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Abstract

Induction of cytochrome P450 3A4 (CYP3A4) expression is often implicated in clinically relevant drug-drug interactions
(DDI), as metabolism catalyzed by this enzyme is the dominant route of elimination for many drugs. Although several DDI
models have been proposed, none have comprehensively considered the effects of enzyme transcription/translation
dynamics on induction-based DDI. Rifampicin is a well-known CYP3A4 inducer, and is commonly used as a positive control
for evaluating the CYP3A4 induction potential of test compounds. Herein, we report the compilation of in vitro induction
data for CYP3A4 by rifampicin in human hepatocytes, and the transcription/translation model developed for this enzyme
using an extended least squares method that can account for inherent inter-individual variability. We also developed
physiologically based pharmacokinetic (PBPK) models for the CYP3A4 inducer and CYP3A4 substrates. Finally, we
demonstrated that rifampicin-induced DDI can be predicted with reasonable accuracy, and that a static model can be used
to simulate DDI once the blood concentration of the inducer reaches a steady state following repeated dosing. This
dynamic PBPK-based DDI model was implemented on a new multi-hierarchical physiology simulation platform named
PhysioDesigner.
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expression. The simplest model is one in which a static score of
degree of induction 1s calculated from the average plasma
concentration of an inducer using i vitro EC54 and E,,,, estimates

Introduction

"Cytochrome P450 enzymes (CYPs) are implicated in many

clinically relevant drug-drug interactions (DDI), as the metabolism
reactions catalyzed by this enzyme family are the dominant route
of elimination for the majority of drugs. Inhibition of the CYPs can
lead to an unwanted elevation in the blood level of drugs
administered concomitantly, which can result in life-threatening
adverse drug reactions [1,2]. Induction of CYP expression is not
normally considered to be a safety concern, but can lead to
inadequate drug efficacy [3]. For example, co-administration of
rifampicin  and cyclosporine results in excess metabolism of
cyclosporine leading to allograft rejection in transplanted patients
[4—6]. Thus, predictions of i vivo DDIs from i vitro metabolism
data are becoming increasingly important during the process of
preclinical drug development.

Various mathematical models have been proposed to predict
potential clinical drug-drug interactions from i vitro data [7-10].
However, induction studies are generally more difficult to conduct
compared with inhibition studies, as they need a cell-based sys-
tem that allows evaluation of gene transcription and protein
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[11,12]. The potental for induction-based DDI for any particular
drug combination is then predicted based on the proportion of the
drugs’ total body clearance attributable to the enzymes induced.
Dynamic models consider fluctuations in the levels of enzyme
activity [13-15]. The clearance rate of substrate drugs can be
dynamically altered by the acceleration of enzyme synthesis in an
inducer concentration-dependent manner. A recent study indicat-
ed that a dynamic model, although not a marked improvement
over the static model, tended to give better predictions for the 50
clinical DDI cases studied [16].

To date, the dynamic models reported are all indirect
pharmacokinetic/pharmacodynamic (PK/PD) models [13-15]
which assume that an inducer accelerates the enzyme synthesis
in a concentration-dependent manner. Since enzyme synthesis is
assumed to obey zero-order kinetics, the action of the inducer on
enzyme synthesis starts immediately. Therefore, the gradual
increase in CYP activity over several days’ exposure to the
inducer is attributed simply to the slow degradation rate of these
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enzymes. However, several studies have indicated that it takes at

least a few days for the mRNA to reach a maximum level [17,18].
To evaluate the kinetics of enzyme induction, it is lmportant to

consider the  time courses of ﬂequentlal mRNA and cnzyme

synthesis.
The present study is aimed at developing a hybrid simulation

model for predicting the dynamics of induction-based DDI, in
which a whole-body physiologically based ~pharmacokinetic’
(PBPK) model and an enzyme transcription/translation dynamics -

model are implemented. Feasibility of this hybrid model was
investigated- using rifampicin, a well-characterized and potent

inducer. of CYP3A4. Rifampicin is frequently used as -a positive

control or calibrator for evaluating . the CYP3A4 induction
potential of test compounds. Therefore, a large amount of in vitro
rifampicin data is available in the literature. In general, cultures of
primary human hepatocytes are believed to be the best i viiro
model for simulating in vizo conditions. However, considerable

functional variahility. of donor hepatocytcs has been obscncd .

[19,20].- To obtain non-biased parameters regarding transcription
and translation of CYP3A4, we systematically collected in vitro data
and analyzed them using an extended least: squares method
[21,22] that allows the estimation of kinetic parameters while

taking inter- and intra-individual variability into account. Using"

the parameters estimated from in vitre human hepatocytes, we then

predicted clinical phar macokinetics of CYP3A4 substrate drugs in

the presence of concomltandy admmlstel ed r1famp1c1n

Materials and Methods

Data Collection
The fincypsas values, i.e., the apparent contribution of CYP3A4
to drug oral clearance, were obtained for 15 CYP3A4 substrate
drugs in a previous report {23,24]. These values were estimated
from the increase in AUC,,, of the drugs tested resultng from the
action of CYP3A4 inhibitors, as observed in 53 separate clinical
DDI studies [23]. AUG,, is the area under the blood concentra-
tion-time profile-following oral administration. Information on the
pharmacokinetics of CYP3A4 substrate drugs when co-adminis-
tered with rifampicin (see Table S1) was also obtained from the
literature [25—40]. The dosage regimen of oral rifampicin was also
considered in the present analysis. Clinical pharmacokinetic data
of rifampicin with different oral dosage regimens were obtained
from a report by Acocella et al. [41]. In addition, in vitro rifampicin
induction’ data of CYP3A4 mRNA cxpression and/or cnzyme
Cdctivity in primary cultures of human hcpatocytes were also
~ collected [17, 42 46]

, Modelmg of the induction dynamlcs of CYP3A4
expression in human hepatocytes

Following the onset of treatment of hepatocytes with rifampicin,
expression of GYP3A4 mRNA was. up-regulated after an initial
time delay, and reached maximum level on day 2 [17]. Taking

into account that rifampicin induces expression of CYP3A4 via .

activation of the pregnane X receptor (PXR), a dynamic model
with a putative receptor was defined using the following equations:

