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for several different thresholds and then used the re-
ceiver operating characteristic (ROC) curve to determine
if changing the threshold affected CTen's performance
in terms of the true positive rate versus the false positive
rate. As seen in Additional file 2 and Additional file 3,
CTen's performance is robust to the precise threshold
used for developing the HECS gene databases.

The HECS genes are highly unique to each cell type

We also determined the percentage of HECS genes
shared by any two cell types within the human and
mouse databases. As seen in Figure 3, the vast majority
of cell types have highly distinct sets of HECS genes,
with two mouse cell types sharing an average of only
16.1% HECS genes, while human cell types share an
average of 11.6%. The two groups of cell types which
share the most HECS genes in both mouse and human
datasets belong to the nervous and reproductive systems
(denoted by red and purple ticks beside the heatmap in
Figure 3). Immune cells in different cell states also share
the majority of their HECS genes (e.g., human CD8+ T-
cells and CD4+ T-cells share 90.4% of their HECS genes)
but the number of HECS genes shared between two dif-
ferent immune cells (e.g., B-cells versus T-cells) is gener-
ally less than 50% (Additional file 4 provides a more
detailed heatmap). In all, the strategy behind the devel-
opment of the HECS database ensures that HECS genes
are limited to a few cell types - characterizing a signa-
ture for each tissue. Therefore, the HECS database pro-
vides a powerful means of identifying cell/tissue specific
enrichment in user gene lists.

Data preprocessing and calculating the enrichment score
A minimal amount of preprocessing is applied to the
user supplied gene list to ensure that, first, the list is
properly parsed, and second, the user supplied genes are
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Figure 3 HECS genes shared between different cell types. A
heatmap of the percentage of HECS genes shared between any two
cell types in the mouse (upper triangle) and human (lower triangle)
databases. Ticks adjacent to the heatmap denote cell types
belonging to the nervous (red), immune (blue), or reproductive
systems (purple).
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found in the HECS database. The workflow of the CTen
website is shown in Figure 4A. At the upload screen
(Figure 4B), users can upload a list of either gene sym-
bols or Entrez gene IDs, and optionally upload multiple
lists at once by choosing the appropriate format (the
CTen webpage provides a single and multi-list example).
The gene list is processed to determine the number of
unique user genes found in the database and if the list
does not appear to be one of the two gene identifiers
stated above or the inappropriate format was selected,
the website shows a parsing error screen and asks the
user to ensure that the proper identifier is selected. If
there are no parsing errors, CTen produces a table
showing the number of unique user genes mapped in
the CTen database for each uploaded list (Figure 4C). If
no user genes are found in the database, CTen produces
another error, "No genes found in the database" and the
user is asked to reevaluate the uploaded gene list. Should
CTen not detect either of these errors, the option to
continue to enrichment appears and the user can com-
plete their analysis.

Using the one-sided, Fisher's Exact test for en-
richment, the enrichment score returned from CTen is
the -logl0 of the Benjamini-Hochberg (BH) adjusted
P-values (all calculations are performed in R [17]). Al-
though the enrichment score is a statistic in origin (in-
deed the enrichment scores could be used to control
the false discovery rate), we advise users to consider
the enrichment score to be a ranking and to not apply
a strictly statistical understanding of the number. This
is due to the sensitivity of the score to the size of the
gene list being analyzed, and we show in detail in the
Results and Discussion that ranking the results allows
for easier interpretation. The appropriate contingency
tables are constructed using the intersection of the
user list and the HECS genes for each cell type. The
gene universe (or gene background) against which the
enrichment is calculated is currently defined to be all
of the genes annotated in the human or mouse arrays
defined above. Importantly, the enrichment scores for
each gene list are calculated separately.

When only a single list is processed, a radar map of
the enrichment scores is produced but in the case of
multiple gene lists being supplied, P-values between each
list cannot be compared since the length of the gene lists
differ. So we developed a "weighted-ranking" strategy in
which the enrichment scores for the 10 most enriched
cell types in each list are scaled by the maximum enrich-
ment score for that list. The enrichment scores of cell
types either not present in the top 10 or present in the
top 10 but with enrichment score of less than 2 are
excluded. This procedure selects only the most enriched
cell types for each list and allows us to visualize whether
the enrichment scores of the top cell types were similar
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Figure 4 Overview of a CTen session. CTen has been designed with a user-friendly interface to allow for rapid analysis of several gene lists,
simultaneously. Panel (A) illustrates the workflow between the user, CTen interface and the HECS database. (B) At the upload screen, users can
copy and paste their gene lists straight from spreadsheet software (e.g., Excel) and select the appropriate parameters (species, gene identifier and
the separator used if multiple lists are being uploaded). (C) The data goes through preliminary processing to ensure the gene list(s) is parsed
properly and that the supplied genes are found in the HECS database. Once the user list passes preliminary processing, the enrichment of all cell

or if one cell type's enrichment score was dominant. The
influenza-infected lung tissue example and the advanced
use-case in the Results and Discussion illustrate CTen's
output for single and multi-list analyses.

