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Figure 5. Performances of Top1Net based on integration of
high- or low-diversity algorithm pairs by EUC distance. H and L
represent high-diversity and low-diversity algorithm’ pairs, respectively.
(A) Box-plots of overall score. (B) Box-plots of AUC-PR for in:silico
dataset. (C) Box-plots of AUC-ROC for in silico dataset. (D) Box-plots of
Max f=score for in silico ‘dataset. (E) Box-plots of AUC-PR:for E: coli
dataset. (F) Box-plots of AUC-ROC for E. coli dataset. (G) Box-plots of
Max f-score for E: coli dataset.-(H) Box-plots of AUC-PR for'S. cerevisiae
dataset. () Box-plots of AUC-ROC for S.cerevisiae dataset. (J) Box-plots
of max f-score for S. cerevisiae dataset. * and ** represent P<0.05 and
P<0.01, by the Wilcoxon rank sum test.
doi:10.1371/journal.pcbi.1003361.g005
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Discussion:

With an increasing corpus-of inference -algorithms, leveraging
their diverse and sometimes complementary “approaches in a
community consensus can be a promising strategy for reconstruc-
tion of gene regulatory networks from large scale experimental
data. A computational platform to systematically analyze, assess
and leverage these diverse techniques is essential for the successful
application of reverse engineering in biomedical research.

This study presents a reverse engineering framework which can
flexibly integrate multple inference algorithms, based on Top-
FNet - a novel technique for building a consensus network based
on the algorithms. It is pertinent to note here that the consensus

“framework based on TopiNet can be flexibly extended to include

various types of network-inference algorithms.

Comparative evaluation on the DREAMS5 datasets showed that,
although TopiNet based on 38-algorithm integration shows lower
or at most' comparable performance to the best individual
algorithms, ToplNet based on integration of top 10 highest
performance algorithms significantly outperforms the best indi-
vidual algorithm-as well as community prediction. The results
demonstrated that (i) a simple strategy to combine many
algorithms does not always lead to performance improvement
compared to the cost of consensus and (i) selection of high-
performance algorithms for a given expression: dataset and
ToplNet based on-integration of the selected high-performance
algorithms could be a powerful strategy for reliable reverse
engineering. : ;

Why does Toplnet algorithm integrating 10 optimal algorithms
perform quite well' and outperform the best individual method?
This is because 10 optimal algorithms tend to assign high-
confidence scores to true-positive links and Toplnet method can
recover many true-positive links that are with the highest
confidence scores from 10 optimal algorithms. Furthermore, 10
optimal algorithms are based on different techniques (e.g.,; mutual
information, regression, and other statistical techniques) and
Toplnet can leverage diversity from the optimal algorithms. For
example, the optimal algorithms based on mutual-information and
regression techniques can accurately recover true positive links in
feed-forward loops and linear cascade modules, respectively [35],
while Toplnet could integrate the algorithms and accurately
recover both feed-forward loops and linear cascade module in a
GRN. Therefore, Toplnet shows higher inference performance
than the best individual algorithms.

Why, then, Toplnet outperforms community prediction and
Topknet with higher £ Community prediction and Topknet with
larger k recover links with lower confidence scores than Toplnet,
i.e., community prediction uses mean among confidence scores
from 10 optimal algorithms and Topknet uses kth highest
confidence score from the algorithms. Links with lower confidence
scores from optimal algorithms are more likely to be false-positive
links and thus Toplnet shows higher inference performance than
community prediction and Topknet with higher £.

A key to reconstruct accurate GRNs is development of a
method to determine optimal algorithms for a given expression
dataset associated with unknown regulatory network. As men-
tioned in results, if similarity between expression-data associated
with known regulatory network. (i.e.; DREAMS datasets) and that
with an unknown regulatory network is high, optimal algorithms
for data with known regulatory network may be ‘also optimal for

‘reconstruction of the unknown regulatory network.