1+CYPy/K; = RIF

AdPXR,e _ k S'\PXR (1)
B dt : - 1+CYP/]<, . EC50+R]F ‘ inact act
dRNA

= krna,.ryn + krna,pxr ‘PXRuct - kma,deg'RNA ‘ (2)

dt
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dcyp
o dt

where ‘RIF, PXR,, RNA, and CYP' are the concentration of
rifampicin, normalized amount of activ: ated PXR, CYP3A4
mRNA level, and CYP3A4 enzyme level, respectively, CYP,,
ECsp, K, and ke, are the baseline level'o'f CYP3A4 enzyme,
concentration of rifampicin at halfmaximum PXR-activation, the
constant for negative feedback inhibition, and the inactivation rate
constant for activated PXR, respectively. kyq g, and /L,,m i € a1e rate
constants for baseline and PXR-mediated synthesis of CYP3A4
mRNA, and £, 4, 1 the rate constant for its sequestration, while
kgpom and ky, 4, are rate constants for the synthesis and
sequestration of CYP3A4 enzyme. In the model, a delay in the
early phase of CYP3A4 mRINA expression after addition of the
inducer was assumed to be attributable to the time required for
activation of PXR, while the accelerated decay of this mRNA was
thought to result from the wbscqucnt negative fcedback inhibition

~?/ccyp,.vyrl'RNA—kcyD}d\eg'CYPf AT (3)

by PXR according to CYP3A4 level. In general, induction of

mRNA and subsequent CYP3A4 enzyme levels is evaluated as the
fold increase over the value observed. on day 0. If the levels of
mRNA and enzyme return. to their original values (RNA, and
CYP,, respectively) by the removal of a stimulus, the following
relationships should be %atlsﬁed w

Keypsyn' RNAg = keyp geg CYPg (4)

kl rna,deg RNAO o (5)

1{; na,syn —

Therefore, using RNA'= RNA/RNA and CYP' = CYP / CYPy,
Eqgs. 1-3 can be replaced with:

dPXR.i 14p _RIF
dt  14pCYP ECsy+RIF

- [ Cinact P X R(l('r (6)

dii’f’;' = Fnageg'(1 + ¢ PXRus— RNA') @)
ﬁ%’ﬂf ~Kopaeg(RNA'=CYPY) )
where
p=CYPy/Ki ©)
g= Kina,parKeyp.sym ' (10)

k» ‘na dcg kLyp deg’ CYPO

Since the considerable inter-donor variability of drug metabo-
lism by human hepatocytes has been attributed to variations in the
baseline level of the-CYP3A4 activity present [20], an extended
least square analysis was performed by considering the effect of
inter-donor variability on CYP (that is; p and ¢). This analysis was
carried out using the ADVANY routine in NONMEM 7.2 (Icon
Inc., Dublin, Ireland).
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Conventional modeling of the induction dynamics of
CYP3A4 activity

An indirect effect model for enzyme induction [13-15] can be
represented as follows:

dCYP Enax RIF
R ksy”. (1 4 max

dt ECso+ RIF

>—kdeg'CYP (11)
where kg, and kg, are rate constants for bascline synthesis and
sequestration of CYP3A4 enzyme, respectively. Assuming that the
level of enzyme prior to administration of rifampicin (CYP,) was
under the steady state, the following relationship should be
satisfied:

ksyn :kdeg‘CYPO (12)

Replacing the £y, of Eq. 11 and normalizing it with CYP,
(CYP'=CYP/CYPy), we obtain:

Equx RIF

dCYP’
ECso+RIF

g (1
d dg<+

—CYP ’) (13)

An extended least square analysis was performed by considering
the effect of inter-donor variability on £,,. This analysis was
carried out using the ADVANY routine in NONMEM 7.2.

Analysis of CYP3A4 activity induction by a simple static
model

Using only 72-h data, the £, and EC;, values for induction of
CYP3A4 by rifampicin were estimated from the following
equation:

Eax RIF

CYP'=
I+ ECsy+ RIF

(14)

An extended least square analysis was performed by considering
the effect of inter-donor variability on £,,,,, similarly to the case of
the indirect effect model mentioned before.

Modeling of the clinical pharmacokinetics of rifampicin
following repeated oral dosing

PBPK models are mechanistically rigorous models that incor-
porate anatomical and biochemical information into descriptions
of pharmacokinetics. To construct PBPK models, measurements
of drug concentrations in each organ and tissue are required.
However, only blood and urine data are generally available in
clinic. As an intermediate approach, a PBPK model which gives
an abstracted blood compartment and considers only recirculation
between blood and liver has been utilized [7]. It has been
demonstrated that the simplified PBPK model allows in vitro-in vivo
extrapolation of hepatic drug metabolism [7]. Rifampicin clear-
ance is known to be a nonlinear saturable process that accelerates
during repeated oral dosing [41]. The simplified PBPK model was
modified taking this specialized aspect of rifampicin pharmacoki-
netics into consideration. The mass-balance equations were:

dCb C/,'Rb
V—=—=0Q) e
Yt QG+ O K,

—CL, Gy (15)
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dc, CoRy  Vax Sty Ci /Ky
v, —0,-Cy— Oy ’
A

p,h K, +fup -Gy /Kp,h

(16)

i<t

+ ) " ky FyFyD8(1) exp(—ky (1= 1;))

d Vmax
dt

= kin‘(] +F'fup'Ch/Kp,h) _kam' Vmax (17)

where Cj and G, are concentrations of the drug in the blood and
liver, respectively, and V,,, is the inducible maximum hepatic
elimination rate. V;, CL, Q,, R,, and K, are the volume of
systemic circulation, renal clearance, hepatic plasma flow rate,
blood/plasma distribution ratio, and liver/plasma distribution
ratio, respectively. V), fu,, K,, k,, FF,, and D are the volume of
liver, fraction unbound in plasma, Michaelis-Menten constant for
hepatic eliminaton, absorption rate constant, product of fraction
absorbed and intestinal availability, and amount of oral dose,
respectively. Ay, ks and F are the rate constant for synthesis of
hepatic elimination activity, rate constant for decay of hepatic
elimination activity, and coefficient for auto-induction, respective-
ly. CL, and fu, were assumed to be 1.8 L/h and 0.2 [47],
respectively. 0, and V), were assumed to be 96.6 L/h and 1.4 L,
respectively [7]. Assuming that F,F, and R, were both at unity, V7,
Ko kay Kby kiny kow, and Fwere estimated by curve-fitting to blood
concentration-time profiles following repeated oral dosing of
rifampicin with different doses [41]. The parameter estimation
procedure was carried out with the ADVAN9 routine in
NONMEM 7.2.