Finally, for both single- and multi-lists analyses, the
final enrichment scores for all cell types can be down-
loaded for further processing by the users.

Results and discussion

CTen correctly identifies cell types

To assess CTen’s ability to identify the correct cell
type associated with gene expression data, we used an
independent database of cell-specific gene expression
(GNF1M_plus_macrophage_small dataset from BioGPS;
abbreviated GNFM1) to develop several lists of genes
which were highly expressed in select cell types. This
data set is an interesting test case for CTen because the
differences in the experimental protocol tests CTen's
performance when using different microarray tech-
nologies and biological conditions. In the GNFIM ex-
periment, they used mice which were ~2 weeks older
(compared to the mice used to develop the Mouse
MOE430 Gene Atlas data set), used a different ratio of
male and female mice, and employed custom micro-
array slides (GPL1037) [3]. For several cell types (5 tissues
and 3 lymphocytes; 2 lymphocytes in different cellular

states), we selected the top 5% of the most highly ex-
pressed probes. Entrez Gene IDs were mapped using the
annotation files available from BioGPS, and the resulting
lists analyzed in CTen.

We found that CTen consistently ranked the correct
cell type the highest for each tissue tested (Figure 5A)
and, with the exception of bone marrow, there was a
large difference in the scores between the first and sec-
ond most enriched cell types. Not surprisingly, bone
marrow was identified as being highly enriched for bone.
For the lymphocyte gene lists (Figure 5B), CTen not only
identified the correct lymphocyte but most often identi-
fied the correct cellular state of the lymphocyte as being
the top ranked cell type. Only for the unstimulated
macrophages did CTen rank the inappropriate cellular
states the highest. Thus, from independent, cell-specific
gene expression data, we confirmed that CTen provides
clear guidance in relating gene expression data to the
appropriate cell type.

Ranking of the enrichment scores are robust

As with any analysis, small changes in experiment para-
meters should not greatly change the outcome. P-values
from the Fisher Exact test are very sensitive to changes
in the size of the gene list, but for many enrichment ana-
lyses, it has been observed that the rankings of the
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Figure 5 CTen validation and robustness of the enrichment score rankings. From an additional cell-specific gene expression database, we
took the top 5% most highly expressed genes for five kinds of tissue (lung, bone marrow, kidney, spleen and liver) and three lymphocytes in
different cellular states (CD4" and CD8" T cells, B cells and macrophages that were unstimulated or collected 7 hours after simulation with LPS).
Each list was analyzed in CTen and we show the top 5 enrichments scores for (A) the tissue (B) lymphocyte test lists. To evaluate the robustness
of these results, we repeated this procedure for the top 2-10% most highly expressed genes in each cell type. The enrichment scores from CTen
were ranked from highest to lowest, and (C) the heatmap illustrates the top 3 most enriched cell types identified by CTen (columns) for each
lymphocyte data tested (row labels). The bar plot on the right hand side summarizes the number of genes per test list. The heatmap for the
tissue data is available as Additional file 5.

enrichment scores are very robust [7,18]. Here, we asked
it CTen could robustly rank the correct cell types by
repeating the procedure described above - now using a
list of the top 2, 3,..., 10% most highly expressed genes
for the selected tissues and lymphocytes, resulting in 90
test lists. The different sizes of the lists simulate different
differential expression criteria during gene expression
analysis. As shown in Figure 5C, although the sizes of
the gene lists (and the underlying enrichment scores)
vary considerably, CTen most often ranks the appropri-
ate cell type the most highly. CTen was also able to
identify the proper cell state of the lymphocytes as well
although unstimulated macrophage data was assigned to
bone marrow macrophages collected 6 h after exposure
to lipopolysaccharide (LPS) 4 out of 9 times. CTen per-
formed even better for the tissue data, always ranking
the appropriate tissue the highest (Additional file 5). In

all, CTen can accurately identify a broad range of cell
types and very often identify the cellular state as well.
The results are very robust to changes in the length of
the test data, which can be equated to changes in the
cutoff criteria used during microarray analysis.