_ Based on this observation, we developed a measure to quantify
similarity among the expression . datasets: based - on algorithm
diversity and demonstrated -that, if similarity “between' the two

November 2013 | Volume 9 | Issue 11 | 1003361



Harnessing Diversity to Get Accurate Gene Networks

x

Data2
Optimal algorithms; A1, A4, A5
Datat Data3
imal algorithms;
Sptioal sigorittime; unknown Optimal algorithms; A1, A2, A3

Network inference algorithms; A1, A2, A3, A4, and A5|

' ”
]
] ]
]
]
| ]
]
] ]
] ]
| ]
] ]
|
| | ]
]
1 ] ]
| ]
1 ] |
] ]
1 ] ]
bl bttt (ot oot i ettt i et eiiodndintiadomtmii il o el e o
:B .
: Confidence scores from 5 algorithms Confidence scores from 5 algorithms Confidence scores from 5 algorithms :
& | for Data1l for Data2 for Data3 [ e
] | ]
+| | A5 [genel|gene2[gene3 ]| A5 [genel|gene2 [gene3] A5_|genei | gene2 [gene3 | | e
g A4 |genel|gene2 |[gene3 | 19¢ A4 [gene1|gene2[gene3 | 19\ A4 |genei [gene2 |gene3 | k-2
| [919{ A3 [genet[gene2 [gene3 | 1999¢ A3 |genel[gene2[gene3 | -91.9. A3 |genet [gene2 [gene3 | §
of 19191l A2 [genel[gene2[gene3 | |94 9¢o{ A2 |genel |gene2 |gene3| 1919¢ A2 [genel[gene2[gened| |
] gt 19¢ g¢ | ]
] L ]
] { g€ [
] H
] ]
| ] ]
L ] B
] 1
] &
it e e i I v o0 o o v o o i i sy B . o
& ¥
.C :
] L |
. Diversity among algorithms for Data1 Diversity among algorithms for Data2 Diversity among algorithms for Data3 |
. |Datal |A1/A2 A3 A4 A5 Data2 |A1|A2|A3| A4 | A5 Data3 |A1|A2|A3|A4|A5| .
- Al == s ss A1l —lzi=l=Fk= A1l sl == =1= ‘
: A2 : Rk A2 === "
. A3 = = ] = A3 =|[=1= '
] L ]
i3 L ]
] L ]
L ] L
| ] ]
g ¥

Data1 is more similar to Data2 than Data3. Therefore, integration of optimal algorithms for
Data2 (A1, A4, and A5) can be a better strategy than integration of optimal algorithms for Data3
(A1, A2, and A3) to infer GRN from Data1.

® ®
. '
. '
. '
: Similarity between Data1 and Data2 Similarity between Data1 and Data3 g
. S 104 'y g 0¥ .
. 8 ° S + -
3 S
2 84 ° 2 8 +
- £ ° £ + -
: E ° 5oy :
@
: 9 © g + .
. = 44 ° = 4 + -
D Q
B b o (o] & '
] E E [ ]
' 2 240 8 21 + '
- ]
i g d § + »
= = : : : : . = : - - . ; .
] X 2 4 6 8 10 @2 2 4 6 8 10 .
: O Distance between two algorithms for Data1 ©  Distance between two algorithms for Data1 :
. ]
. ]
. ]
o .
. '
. ]
. 5
‘ H
L

PLOS Computational Biology | www.ploscompbiol.org 11 November 2013 | Volume 9 | Issue 11 | 1003361

-321-



Harnessing Diversity to Get Accurate Gene Networks

Figure 6. Overview of a method to calculate similarity between two expression datasets. (A) Datasets. Expression datasets were split into
a dataset for which optimal algorithms are unknown (e.g., Datal) and datasets for which optimal algorithms are known (e.g., Data2 and Data3). (B)
Confidence scores of links between two genes. For each of datasets, confidence scores from each of algorithms (e.g., algorithms, A1, A2, A3, A4, and
A5) were calculated. (C) Diversity among algorithms. By Using confidence scores calculated in (B), diversity among algorithms were calculated for
each of three datasets. In this example, we examined five algonthms and thus, for each of the datasets, we have a vector of 10 distances between two
algorithms. (D) Similarity between two expression datasets. Correlation coefficient- between the vector of algorithm distances from Datal and that
from Data2 was calculated. The calculated correlation coefficient is defined as similarity between Datal and Data2. In the example in this figure,
Datal is more similar to Data2 than Data3. Thus, optimal algorithms for Data2 could perform better than those for Data3 to infer GRN from Datal.

doi:10.1371/journal.pcbi.1003361.9006

expression-datasets is hikghy integr ationk of 'all'TOIithmG that aré ;
optimal for one dataset could pexfolm well on the other dataset :

Thus, the similarity measure proposed in this qtudy can be a cood

clue to identify optimal algorithms for reliable reconstruction of an

unknown regulatory network.

The consensus framework oudined: in  this paper, TopiNet,
together with analysis of similarity among expression datasets, provide
a powerful platform towards:harnessing the wisdom of the crowds
approach in reconstruction of large scale gene regulatory networks:.