Simulation of drug-drug interactions with rifampicin

In the case of drugs that are mostly metabolized by the liver,
induction-based DDI occurring after oral administration is
represented by:

A Ucind B 1
AUC  fincypiaa IR+ (1—ficypias)

(18)

where AUC and AUG™ are areas under the blood concentration
profile in the absence and presence of an inducer, respectively.
Jfmeypsay and IR are the fraction of the drug metabolized by
CYP3A4 and the relatve activity of CYP3A4 induced by the
inducer, respectively. This equation has been derived using the
following assumptions: the substrate drug is eliminated solely by
the liver, and the induction of CYP3A4 in the intestine is
negligible. The fmcypsas values for each substrate drug were
obtained from the literature [23,24]. In the previous article [24],
53 induction-based DDI data sets in human were collected and
compiled without any normalization, demonstrating that the
degree of DDIs could be comprehensively explained by the IR
values of various inducers determined from i vivo data by taking
simvastatin as a standard CYP3A4 substrate. In the present study,
only data for rifampicin were taken from the compiled data. The
IR value for rifampicin was estimated using i vitro parameters with
the following process: Using Egs. 15-17, the unbound concentra-
ton of rifampicin in the liver {fu, Cj, / K, ;) was computed. By
substituting it for the variable RIFin Eq. 6 or 13, a time-course for
the degree of induction of CYP3A4 (CYP’) in vivo was estimated by
Egs. 6-8 or Eq. 13. The IR was defined as the average of CYP’
over the interval.
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Figure 1. Snapshots of DDl models implemented in multi-hierarchical physiology simulation platforms. Fig. 1A represents a PBPK
model for rifampicin implemented on PhysioDesigner, and Fig. 1B represents a transcription/translation dynamics model for CYP3A4 following
administration of the drug, as implemented on CellDesigner. Fig. 1C represents a PBPK-based DDI model, where the enzyme induction model was
hybridized. Yellow and white rectangles represent the capsule module and functional module, respectlvely Modules can communicate by

connecting their ports with an edge.
doi:10.1371/journal.pone.0070330.g001

To simulate the blood concentration-time profile of a CYP3A4
substrate drug in the presence of rifampicin, a PBPK model for the
substrate, similar to that for rifampicin (Eqs. 15-17), was
considered. Assuming that hepatic eclimination is linear, the
mass-balance equation for the liver was replaced with:

dc,, C, R
Vi d[/ = Qh Cy— Qh hRp Cijv/, 'fup'C/I/Kp,h
P> h
1<t (19)
+ Z k(’.E’Fg.D.(S(ti)' CXp( _ka'([— li))
where CL;,, depicts intrinsic clearance for the substrate.

Pharmacokinetic parameters for CYP3A4 substrates were ob-
tained by curve-fitting to their blood concentration profiles as has
been reported previously [7]. For simulation of DDI with
rifampicin, CL;,;, was assumed to be dependent on CYP’:

CLi = CLy y (fmeypaas: CYP' + (1 —fincypsas))  (20)

where CL"™  and CL?

int int,y Ar€ Intrinsic clearances for the substrate
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in the presence and absence of rifampicin, respectively. Thus, two
PBPK models for the inducer and substrate were bridged with the
CYP3A4 induction dynamics model to compute the DDI with
rifampicin.

PHML-SBML hybrid simulation

Physiological Hicrarchy Markup Language (PHML) is a
markup language that can explicitly describe the multi-level
hierarchical structures of physiological functions in mathematical
models. One of the remarkable features of PHML is that it enables
the embedding of Systems Biology Markup Language (SBML)
[48] models as a module. To make a DDI model more readable
and reusable, two PBPK models for both inducer and substrate
were stored in the PHML format, and connected to each other via
a functional module representing subcellular enzyme induction, of
which the contents were implemented in SBML. The PHML and
SBML models were developed using open source modeling
platforms, PhysioDesigner (formerly insilicolDE) and CellDesigner,
respectively [49,50]. PhysioDesigner and CellDesigner are freely
available at http://physiodesigner.org and http://celldesigner.org.

Fig. 1 represents snapshots of the DDI model implemented in
the simulation platform. As shown in Fig. 1A, a PBPK model is
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primarily composed of two modules corresponding to the intestinal
lumen and body. Between these modules, it is enough to pass only
the value of an intestinal drug absorption rate. To ensure
maintainability and scalability of the model, these modules were
capsuled to hide unnecessary values, and opened with only a port
to pass the absorption rate value. By connecting the ports with an
edge, these capsule modules can communicate with each other.
Each module was further modeled in a hierarchical manner. Using
a template/instance framework of PHML, the absorption rate was
calculated in the intestinal lumen module by summing up the
values from each of the instances corresponding to multiple doses.
The body module includes the functional modules for the liver and
blood, in addition to a module for common static variables.
Differential equations and variables were implemented in the liver
and blood modules. Upon developing PBPK models for an
inducer and a CYP3A4 substrate drug, the models were bridged
with a capsuled functional module for induction of CYP3A4
(Fig. 1B). The CYP3A4 induction module reccives the unbound
concentration of the inducer in the liver from the inducer PBPK
model and provides the IR value for the substrate PBPK model.
However, the module was simply a frame, and its object was
implemented in a SBML format. Fig. 1C represents a SBML
model for induction of CYP3A4 developed using CellDesigner.

Results

Modeling of CYP induction dynamics

The pooled data set obtained from 24 different sources
comprised 43 and 40 data points for CYP3A4 enzyme activity
and mRNA expression levels, respectively. Considering the effect
of inter-donor variability on the baseline level of CYP3A4 activity,
an extended least square analysis was performed based on Eqs. 6~
8 (see Methods). The parameters ECsg, kinacts Kma,dee> /c%,y,)dcg, pandyg
were estimated to be 1.18 uM, 0.0530 h™", 0.0282 h™, 0.313, and
4.34, respectively, in addition to the inter-donor variability of CYP,
(0)2) of 0.318. Interestingly, the £, 4, estimated was comparable to
the one that was previously optimized for better @ wvitro/in vivo
extrapolation (0.03 h™') [51,52]. Fig. 2 represents simulated
surface plots for mean CYP3A4 acuvity and mRNA expression
as a function of concentration and time. Expression of mRNA
reached a maximum level at ~40 h following the onset of
incubation with rifampicin, whereas the peak of CYP3A4 activity
induction was delayed in comparison.