Minimizing the false positive rate

While CTen accurately identified the appropriate cell
type as having the highest enrichment score, we think
it's important to provide a comprehensive analysis of
CTen's accuracy for select cutoff values of the enrich-
ment score. Using the same test lists developed above
for Figure 5C, we used the receiver operating character-
istic (ROC) curve to identify what level of enrichment
was necessary to maximize the sensitivity (true positive
rate, TPR) while minimizing the false positive rate (FPR)
(Figure 6). Demanding a minimal enrichment score of 2
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provides a low FPR and, indeed, we found that for ran-
domly generated lists of genes, CTen rarely assigned
scores above 2 (Additional file 6). But we see here, rais-
ing the enrichment score cutoff from 2 to 25 greatly
minimizes the FPR without sacrificing the TPR. Re-
quiring enrichment scores above 25 only reduces the
sensitivity of the analysis. A similar analysis to this was
performed using the two databases from which CTen
was constructed resulting in nearly identical ROC curves
(Additional file 2 and Additional file 3). These curves
also suggest enrichment scores of 20-25 to optimally
minimize the FPR for mouse data, but slightly lower en-
richment scores (15 to 20) offer optimal performance for
human data. It should be noted that these performance
results are dependent on the size of the gene list. Thus,
for gene lists which are hundreds to thousands of genes
in number, a minimum enrichment score of 2 is recom-
mended, but scores of 20-25 appear to offer optimal
performance.

CTen versus GO analysis of influenza infected lung tissue
Using a list of genes found to be upregulated in lung tis-
sue collected from mice infected with influenza virus
(microarray data unpublished; the gene list is available
on the CTen website under the "Simple Example" tab),
we compared the results of a CTen analysis to a GO
analysis using DAVID [7]. Using the CTen website, we
find a very high enrichment of bone marrow derived and
peritoneal macrophages (Figure 7A), both of which have
been exposed to lipopolysaccharide (LPS) and collected
at different time points. Macrophage migration to the
site of infection is one of the first steps in coordinating
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Figure 6 CTen's performance for different levels of enrichment.
Using the same test lists behind the results shown in Figure 5C, we
constructed an ROC curve to evaluate CTen's classification
performance for different levels of the enrichment score. The error
bars depict the 95% confidence interval of the ROC curve for the
enrichment scores shown.
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the innate immune response [19]. Both LPS exposure
[20] and influenza infection [21] induces the activation
of the Toll-like receptor pathways, and macrophages are
often susceptible to influenza infection themselves [22].
Thus, an increase in macrophage numbers is consistent
with previously published studies [23] and the observa-
tion of the resulting cell type as "macrophage exposed to
LPS", indicates that the macrophages have possibly be-
come infected with the influenza virus as well.

DAVID uses modules of related biological terms to in-
terpret large gene lists into a meaningful biological con-
text and reports the scores of each module as the -log10
of the average P-value for each term within the module
[24]. Using the default settings, DAVID identifies the
Toll-like receptor pathway (Figure 7B, Cluster #1) as the
most significant cluster of annotations (Enrichment
score: 12.62; full results available in Additional file 7).
However, the clusters indicating enhanced macrophage
presence have a low significance (Cluster #29; en-
richment score: 1.74) and are very closely followed by a
T-cell related cluster (Enrichment score: 1.68). Taken to-
gether, these results indicate that although both analyses
can identify aspects of the cellular state of the sample,
CTen is better suited to identify the known changes in
the cellular demographics of the RNA samples.

Advanced use-case: distinguishing changes in lymphocyte
cell count from gene transcription

The most exciting potential of CTen is that, when ap-
plied to clustering studies, cell type enrichment analysis
can be used to approximate the evolution of local cellu-
lar demographics. Our laboratory's research is primarily
focused on reconstructing the host response during an
influenza infection [25]; a goal which requires us to be
able to integrate local intracellular signaling (Toll-like
receptor/RIG-I/NFkB pathways) with the coordinated
migration, infiltration, and activity of macrophages, T-
cells, B-cells, and other immune related cell-types. Being
able to resolve the various cell types present in a sample
from microarray data would greatly facilitate discovery
in a broad range of in vivo studies.