Materlals and Methods

DREAMS datasets

We used the DREAMS datasets (hup://wiki.c2b2.columbia.
edu/dream/index.php/D35c4) to evaluate performance of net-
work-inference algorithms. The DREAMS dataset composed of an

in-silico ne‘m"mkk(l 643 genes) the real transcr iptional regulatory
network of E. coli 4,511 deneq) that of .. celecisiae (5,950 genes),

“and conespondlng expression dataset (803 803, and 536 samples

for the in-silico, E. coli, and . celevisiae networks, respectively). The

expression dataset of E. coli and that of S. celevisae are composed of
hundreds of experiments, ie., genetic, drug, and environmental
perturbations. The in-silico network is generated by extracting a
subnetwork composed of 1,643 genes from the E. coli transcrip-
tonal network. The expression datasets of the. in-silico network

‘was simulated by software GeneNetWeaver version 2.0 [38]. For

the DREAMJ datasets, in the same manner to Marbach et al.
[35], we used the links with the top 100,000 highest confidence
scores by each netwmk—mfelence algorithm to evaluate perfor-
mance of the algorithm.

To evaluate performance of inference algouthms for the
DREAMS datasets,

DREAM organizers provide a matlab
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Figure 7. Slmllarlty among gen e-expression datasets based. on algor:thm dwers:ty. The scatter plots show correlation of algorithm
distance between two gene-expression datasets. Each of points in scatter plots represents each of algorithm pairs. Because we have 703 algorithm
pairs among 38 algorithms, 703 points are in‘eachof the figures. Vertical axis represents (EUC or PCA) distance between-two algorithms for one gene-
expression dataset, while horizontal axis represents that for the other gene-expression dataset. (A) Scatter plots of EUC distance for in silico and E. coli
datasets. (B) Scatter plots of EUC distance for in silico and S. cerevisiae dataset. (C) Scatter plots of EUC distance for E. coli and S, cerevisiae datasets (D)
Scatter plots of PCA distance for in silico and E. coli datasets. (E) Scatter plots of PCA distance for-in silico and. §. cerevisiae datasets. (F) Scatter plots of
PCA distance for E. coli and S. cerevisiae datasets.

doi:10.1371/journal.pcbhi.1003361.g007

PLOS Computational Biology | www.ploscompbiol.org 12 November 2013 | Volume 9 | Issue 11 | 1003361

-322-



Table 2. Correlation coefficient of algorithm distances and
that of performance metrics across the DREAM5 gene-
expression datasets.

Dataset 1  Dataset 2 EUC distance’ PCA distance?
In silico® E.coli® 0.87 0.81
In silico S.cerevisiae® 0.83 0.83
E.coli S.cerevisiae 0.99 0.99

'Spearman’s correlation coefficient of algorithm distance (EUC distance)
between Dataset 1 and Dataset 2.

2Spearman’s correlation coefficient of algorithm distance (PCA distance)
between Dataset 1 and Dataset 2.

3In silico Dream 5 dataset.

“Dream 5 dataset from E.coli.

“Dream5 dataset from S.cerevisiae.
doi:10.1371/journal.pcbi.1003361.t002

software (http:/ /wiki.c2b2.columbia.edu/dream/index.php/
D5c4). The software calculates 4 metrics for each network, ie.,
AUC-PR, AUC-ROC, AUC-PR p-value, and AUC-ROC p-
value. AUC-PR (AUC-ROC) p-value is the probability that a
given or greater AUC-PR (AUC-ROC) is obtained by random
scoring of links. Furthermore, the software calculates an overall
score that was used to evaluate the overall performance of the
algorithms for all three networks (the large synthetic network, large

A B

Harnessing Diversity to Get Accurate Gene Networks

real E. coli, and S. celevisiaee GRNs) of the DREAMS network
inference challenge. The overall score (OS) is defines as
OS =0.3(py+pq), where p; and p, are the mean of the log-
transformed AUC-PR p-values and that of the log-transformed
AUC-ROC p-values taken over the three networks of the
DREAMS challenge, respectively.

Confidence score of regulatory links from 38 network-
inference algorithms

We obtained confidence scores between two genes by 35
algorithms (29 algorithms are from DREAMS5 participants and 6
algorithms are commonly used “off-the shelf” algorithms) from
supplementary file of Marbach et al. [35]. For c3net, ggm, and
mrnet algorithms, we calculated confidence scores of regulatory
link by using GeneNet package [39], c3net R package [9,10], and
minet R package [40], respectively. Because Marbach et al. used
links with top 100,000 highest confidence scores from each of 35
algorithms for analyses [35], we used top 100,000 links from c3net,
ggm, and mrnet for analyses in this study.