The data set for induction of CYP3A4 activity was also analyzed
based on a conventionally used indirect effect model. However,

simultancous estimation of all parameters by curve fitting failed, -

probably because estimation of £y, requires a clear observation of
the maximally induced state in the profile. Alternatively, using the
kag value from the literature [51,52], the ECj5p and E,,, values
were estimated by curve-fitting. When the g, value was a default
value of the Symeyp simulator (0.0072 h™"), the ECsy and E,q,
values were estimated to be 0.283 puM and 37.1, respectively, in
addition to a W of 0.726. When the kgg corrected for more
accurate in vitro-in vivo extrapolation (0.03 h™') [51,52] was used,
the EC;y and E,,, values were estimated to be 0.269 uM and 16.7,
respectively, in addition to a O of 0.702.

When the analysis based on a simple static model was
performed using only 72-h data, the ECs5p and E,,, values were
estimated to be 0.281 uM and 14.8, respectively. The O
value was 0.874.

Modeling of the clinical pharmacokinetics of rifampicin

Blood concentration-time profiles following repeated oral
administration of rifampicin were simultaneously analyzed to
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estimate its pharmacokinetic parameters based on a simplified
PBPK model. The estimated &, V;, K, Ky, kins kows, and I values
were 0.963 h™', 17.2 L, 0.370 mg/L, 10.6, 0.0193 mg/h,
5.75x10™ h™', and 8.64 L/mg, respectively. Fig. 3 represents
simulation curves for the blood concentration of rifampicin
when using different oral doses, together with experimentally
obtained values. To confirm the nonlinearity of rifampicin
pharmacokinetics, AUCy_;5, for 300 mg b.a.d. (twice a day)
and 600 mg q.d. (once a day) were calculated (Fig. 4). Even
though the total daily dose is the same, the AUC,_;4, for 300 mg
b.i.d. rifampicin was much smaller than that for 600 mg q.d. This
result could be successfully explained by considering it to be a
saturable elimination process. Auto-inducible elimination of
rifampicin was described by a concentration-dependent increase
in Kllﬂx'

In vitro-in vivo extrapolation

Using Egs. 15-17, the concentration of unbound rifampicin in
the liver was computed. The profile was convoluted into Eq. 6 to
estimate C'YP3A4 induction under clinical conditions, assuming
that the mechanism of GYP3A4 induction is equivalent between
vitro and @ vivo states. Fig. 5 shows a simulation of CYP3A4
induction following repeated oral dosing of rifampicin. The level of
CYP3A4 activity was transiently increased, peaking on day 4, and
then stabilizing on day 6 or later. Fluctuation of CYP3A4 activity
arising from repeated dosing of rifampicin was minimal, unlike
that of the blood concentration of the drug. Therefore, a static
model for enzyme induction would be sufficient to describe the
DDI occurring after rifampicin has been repeatedly administered
for more than 3 days.

Table 1 summarizes clinical DDI results between rifampicin
and drugs known to be metabolized by CYP3A4. The IR values
were estimated as an average of CYP3A4 activity induction for
the day studied, according to the dose, dosing interval, and
number of days treated with rifampicin. Using IR and fmcypsas
for each drug, reduction of AUC because of co-administration of
rifampicin was calculated and compared with clinical data (Fig. 6).
The predictive correlation coefficient (Q%) and standard deviation
of prediction errors (SDEP) were 0.684 and 0.0630, respectively.
Thus, the reduction of AUC for various drugs was predicted with
fairly good accuracy when using i vitro parameters for CYP3A4
induction.

For comparison, prediction using an indirect effect model was
conducted. When the default £, value of the Simcyp simulator
(0.0072 1" and its corrected value for an i vitro-in vivo correlation
(0.03 h™") were used [51,52], the Q? values were 0.499 and 0.570,
respectively. In addition, the Q? values were estimated to be 0.604
when the prediction was made by a simple static model, where the
average concentration of rifampicin in blood was calculated by
dividing its AUC by the dosing interval (i.e., 24 h). The predictions
provided by both cases were not as accurate as the presenty
proposed model.

Simulation of non-steady state DDI using the PHML
model

Taking alprazolam as an example, of which the DDI was
investigated under short-term treatment with rifampicin, the early
phase of DDI was simulated. PBPK parameters for alprazolam
(see Table S2) were obtained by curve-fitting to its blood
concentration profile as has been reported previously [7], and
PBPK models for alprazolam and rifampicin were implemented in
PHML using PhysioDesigner. Fig. 7A shows simulations of the
blood concentration of alprazolam in the presence and absence of
co-administration of rifampicin. Both drugs were assumed to be
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Figure 2. Curve-fitting to experimental data of the induction of CYP3A4 by rifampicin in human hepatocytes. Fig. 2A represents the
relative fold induction of CYP3A4 mRNA, while Fig. 2B represents that of the protein level determined by enzyme activity measurements. The data for
each donor is presented in a different color. The baseline-normalized data and corresponding equations, i.e., Equations 6-8, were used for this
analysis, assuming that inter-individual variability for induction is because of differences in baseline CYP3A4 activity. The surface curves represent the

averages.
doi:10.1371/journal.pone.0070330.g002

administered orally every 24 h. In the absence of rifampicin, the
blood concentration of alprazolam was increased stepwise
following repeated oral doses and eventually reached a steady
state. In contrast, in the presence of rifampicin the blood
concentration of alprazolam decreased in a time-dependent
manner and then reached a steady state at the lower level.
Fig. 7B represents comparison between simulation results and
measured clinical data [35]. The concentratdon profile of
alprazolam with rifampicin treatment was predicted well (SDEP:
0.760), using pharmacokinetic parameters of both drugs and
induction dynamics parameters for rifampicin. Pharmacokinetics
of other drugs with relatively shorter-term rifampicin treatment
were also simulated (see Figure S1), if the time-course data were
available.
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Discussion