Figure 8 illustrates the proposed strategy for identify-
ing cellular signatures in in vivo data and its implications
for in vivo microarray based studies. In this illustration,
microarray data was assembled over a span of 5 days
from the lungs of mice infected with influenza virus on
day 0 (lung tissues are illustrated in Figure 8A). After
normalizing and differential expression testing, four gene
clusters (Figure 8B) were identified using the user's pre-
ferred clustering tool.

In this case, we are illustrating potential results from
using the WGCNA package [15], which applies color
labels to each cluster. The genes for each cluster can be
uploaded and analyzed in one session to identify the
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Figure 7 CTen versus GO analysis. A list of upregulated genes in lung tissue collected from mice infected with the influenza virus is analyzed
in (A) CTen and (B) DAVID. The first cluster to have a cell specific term is ranked 29th in the DAVID analysis. A complete list of the terms
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most enriched cell types in each cluster. In Figure 8C,
we find that macrophages are highly enriched in the
dark red cluster while several categories of B- and T-
cells (CD8+ T-cells) are the most enriched cell types in
the green and black clusters, respectively. Interestingly,
the orange cluster is not enriched for any cell type, and
we would conclude that transcripts in the orange cluster
represent differential gene expression due to transcrip-
tional differences between the samples (as opposed to
difference in the cellular makeup of the samples) and are
suitable for further analysis using traditional approaches.
The dark red, green and black clusters can be further
analyzed for pathway or functional enrichment to iden-
tify processes that may be coordinated with cell migra-
tion. This result may also help researchers decide the
appropriateness of additional analyses. Some analyses,
such as gene network inference, will have to carefully
consider how to remove the effects of cell migration
prior to network construction. Furthermore, the green,
black and dark red clusters' gene expression is highly
correlated to the corresponding lymphocyte's cell count
change. Thus, we may be able to infer the relative
changes in the B cell, T cell and macrophage count in
the infected tissue.

In all, this example illustrates how CTen has been
designed to facilitate the understanding of clustering
results by identifying conserved expression patterns that
are the result of changes in the numbers of a particular
cell type, providing critical guidance for selecting add-
itional analyses for each gene set and allowing users to

infer changes in cellular demographics between samples.
Based on the CTen enrichment platform, we propose a
novel analytical workflow for in vivo microarray, as illu-
strated schematically in Figure 8D, which ensures that
enriched biological pathways and processes identified in
a set of differentially expressed genes can be interpreted
in the proper cellular context.

Conclusions

In conclusion, CTen can effectively distinguish between
active gene transcription and apparent gene expression
resulting from differences in the numbers of select cell
types in microarray data. Furthermore, we provide a
novel research workflow which helps to ensure that gene
expression is interpreted in the proper biological con-
text. We will continuously improve the enrichment algo-
rithm so that a larger number of gene lists can be
processed simultaneously (currently, users are limited to
20 gene lists in a single session). Recently, a gene set en-
richment analysis based on the degree of pairwise correl-
ation within a given gene set was shown to successfully
relate samples to their corresponding tissue [26]. No
simple interface is available yet for researchers, but it
will be interesting to compare the performance between
these two approaches in the near future. Additionally,
we plan to introduce additional cell specific gene expres-
sion datasets so users can compare the results from dif-
ferent databases. And finally, while the examples focused
on lymphocyte migration, CTen can be used in several
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Figure 8 Detecting changes in lymphocyte cell counts and the appropriateness of follow-up analyses using CTen. (A) In infected tissue,
as B cells (green), T cells (black), and macrophages (dark red) migrate into the sample area, they bring with them their own unique quantities of
RNA, resulting in conserved expression patterns proportional to the cell type's increased (or decreased) presence. Here, we illustrate the potential
results from a clustering study using WGCNA [15], resulting in (B) 4 clusters with unigue temporal expression profiles; 3 of which are highly
correlated to the changes in the number of lymphocytes shown in (A). (C) Analyzing the genes present in each cluster, CTen can distinguish
which clusters represent gene expression and which represent cell migration, and determine the cell type responsible for the observed gene
regulation. Using a "weighted-ranking" strategy (see text), CTen produces a heatmap showing the most enriched cell types for each cluster. Based
on the CTen result, only the orange cluster is appropriate for further analysis using traditional bioinformatic techniques while the green, black,
and dark red clusters reflect the relative changes in the number of lymphocytes during the infection. (D) We propose a new analytical workflow
strategy which ensures that continued analysis of in vivo microarray data properly identifies events which may be coordinated with (or
coordinating) cell migration.

other scenarios; for example, comparing excised tissue Additional files
to ensure homogeneity between tissue samples.

