies on different states. Note that only
direct contingencies are considered; reaction/state intersections which do not share components are blacked out. The grey fields (‘'x’) are automatic as states are binary
and hence a reaction cannot occur if the state is already true. The green fields (‘I'/'K +) are imported from the contingency list, and all other open fields are defined as
unknown effect (*?"). This information can also be visualised in a number of graphical forms: The reaction graph (F) displays network topology with either components or
their domains as functional units. The regulatory graph (G) combines the reaction and contingency information to display the causal relationship between the reactions in
the network and provides a complete graphical representation of the knowledge compiled in the contingency matrix. The limited process description (H) displays the
catalytic modifications in the signal-transduction network as state transitions with catalysts but without complex formation (compare Supplementary Figure S1). The
interaction and distance matrices (I) provide a compact description of network topology and allow calculation of distances between nodes. Finally, the reaction and
contingency data can be visualised as an entity relationship diagram (J). These visualisations and the equation system for this system, subsystem or your own favourite
network defined in the same format can be automatically generated using the rxncon software.

© 2012 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2012 5

-478-

A framework for mapping, visualisation and automatic model creation
C-F Tigeret al

The reaction graph displays a topological, directed reaction
network (Figure 1F). It represents each entity as a single node
and each relationship between a pair of entities as a single
edge. Edges can be non-directional (e.g., protein — protein
interaction), unidirectional (e.g., phosphorylation) or bidirec-
tional (e.g., phosphotransfer). The full reaction graph displays
the domains and residues involved in each reaction. The
protein parts are independent nodes and defined as neigh-
bours (proteins can have domains or residues, domains can
have subdomains or residues, subdomains can have residues).
The inclusion of domain information makes the reaction graph
similar to the (extended) contact maps (Danos, 2007; Chylek
et al, 2011). The reaction graph and contact maps are both
purely topological and do not include any contextual
information, in contrast to the extended contact map which,
for example, may show that binding only occurs to phos-
phorylated residues. We also use a condensed variant that
displays only the central node for each component and
collapses multiple reactions of the same kind between a pair
of components to a single edge, and hence corresponds closely
to the activity flow diagram of SBGN (Supplementary Figure
S1B; Le Novere et al, 2009). The advantages of the reaction
graph are (1) the relative simplicity that makes it useful for
visualisation of even large networks and (2) that it is suited for
visualisation of large-scale data sets within the context of that
network (see below).

The regulatory graph shows how information is conveyed
through the network (Figure 1G). It improves on the reaction
graph by including information on causality between the
reactions in the network (C2 data). The regulatory graph
shows the network’s regulatory structure; that is, which
reactions (via states) actually influence the rate of other
reactions. It is a bipartite graph with the elemental reactions
(red) and elemental states (blue) as nodes. Reaction-to-state
edges simply show which reactions produce or consume
which states. The state-to-reaction edges show which states
(products of upstream reactions) affect the dynamics of which
(downstream) reactions. These state-to-reaction edges corre-
spond to the symbols in the contingency list, i.e., ‘!’, 'K+,
‘K —" or 'x’. The regulatory graph can easily be translated into
an influence graph, which can be used for structural analysis
of the network (Kaltenbach et al, 2011). In contrast to the
influence graph or ‘story’ (Danos, 2007), the regulatory graph
strictly separates the effects of reactions (production or
destruction of states) and the modifiers (increase or decrease
in reaction rates) via distinct edge types. Furthermore, only the
(modified) elemental states are displayed and the (the
unmodified) complementary source/target state is implicit.
Hence, like in the ‘stories’, cyclic motifs only appear when
there is a true feedback in the system. This visualises both the
(possible) sequence of events and the feedbacks clearly.
However, in contrast to the ‘story’, the regulatory graph is
comprehensive and simultaneously visualises all possible
paths or ‘stories’. In this example (Figure 1G), the uppermost
node pair corresponds to the reaction where Shol binds
Stell (Sho_ppi_Stell) and the resulting state Shol-Stell.
The reaction-to-state edge linking these two nodes identifies
Shol-Stell as the product of this binding reaction. Note
that the source states for this reaction are omitted (i.e.,
Shol not bound to Stell and Stell not bound to Shol). The

6 Molecular Systems Biology 2012

state-to-reaction edge from Shol-Stell to Ste20_P +_Stell
shows that the phosphorylation of Stell by Ste20 is enhanced
in the Shol-Stell complex. This reaction in turn produces the
state Stell-{P}, which is required for phosphorylation
of Pbs2 on both Ser514 and Thr518. Hence, the information
flow can be followed throughout the network as all edges
are unidirectional. The main advantages of the regulatory
graph are that it (1) allows a comprehensive documentation/
visualisation of all reactions and contingencies within the
network, (2) that it does so in a very compact format (3)
without forcing non-supported assumptions, (4) that it
can be used for structural analysis of the network and (5)
that it clearly shows the information flow through the
network.

Process descriptions are well established and allow visuali-
sation of the information flow and mechanistic detail
simultaneously (Kitano et al, 2005). They are excellent for
representation of small networks which are completely
known, but lack of data (of the right granularity) invariably
lead to unsupported assumptions. In addition, these diagrams
rapidly become very complex, generally forcing ad hoc
reduction and additional implicit and unsupported assump-
tions. Therefore, process descriptions do not allow a complete
description of the network with the stringency we require.
However, the process description can be clear and easy to read,
and we generate a limited version which excludes complex
formation and hence avoids most of the combinatorial
complexity. The difference is highlighted by the upper three
nodes in the example (Figure 1H), where Ste20 phosphorylates
Stell. In contrast to full process description, the binding of
Stell to Shol, and how this binding would affect the
phosphorylation, is not included (compare Supplementary
Figure S1). The (limited) process description has several
advantages: It (1) is intuitive to read and (2) defines in which
internal state(s) an enzyme is active, its substrate and the exact
target residue, which (3) conveys the information flow through
the pathway, the enzyme-substrate relationships as well as the
gaps in our understanding of these aspects.

The information can also be used to generate interaction
matrices that specify which components react with which
components. These can be rendered at several levels of detail
ranging from a complete interaction matrix including protein
domains and target residues that defines each interaction type,
via condensed interaction matrices with only one row and
column per protein that still contains reaction type informa-
tion (Figure 11, upper matrix), to numerical matrices that only
include information on connection and directionality. We used
the latter to calculate the distances within the network to
generate a distance matrix (Figure 11, lower matrix).

Finally, the rxncon tool provides export to entity relationship
diagrams (Figure 1J). Like the regulatory graph, the entity
relationship diagram displays reactions and contingencies
separately and hence largely avoids the combinatorial com-
plexity. The entity relationship diagram has the advantage of
concentrating all information on a given protein around a
central node, which works especially well for simple regula-
tory circuits. This emphasises the role of each component
within the network, in contrast to the regulatory graph which
emphasises the information flow through the network. The
entity relationship diagram is generated automatically by the

© 2012 EMBO and Macmillan Publishers Limited

-479-