Rifampicin is a strong inducer of drug metabolizing enzymes
such as CYP3A4. Rifampicin binds to the nuclear receptor
pregnane X receptor (PXR). Once activated, PXR forms a
heterodimer with the retinoic receptor (RXR), translocates into
the nucleus, and acts as a transcriptional factor. Transactivation of
PXR by rifampicin is regulated in a complex manner. Rifampicin-
activated PXR is negatively regulated by the small heterodimer
partner (SHP), which can be induced by farnesoid X receptor
(FXR) ligands [53]. SHP was shown to prevent the PXR/RXR
heterodimer from binding to DNA in a pull-down assay, while
over-expression of SHP inhibited transactivaton of PXR by
rifampicin [53]. However, rifampicin-activated PXR is known to
suppress expression of the SHP gene, while simultaneously
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Figure 3. Nonlinear curve-fitting to the blood concentration of
rifampicin with repeated oral administration. Clinical data
measured on day 1, 4, 6, and 14 (Ref. 40) were simultaneously analyzed
based on a PBPK model considering an auto-inducible metabolic
process (Egs. 15-17). Theoretical curves are represented for each data
set. Keys: 300 mg, b.i.d. (A, dotted line); 600 mg, q.d. (@, broken line);
900 mg q.d. (M, solid line).

doi:10.1371/journal.pone.0070330.g003

interacting with HNF4oa, SRC-1 and PGC-lo to initiate
transcription of the CYP3A4 gene [54]. As shown in Fig. 2, the
levels of CYP3A4 mRNA post administration of rifampicin (using
data compiled from the literature), appear to be highest at around
48 h. In the present analysis, these observations were regarded as a
consequence of gene expression regulatory networks and were
described using a simplified negative feedback model.

It has been observed that upon repeated oral administration, the
clearance of rifampicin increases because of self-induced metab-
olism [41,47]. Since the enzyme responsible for the metabolism of
rifampicin has recently been identified [53], it is still unclear
whether its expression can be induced by a PXR-mediated
mechanism, similar to CYP3A4 and other drug metabolizing
enzymes [56—58]. Therefore, in order to construct a PBPK model
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Figure 4. AUC measurements of the blood concentration-time
profile for oral rifampicin with different dosage regimens. The
AUC values were calculated from clinical data (Ref. 40) using a
trapezoidal method. Note that 600 mg qg.d. and 300 mg b.i.d. are the
same in terms of total daily dose.
doi:10.1371/journal.pone.0070330.g004

for the analysis of rifampicin pharmacokinetics, a simple auto-
inductdon process was considered. Based on the blood concentra-
ton profiles of rifampicin following repeated oral dosing, seven
parameters for rifampicin were estimated. Simultaneous multiple
curve-fitting allowed robust estimation of the pharmacokinetic
parameters. Even the K,, appeared to be reasonably estimated,
despite the lack of hepatic distribution data. The £}, obtained
from the nonlinear regression analysis was 10.6, which fell within
the range of K}, values calculated from in zivo human biopsy data
(4.8-30.3) [59]. This was also confirmed using the tissue
composition-based equations reported by Poulin and Theil [60].
The K, for rifampicin was estimated at 6.01 using a computed
octanol/water partition coefficient for rifampicin (logK,,: 4.24,
obtained from EPI Suite, available at http://www.epa.gov/
opptintr/exposure/pubs/episuite.htm).

In vitro parameters for rifampicin were estimated assuming that
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Figure 5. Simulation of the induction of CYP3A4 following
repeated oral dosing of rifampicin. Fig. 5A represents the relative
fold induction of CYP3A4 enzyme activity, while Fig. 5B represents the
blood concentration of rifampicin following oral dosing of 600 mg q.d..
Equations 6-8 and 15-17 were used for this simulation.
doi:10.1371/journal.pone.0070330.g005
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Table 1. Prediction of DDIs for various CYP3A4 substrate drugs with concomitantly administered rifampicin.

Substrate dlinical DDI®

predicted DDI?

alprazolam

buspirone

mefloquine S 0440 600 - . 7

simvastatin

triazolam

zopiclone - 0.44 600 : 5

midazolam 0.92 . 600, . ) 9

9.25 (6.51-19.0)

7.68 (5.48-15.5)

0.32 38 8.63 (6.14-17.5) 0.23

0.12 27

8.36 (5.94-16.9) 013

29 9.64 (6.81-19.7) 0.10

9.64 (6.81-19.7)

9.64 (6.81-19.7) 0.21

0.18 32

doi:10.1371/journal.pone.0070330.t001

~its degradation ‘was negligible during the tme period of the
experiment. Even when' the metabolism of rifampicin was
incorporated into the i vitro CYP3A4 induction model using a
reported generation rate of the metabolite [58]; differences in

0.6 1 P
0"’
[ %
.
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O
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Z .
5 0.24 by
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Figure 6. Correlation between predicted and observed AUC .

“values for various drugs co-administered with rifampicin. This
figure was produced- using the values listed in Table 1. Error bars for
predicted - values represent’the standard deviation from the inter-
individual variability in baseline CYP3A4 activity. Not that this variability
was estimated using extended least squares analysxs of in vitro data.
doi:10.1371/journal.pone.0070330.g006 ;
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a) Fractlon of the drug metabolized by CYP3A4 (fmCYP3A4) and cllmcal DDI data were taken from the article of Ohno et al. [24].

b) Clinical data were obtained from the articles shown with the reference ID (Ref. ID).

o) Induction ratio (IR) of CYP3A4 activity was calculated from daily dose and days of administration of rn‘amplcm by using Egs. 6-8 and 15-17. The values for IR were
represented as an average and upper and lower limits when one $.D. for inter-individual variability of CYP3A4 baseline activity was considered.

parameter estimation were at most 16% (data not shown). A
notable point of the analysis was that the parameter optimization
procedure could be carried out directly without providing the
keyp.de Value. Because it was a parameter sensitive to the difference
in the initial slope between the mRNA and activity profiles. In a
conventional model which analyzes the activity profile alone, the
maximally induced state needs to be presented in the profile to
estimate the parameter More - interestingly, the £y 4, value
estimated (0.0282 h™') was rather close to 0.03 h™', which was
corrected: for better:in vitro/in vivo extrapolation. [51,52]; than a
default k4, value of the Simcyp simulator (0.0072 h™). It has been
reported that the turnover half-lives for CYP3A4 determined by
various methods ranged from 10 to 140'h [61], which corresponds
to 0. 005-0.07 h™. Although more mformatlon is needed to define
an appropriate kg, the reasonable estimate was obtained from the
wn vitro data.