. - . Additional file 1: A list of th It currently available in CTen.
Availability and requirements PRI, B TE i T TS e e HTENTY
Additional file 2: The enrichment performance of the mouse HECS

PrOJeCt name: CTen database for select HECS criteria and enrichment scores. We
Project home page: http://Www,inﬂuenza-onrg/~jshoe~ evaluated (1) does the precise cutoff for defining a HECS gene affect the

maker/cten/ enrichment performance and (2) for each cutoff, what values of the

enrichment score seems to best minimize the false positive rate (FPR)

Operating system: Platform independent

without impacting the true positive rate (TPR). We reconstructed tt

Programming Language: PHP and R HECS database by defining the HECS assignment threshold as (A) 5, (B)
Other requirements: None 10, (Q) 15, and (D) 20 times the median. Then, from the Mouse MOE430
Licefise: EULA Gene Atlas dataset, we took the top 10% of the most highly expressed
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genes for each cell type. From this 10%, we randomly sampled between
500 to 4000 genes 3 times to create 288 gene lists. Using the same
procedures described in the Clen implementation, these lists were
analyzed for cell wype enrichment for each HECS database constructed.
The ROC curve illustrates the that sensitivity (TPR) and the FPR are not

greatly affected by the HECS assignment thresheld selected. Furthermore,
on each figure, we show the performance evoeued for selected values
of the enrichment score. We see that selecting enrichment scores of 2 or
higher results in a reasonably low FPR but this can be significantly
improved by demanding enrichments scores of ~25 before the TPR is
affected.

Additional file 3: The enrichment performance of the human HECS
database for select HECS criteria and enrichment scores. We
evaluated (1) dees the precise cutoff for defining a HECS gene affect the
enrichment performance and (2) for each cutoff, what values of the
enrichment score seems 1o best minimize the false pesitive rate (FPR)
without impacting the true positive rate (TPR). We reconstructed the
HECS database by defining the HECS assignment threshold as (A) 5, (8)

10, and (O) 15 times the median. Then, from the Hurman U133A/GNF1H
Gene Atlas dataset, we took the tcp 10% of the most highly expressed
genes for each cell type. From this 10%, we randomly sampled between
500 1o 4000 genes 3 times to create 252 gene lists, Using the same
procedures described in the CTen implementation, these lists were
analyzed for cell type enrichment for each HECS database constructed.
The ROC curve illustrates the that sensitivity (TPR) and the FPR are not
greatly affected by the HECS assignment threshold selected. Furthermore,
on each figure, we show the performance expected for selected values
of the enrichment score. We see that selecting enrichment scores.of 2 or
higher results in a reasonably low FPR but this can be significantly
improved by demanding enrichments scores of ~20 before the TPR is
affected.

Additional file 4: A heatmap of the percentage of HECS genes
shared by any two cell types in the mouse (upper nght) and human
(lower left) databases.

Additional file 5: The highest ranked cell types ldentlﬂed by CTen.
Using the GNF1M_plus_macrophage_small dataset from BioGPS, the top
2-10% rost highly expressed genes for the tissues shown were analyzed
in CTen. The enrichment scores from CTen were ranked from highest to
lowest, and the heatmap illustrates the top '3 most enriched cell types
{calumns; for each lymphocyte data tested {row labels). BM = bone
marow,

Additional file 6: Expected enrichment scores for random gene
lists. We analyzed in CTen 150 lists of 100-400 randomly selected 1Ds for
(A) mouse and (B) human Entrez Gene IDs - this resulted in a distribution
of enrichment scores. The distributions were fit to a gamma distribution
using the MASS package in R, Here, we show the density histogram and
fitted gamma function (left hand axisy and the probability distribution
function {right hand axis). The red bar highlights the enrichment score
which is 95% confidently above 0 (a= 0.95 at enrichment scores of 1.66
and 1.67 in the mouse and human data, respectively).

Additional file 7: A list of genes upregulated in mouse lungs which
have been infected with influenza virus and the full results of
analyzing this list in DAVID.
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ABSTRACT

Motivation: LibSBGN is a software library for reading, writing and
manipulating Systems Biology Graphical Notation (SBGN) maps
stored using the recently developed SBGN-ML file format. The library
(available in C++ and Java) makes it easy for developers to add
SBGN support to their tools, whereas the file format facilitates the
exchange of maps between compatible software applications. The
library also supports validation of maps, which simplifies the task of
ensuring compliance with the detailed SBGN specifications. With this
effort we hope to increase the adoption of SBGN in bioinformatics
tools, ultimately enabling more researchers to visualize biological
knowledge in a precise and unambiguous manner.

Availability and implementation: Milestone 2 was released in
December 2011. Source code, example files and binaries are freely
available under the terms of either the LGPL v2.14+ or Apache v2.0
open source licenses from http://libsbgn.sourceforge.net.

Contact: sbgn-libsbgn@lists.sourceforge.net

Received on December 13, 2011; revised on April 24, 2012; accepted
on May 1, 2012

1 INTRODUCTION

The Systerﬁé Biology Graphical Notation (SBGN, Le Novere
et al., 2009) facilitates the representation and exchange of complex
biological knowledge in a concise and unambiguous manner: as
standardized pathway maps. It has been developed and supported
by a vibrant community of biologists, biochemists, software
developers, bioinformaticians and pathway databases experts.

*To whom correspondence should be addressed.

SBGN is described in detail in the online specifications (see
http://sbgn.org/Documents/Specifications). Here we summarize its
concepts only briefly. SBGN defines three orthogonal visual
languages: Process Description (PD), Entity Relationship (ER) and
Activity Flow (AF). SBGN maps must follow the visual vocabulary,
syntax and layout rules of one of these languages. The choice of
language depends on the type of pathway or process being depicted
and the amount of available information. The PD language, which
originates from Kitano’s Process Diagrams (Kitano et al., 2005) and
the related CellDesigner tool (Funahashi et al., 2008), is equivalent
to a bipartite graph (with a few exceptions) with one type of nodes
representing pools of biological entities, and a second type of nodes
representing biological processes such as biochemical reactions,
transport, binding and degradation. Arcs represent consumption,
production or control, and can only connect nodes of differing
types. The PD language is very suitable for metabolic pathways,
but struggles to concisely depict the combinatorial complexity of
certain proteins with many phosphorylation states. The ER language,
on the other hand, is inspired by Kohn’s Molecular Interaction Maps
(Kohn et al., 2006), and describes relations between biomolecules.
In ER, two entities can be linked with an interaction arc. The
outcome of an interaction (for example, a protein complex), is
considered an entity in itself, represented by a black dot, which
can engage in further interactions. Thus ER represents dependencies
between interactions, or putting it differently, it can represent which
interaction is necessary for another one to take place. Interactions
are possible between two or more entities, which make ER maps
roughly equivalent to a hypergraph in which an arc can connect
more than two nodes. ER is more concise than PD when it comes to
representing protein modifications and protein interactions, although
itis less capable when it comes to presenting biochemical reactions.
Finally, the third language in the SBGN family is AF, which

© The Author(s) 2012. Published by Oxford University Press.
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represents the activities of biomolecules at a higher conceptual
level. AF is suitable to represent the flow of causality between
biomolecules even when detailed knowledge on biological processes
is missing.

Efficient integration of the SBGN standard into the research
cycle requires adoption by visualization and modeling software.
Encouragingly, a growing number of pathway tools (see http://
sbgn.org/SBGN_Software) offer some form of SBGN compatibility.
However, current software implementations of SBGN are often
incomplete and sometimes incorrect. This is not surprising: as SBGN
covers a broad spectrum of biological phenomena, complete and
accurate implementation of the full SBGN specifications represents
a complex, error-prone and time-consuming task for individual
tool developers. This development step could be simplified, and
redundant implementation efforts avoided, by accurately translating
the full SBGN specifications into a single software library, available
freely for any tool developer to reuse in their own project.
Moreover, the maps produced by any given tool usually cannot be
reused in another tool, because SBGN only defines how biological
information should be visualized, but not how the maps should be
stored electronically. Related community standards for exchanging
pathway knowledge, namely BioPAX (Demir et al, 2010) and
SBML (Hucka et al., 2003), have proved insufficient for this role
(more on this topic in Section 4). Therefore, we observed a second
need, for a dedicated, standardized SBGN file format.