The reduction of AUC because of rlfamplcm -induced DDI was

_satisfactorily predicted from in vitro CYP3A4 induction data (Fig. 5).

The. predictive. correlation coefficient of the present dynamic

- model (Q% 0.684) was slightly better than that of a conventionally

used 1nd1rect effect model with the kg, 4, of 0.0072 h! (Q 0.499)
or 0.03 ™! (Q* 0.570). Since. these models can deal with the
dynamics of CGYP3A4: induction, the IRs for each drug were
calculated according to the dosage regimen. As shown in Fig. 3,
however; the level of CYP3A4 activity becomes stable on day 6 or
later: Since most of the clinical DDI evaluations were carried out
on. these days (i.e. after 5 or more days of treatment with
rifampicin), even a static model could also describe: DDI (Q%
0.604). The advantage of dynamic models is that it allows the

simulation of DDI even at the early stages of treatment. The

present: dynamic DDI. model, which considers the induction of
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Figure 7. Simulation of DDI between alprazolam and rifampicin
using a PHML/SBML hybrid model. Fig. 7A represents blood
concentration profiles of repeated oral doses of alprazolam in the
absence (solid line) and presence (broken line) of rifampicin. Fig. 7B
represents the comparison between the predicted blood concentration
of alprazolam with the corresponding clinical data (Ref. 35). Keys: 1 mg
alprazolam alone (@, solid line); 1 mg alprazolam with 4-day pretreat-
ment with daily doses of 450 mg rifampicin (A, broken line). The
pharmacokinetic parameters for alprazolam were estimated by curve-
fitting to the blood concentrations following the sole administration
(standard deviation of residuals, RSD: 0.483), and then used for predicting
those following the concomitant administration (standard deviation of
prediction errors, SDEP: 0.760). Both RSD and SDEP was the same in terms

of formula: RSD or SDEP= é/
doi:10.1371/journal.pone.007

Z (experimental—calculared)z/n.
330.9007

CYP at not only the activity level but also at the mRNA level, was
shown to successfully simulate the clearance time-course of
alprazolam, a drug known to be metabolized by CYP3A4 (Fig. 7).

Rifampicin is known to induce other CYP enzymes moderately,
as has also been described in the FDA guidance [62]. When
rifampicin is concomitantly administered, clearance of bupropion
(a CYP2B6 substrate), repaglinide (a CYP2C8 substrate), ‘and
warfarin (@ CYP2C9 substrate) increases 2.1~3.4 times [63],
2.3 times [64], and 2.3~3.8 dmes [65,66], respectively. As
compared with them, clearance of typical CYP3A4 substrates
was much more induced (~10 times) (Table 1). A review article
[67] compiled information on DDI with rifampicin and indicated
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that rifampicin induces CYP3A4 more efficiently than other
CYPs, glucuronosyltransferases (UGTs), and p-glycoprotein.
Taking them into account, induction of other enzymes than
CYP3A4 would minimally affect the results of prediction, unless
the fmcypsaq Of substrates was extremely low. Gefitinib (fmcypzas
0.39) is known to be metabolized largely by CYP2D6 [68], which
is litde induced by rifampicin. On the other hand, imatinib
(fmcypsas: 0.28) is metabolized by CYP2C8 to the similar extent
with CYP3A4 [69], resulting in slightly possible underestimation of
DDI due to rifampicin. Prednisolone (fmcypszas: 0.18) has been
reported not to be metabolized by any other GYPs than CYP3A4
or UGTs [70]. Although the reasons why the fmcypzas of
prednisolone is low remain unclear, the fmcypsqs of 0.18 gave a
good prediction of the DDI due to rifampicin. As long as the
results were viewed as fair, induction of other enzymes or
transporters might not be important in determining DDI between
CYP3A substrates and rifampicin.

PHML, which inherited instlicoML ISML) [71], is a new XML-
based specification to describe a wide variety of models of
biological and physiological functons with hierarchical structures.
It can describe mathematical models consisting of ordinary
differential equations, partial differential equations, agent-based
simulation models, and others. In a similar way to ISML [71], a
model is described by a set of functional elements (modules), each
of which specifies mathematical expressions of the module
functions. PhysioDesigner acts as a graphical editor and browser
of the models written in PHML or ISML. A notable feature of
PhysioDesigner is that it provides a function for creating SBML-
PHML hybrid models. Since SBML is widely distributed as a
standard format for representing and sharing models of biochem-
ical reaction networks, it enables us to create multi-level
physiological model systems. The functons of PhysioDesigner
allowed us to dynamically connect PBPK-based DDI models with
an enzyme transcription/translation dynamics model. Since the
module-based hybrid model is highly reusable, extension to more
comprehensive network models would be expected in future.

Supporting Information

Figure S1 Simulation of blood concentration of CYP3A4
substrate drugs following their oral administration.
Keys: sole administration (@, solid line); 5-day pretreatment with
daily doses with 600 mg rifampicin (A, dash line). Pharmacoki-
netic parameters for each drug were estimated by curve-fitting to
the blood concentrations following the sole administration, and
then used for predicting those following co-administration with

rifampicin. The pharmacokinetic parameters are given in
Table S2.

DOC)

Table S1 Pharmacokinetic data for CYP3A4 substrates.
(DOG)

Table S2 Pharmacokinetic parameters of CYP3A4 sub-
strates.

(DOC)
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Abstract Parkinson's disease (PD) is a major neurodegenera-
tive chronic disease, most likely caused by a complex interplay
of genetic and environmental factors. Information on various
aspects of PD pathogenesis is rapidly increasing and needs to
be efficiently organized, so that the resulting data is available
for exploration and analysis. Here we introduce a computa-
tionally tractable, comprehensive molecular interaction map of
PD. This map integrates pathways implicated in PD pathogen-
esis such as synaptic and mitochondrial dysfunction, impaired
protein  degradation, pathobiology and
neuroinflammation. We also present bioinformatics tools for

alpha-synuclein

the analysis, enrichment and annotation of the map, allowing
the research community to open new avenues in PD research.
The PD map is accessible at http://minerva.uni.lu/pd_map.
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Introduction

Parkinson’s disease (PD) is a major neurodegenerative dis-
ease, characterized clinically by a range of symptoms, in
particular, impaired motor behaviour. The pathogenesis of
PD is multi-factorial and age-related, implicating various ge-
netic and environmental factors [1]. Gaps in the understanding
of the underlying molecular mechanisms hamper the design of
effective disease modifying therapies. Investigation of such a
complex disease requires a proper knowledge repository that
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organizes the rapidly growing PD-related knowledge — a
disease map.