Following these observations, we started a community effort with
two goals: to encourage the adoption of SBGN by facilitating its
implementation in pathway tools, and to increase interoperability
between SBGN-compatible software. This has resulted in a file
format called SBGN-ML and a software library called LibSBGN.
Each of these two components will be explained separately in the
next sections.

2 THE SBGN-ML FILE FORMAT

SBGN-ML is a dedicated lightweight XML-based file format
describing the overall geometry of SBGN maps, while also
preserving their underlying biological meaning. SBGN-ML is
designed to fulfill two basic requirements:

(1) easy to draw (as a machine) and read (as a human) and

(2) easy to interpret (as a machine).

The first set of requirement deals with the graphical aspect of
SBGN. It means it should be easy to render a SBGN-ML file to
the screen. Therefore, the format stores all necessary information,
such as coordinates, to draw the map faithfully, so that rendering
tools do not have to perform any complex calculations. Incidentally,
this implies the layout of the whole SBGN map has to be expressed
explicitly: the size and position of each graphical object and the
path of each arc. Various efforts have shown that generating a
layout for heterogeneous biological pathways is a computationally
hard problem, so a good layout is always worth preserving, if only
from a computational perspective. Besides, the choice of a specific
layout by the author of a map is often driven by concerns related
to aesthetics, readability or to reinforce ideas of chronology or
proximity. This information might be lost with automated layouts.
Layout conventions predate SBGN, and are not part of any standard,

<sbgn xmins="http://sbgn.org/Libsbgn/6.2">
<map language="process description">
<notes><p xmlns="http://www.w3.0rg/199/xhtml">
Glucose import followed by the first step of glycolysis.
</p></notes>
<glyph compartmentRef="e" id="g" class="simple chemical">
<label text="Glucose"/>

1
2
3
4
5
6
7
8

<bbox y="25" x="55" h="3" w="38"/>
9 </glyph>
18 <glyph compartmentRef="c" id="j" class="simple chemical">
11 <label text="Glucose"/>
12 <bbox y="155" x="S5" h="30" w="30"/>
13 </glyph>
3lyp

23 glyph>
24 <glyph compartmentRef="c* id="m" class="macromolecule">
25  <label text="Hexokinase"/>

26 <bbox y="185" x="85" h="30" w="70"/>

27 <glyph id a

28 <label tex

29 <bbox y="1

38 </glyph

31 </glyph> ]
32 > 1
33 b 1
34 b

B
88 <arc target="s" source="g" id="a" class="consumption">

81  <start y="5 70" />

82 <end y="102" x="70"/>
8 </arc

93 </map> L % 3
94 </shgn> e

Fig. 1. An example PD map (right) with the corresponding SBGN-ML code
(left). This example shows the import of glucose followed by the first step
of glycolysis. The colors used have no special meaning in SBGN, here they
merely indicate the relation between each SBGN glyph and its SBGN-ML
representation; a process node in orange, a simple chemical (ATP) in green,
a production arc in cyan, a catalysis arc in purple, a compartment in yellow
and a state variable in blue

but they nonetheless play a large role in making it easier for other
human beings to understand the biological system being described.

The second requirement encompasses two perpendicular
characteristics of SBGN as a language: semantics and syntax.
Beyond the picture itself, the format should capture the biological
meaning of an SBGN map. Therefore, SBGN-ML specifies the
nature of graphical elements (glyphs), following the SBGN
terminology (e.g., macromolecule, process, etc.). For example, we
can distinguish between a ‘logic arc’ and a ‘consumption arc’ even
though they have the same visual appearance. Supporting tools refer
to this terminology and draw the glyph according to the SBGN
specifications. In terms of syntax, SBGN-ML encodes information
on relationships between the various SBGN objects: the glyphs at
both ends of an arc, the components of a complex, the members of a
compartment and the ‘decorations’ (such as unit of information and
state variable) belonging to specific glyphs and arcs. This semantic
and syntactic information is essential to a number of automated
tasks, such as map validation, or network analysis (as the topology
of the underlying biological network can be inferred from the various
relationships encoded by the format).

To explain the syntax of SBGN-ML in more detail, consider
the example in Figure 1. This figure shows a PD map describing
the import of glucose by GLUT4, followed by the first step of the
glycolysis. The root element is named ‘sbgn’ (line 1). Below that,
there is a ‘map’ element with an attribute indicating that the PD
language is used. Below the map element, one finds a series of
glyph and arc elements. Each glyph carries a ‘class’ attribute to
denote the meaning in SBGN terms. In this example, there is a
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