The concept of a disease map is relatively new and has found
only a limited application in the field of neurodegenerative
diseases thus far [2, 3]. Such a map represents diagrammatically
interactions between molecular components and pathways re-
ported to play a role in disease pathogenesis and progression. It
provides navigation and exploration tools that help the user to
locate specific areas of interest and visualize known interac-
tions. Associated analytical tools allow investigators to develop
a profound understanding of the disease, detect unexpected
interactions and ultimately identify new research hypotheses.

In this paper, we present a PD molecular interaction map that
captures and visualizes all major molecular pathways involved
in PD pathogenesis. Furthermore, it constitutes a resource for
computational analyses and a platform for community level
collaborations [4, 5] (see Fig. 1). We also present how a set of
bioinformatics tools applied to the map can facilitate in-depth
knowledge extraction and continuous curation.

The paper is divided into two parts. In the first part, we
review the pathways implicated in PD, with a focus on synap-
tic and mitochondrial dysfunction, x-synuclein pathobiology,
failure of protein degradation systems, neuroinflammation and
apoptosis. In the second part of the paper, we demonstrate how
the PD map interfaces with bioinformatics tools and databases
for its content annotation, enrichment with experimental
results, and analysis of its complex structure and dynamics.
The PD map is accessible under http://minerva.uni.lu/pd_map
(Online resource 1), as a SBML file (Online resource 2), and
Payao, a community platform for pathway model curation
[264].

Neurodegeneration in Parkinson’s Disease Arises
from Dysregulation of Interlinked Molecular Pathways

The major pathological feature of PD is the progressive degen-
eration of the nigrostriatal system, leading to the loss of dopa-
minergic (DA) neurons in the substantia nigra pars compacta
(SNpc) [6]. The degeneration of the nigrostriatal pathway and
subsequent loss of striatal dopamine contributes to the cardinal
clinical motor symptoms: tremor, rigidity, bradykinesia and
postural instability [7]. Although treatments such as dopamine
substitution and deep brain stimulation alleviate many of the
motor symptoms, there is no disease-modifying therapy
preventing the progressive loss of DA neurons [8].
Susceptibility for PD is modulated by various environmen-
tal factors [9—13], genetic predisposition or risk factors [14]
and epigenetic alterations [15, 16]." Exposure to pesticides
and industrial agents has been associated with an increased

! Epigenetic alterations — secondary, environmentally induced changes
of gene expression.

risk for PD [17, 18], but to date none of these agents have been
consistently identified as a causal factor for PD [19]. It is
known that exposure to inhibitors of mitochondrial respiration
[20-25] are sufficient to induce PD symptoms in humans and
DA neurodegeneration in animal models.

In this paper, we focus on DA neurons as a major point of
convergence in PD disease pathways. However, pathogenic
pathways leading to the demise of DA neurons may impact
any neuronal population affected in PD, including those of the
autonomic ganglia [26, 27]. The demise of these populations
may contribute to a range of PD-typical non-motor symptoms
hampering the life of PD patients, such as constipation and
dysautonomia (ganglia of autonomous nervous system), cog-
nitive decline and REM sleep behaviour (cholinergic neurons
of the nucleus basalis of Meynert, noradrenergic coeruleus—
subcoeruleus complex), depression and apathy (serotinergic
caudal raphe nuclei, cholinergic gigantocellular reticular nu-
cleus) [28, 29].

Vulnerability and Preferential Loss of Midbrain
Dopaminergic Neurons

SNpc DA neurons are the most vulnerable population of
neurons in PD. It has been suggested that their loss is multi-
factorial and related to the characteristic features of these cells:
complex morphology, high energy demand, high calcium
flux, and dopamine metabolism [30]. Consequently, these
neurons are particularly susceptible to various stressors, which
contribute to their preferential loss (see Fig. 2).

SNpc DA neurons have one of the longest yet most dense
arborisation of all neurons [31, 32]. They project to the stria-
tum, providing it with DA [33, 34]. These neurons have long,
thin, mostly unmyelineated axons [35] and up to 150,000
presynaptic terminals per neuron [30]. The high energy de-
mand required to support synaptic activity, compensation for
the potential risk of depolarization in the unmyelinated mem-
brane, and axonal transport over long distances put a huge
burden on the mitochondria. Interestingly, toxins that perturb
the energy production and the axonal transport of mitochondria
[36], cause parkinsonism in humans and preferential loss of
DA neurons in animal models [22, 36, 37]. Finally, the large
number of synapses increases the risk for local x-synuclein (x-
syn) misfolding (see sections “Synaptic Dysfunction” and “oc-
Synuclein Misfolding and Pathobiology™).

SNpc DA neurons can fire autonomously and have specific
calcium L-type Cav 1.3 channels that regulate this pacemak-
ing activity [38, 39]. The resulting high intracytosolic Ca®"
concentrations induce cellular stress, elevate the levels of
reactive oxygen species (ROS), and increase demand for
calcium buffering, which is handled by the endoplasmic re-
ticulum (ER) and the mitochondria. Maintaining proper calci-
um homeostasis in such an environment increases again the

@ Springer

-357-



90 Mol Neurobiol (2014) 49:88-102
Information
PD researchers Databases
Calcium Synaptic a-Synuclein
homeostasis pathobiology - misfolding
Mitochondrial C Failure of protein Unknown
dysfunction degradation systems C pathways

U Apoptosis

=

Neuroinflammation

Fig. 1 The concept of Parkinson's disease map and its possibilities. The
PD map is a knowledge repository bringing together different molecular
mechanisms and pathways considered to be the key players in the
disease. The current focus of the map is illustrated by the pieces in the
“PD puzzle” These modules include synaptic and mitochondrial dys-
function, failure of protein degradation systems, «-synuclein pathobi-
ology and misfolding, and neuroinflammation. Processes important in
PD-associated neurodegeneration, such calcium homeostasis or apo-
ptosis, are discussed within their appropriate context in the main text,
and included into the PD map pathways. The PD map is represented as a
graph constructed with all gene-regulatory protein and metabolic in-
teractions extracted from published data. Currently the map has 2,285
elements and 989 reactions supported by 429 articles and 254 entries
from publicly available bioinformatic databases. It is compliant with

energy needs. In contrast, neighbouring dopamine neurons in
the ventral tegmental area use Na' channels for pacemaking
and are relatively spared in PD [37].

Cytosolic DA also contributes to the vulnerability of DA
neurons, primarily because its metabolism induces oxidative
and nitrative stress in an age-dependent manner [40-42].
Neurotoxicity of DA increases with its concentration, which
is thought to be regulated by Ca®" concentration [43].
Additionally, dopamine metabolism is involved in a number
of PD-associated pathways, as it can impair synapse func-
tion, inhibit protein degradation and disturb mitochondrial
dynamics by inhibiting the function of Parkin.

Ageing, the primary risk factor for PD, especially affects
DA neurons (see Fig. 2). ®-Syn accumulation increases with
age in the SNpc and correlates with the loss of DA neurons in
non-human primates [42]. This could be linked to the age-
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standardized graphical representation, Systems Biology Graphical No-
tation (SBGN) [265]. This standardized representation of the map could
become a common language for the PD research community to discuss
disease-related molecular mechanisms [5]. Detailed contents of the PD
map are accessible at http://minerva.uni.lu/MapViewer/map?id=pdmap
(Online resource 1) as an SBML file (Online resource 2) and in Payao
[264]. The map can be updated with information from the PD research
community, as well as by searching bioinformatics databases. Explora-
tion and analysis of the content has the potential to broaden knowledge on
the molecular processes in PD, generate of new hypotheses on disease
pathogenesis, or prioritize the most interesting areas and molecules for
investigation. Approaches to facilitate this knowledge acquisition process
are discussed in detail in the section “Annotation, enrichment and
Analysis of the PD Map”

related impairment of the two protein degradation systems:
the ubiquitin—proteasome system (UPS) [42] and the autoph-
agy—lysosome system [44]. ROS accumulate in an ageing
brain [42, 45], partially due to mitochondria dysfunction, as
mitophagy” is decreased with ageing [45, 46]. Finally, the
threshold required to trigger a neuroinflammatory response
may decrease with age, since glial activation in SNpc in-
creases in the ageing brain [42, 47].

Synaptic Dysfunction

The main function of a synapse is to establish a connection
between neurons allowing communication via chemical or

% Mitophagy — autophagy of mitochondria.
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Fig. 2 Pathways implicated in PD and their relationship to susceptibil-
ity factors of SNpc DA neurons. The black arrows represent direct
molecular interactions between the dysregulated pathways. Red arrows
denote pathways affected by or generating ROS. Dashed lines represent

electric signals. The synapse has emerged as a neuronal
structure highly susceptible to a variety of chronic insults
[48-51]. Below, we discuss the increasing evidence indicat-
ing that synapses are also affected in PD, and that their
dysfunction and demise contributes to the disease.

«-Syn is a presynaptic protein. Point mutations, duplica-
tions or triplications of its gene are associated with familial
PD [52-54]. In cultured neurons, it transiently associates
with synaptic vesicles prior to neurotransmitter release, upon
which it rapidly redistributes to the cytosol [55]. Association
of a-syn with the synaptic vesicle may occur through its
binding to SNARE complex proteins [56], and, as shown in
mice, x-syn positively influences functional SNARE levels
[57]. Similarly, upregulation of &-syn in synapses and cell
somas of cultured neurons protects against oxidative stress
[58]. However, the protective effect of a-syn is limited to a
narrow concentration range, since high levels of ot-syn cause
familial PD [53]. Even modest overexpression of a-syn has
been reported to markedly inhibit neurotransmitter release
[59]. Also, a-syn forms potentially pathogenic micro-
aggregates in the synapse [60]. Another protein involved
familial and sporadic PD, LRRK2, is also present in the
synapse. Its experimentally induced upregulation or knock-
down impairs the dynamics of synaptic vesicle release and
recycling [61, 62]. However, the influence of mutated or
dysfunctional LRRK2 on these processes in PD remains to
be investigated.

A number of other PD-related pathological events might
affect synapses. Synapses of the nigrostriatal pathway, with
their high level of a-syn and dopamine, are likely to be the
major site of the formation of toxic adducts of x-syn and

Susceptiblity factors

% Complex  w_~_ -~ _» Dopamine
morphology w” metabolism
High Dk High

calcium flux ~ energy demand

indirect associations of these pathways and neurodegeneration. Suscep-
tibility factors of SNpc DA neurons associated with a given pathway are
indicated by their corresponding symbols

oxidized DA [40, 63, 64]. Furthermore, the energy demands
of synapses may be compromised by dysfunctional mito-
chondrial respiration, turnover, or axonal transport [65].
Locally dysfunctional protein degradation and turnover
may directly affect synaptic function and plasticity [66].

Mitochondrial Dysfunction

Mitochondria are highly dynamic organelles essential for a
range of cellular processes including ATP production, ROS
management, calcium homeostasis, and control of apoptosis.
The homoeostasis by
mitophagy involves multiple factors ranging from the con-
trol of mitochondrial fusion and fission to mitochondrial
motility [67]. These processes are strongly related to proteins
involved in familial and sporadic PD [65, 68, 69].

A number of proteins associated with familial PD are relat-
ed to mitochondrial function [70], with PINK1 and Parkin
playing a particularly important role. Control of mitochondrial
turnover and protection against oxidative stress are mediated
via the kinase activity of PINK targeting Parkin [71], HTRA2
[72] and TRAP1[73] proteins. In turn, mitophagy is driven by
PINKI-mediated translocation of Parkin from the cytosol to
mitochondria [71, 74]. Importantly, both mitophagy [75, 76]

maintenance of mitochondrial

and transcriptional control of mitochondrial biogenesis
[77-79] depend on the E3 ubiquitin ligase activity of Parkin.

Familial PD genes are also implicated in ROS production
by mitochondria. Mitochondrial respiration and calcium bal-
ance are perturbed by PINK 1 deficiency [80, 81]. The resulting
reduced mitochondrial calcium capacity and increased ROS
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