Metrics to evaluate performance of inference algorithms

For a given threshold value of confidence level, network-
inference algorithms predict whether a pair of genes have
regulatory link or not. A pair of genes with a predicted link is
considered as a true positive (TP) if the link is present in the
underlying synthetic network, while the pair is a false positive (FP)
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Figure 8. Optimal algorithm selection based on similarity among expression datasets and its potential to improve network-
inference accuracy. Red lines show performance of TopkNet integrating algorithms that are optimal for a dataset with high-similarity, while green
lines show that with low-similarity. Blue lines show performance of TopkNet integrating top 10 highest-performance algorithms. Dashed lines in red,
green, and blue represent performance of community prediction integrating algorithms that are optimal for a dataset with high-similarity, that with
low-similarity, and top 10 highest-performance algorithms, respectively. (A) AUC-PR for E. coli dataset. (B) AUC-ROC for E. coli dataset. (C) Max f-score
for E. coli dataset. (D) AUC-PR for S. cerevisiae dataset. (E) AUC-ROC for S. cerevisiae dataset. (F) Max f-score for S. cerevisiae dataset.

doi:10.1371/journal.pcbi.1003361.g008
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if the synthetic network does not have the link. Similarly, a pair of
genes without a predicted link is considered as a true negative (TIN)
or false negative (FN) depending on whether the link exists or not
in" the underlying synthetic network, respectively. ‘By using' the
values of TP, FP, TN, and FN, we can calculate several metrics to
evaluate performances of network-inference algorithms.

Onec representative metric is precision/recall curve where the

, B TP
precision (p) and recall () are defined as p=w and

TP
r= m 1cspcctively By using many threshold values, we

obtained a pr ecmon/recall curve that is a glaphlcal plot of the
precision vs. the recall and is a straight forward visual represen-
tation of performances of network-inference algorithms. The area
under the precision/recall curve (AUC-PR) is 2 summary metric of
precision/recall curve and measures the average accuracy of
network-inference algorithms. Another representative metric is
ROC: curve that is a graphical plot of the true-positive rate vs. the
false-positive rate. The area under the ROC curve (AUC-ROC)
also represents the average inference performance of algorithms.
On the other hand, max f-score [41] evaluates optimum
performance “of network-inference algorithms where f-score is
defined  as
2pr . o »

?_{_—p). As predictions of network-inference algorithms
become miore accurate, the value of AUC-PR, AUC-ROC, and
max f-score becomes higher. We used AUC-PR, AUC-ROC, and
max f-score for performance evaluation. To obtain these three
metrics, we used package provided by the DREAMS team [33]
(PR curve, ROC curve, AUC-PR, AUC-ROC, and overall score)
and perl script provided by Kiffher et al. (max f-score) [27].

(f-score=

Distances among network-inference algorithms

By using confidence scores among genes by network-inference
algorithms, we calculated, Dguc(X)Y), the simple Euclidean
distance between two network-inference algorithms (EUG dis-
tance) X and Y for expression datasets with given number of genes
and given sample size. Before giving a definition for Dgyc(X,Y), let
us first define some notations. Let.n be number of genes in the
expression dataset and CS(i, j, X) be confidence value between
genes ¢ and j by algorithm X on the expression dataset. G = {(1,2),
(2,3), (&) ...(=1,0)} represents the list of all possible
combinations of two genes for n genes. We defined the EUC
distance between the two algorithms as Dgyc(X,Y)=

2 (CS(ijX)—CSGJ,Y))"

(i))eG )

Further, we calculated, Dpca(X,Y), the distance between two
network-inference (X and Y) on 2" and 3" principal components
(PCA distance) from PCA analysis on confidence scores of 38
algorithms. Let PCy(X) and PC5(X) be the 2" and 8™ components of
X, respectively. We defined the PCA distance between two algorithms

as DmuxYﬁqﬂmamrJIWWf+wQOOePQ0m?
For the PCA analysis, we used R code, pricomp2.R, obtained from
http //aoki2.si.gunma-u.acjp/R/sr c/ princomp2.R.

Slmllarlty between two expression datasets based on

algorithm diversity
By using distances among algouthm% we calculated, S(dal,da2),

harmonic mean~ of the precision and recall |

qlmllauty between two expression datasets dal and da2. Before -

giving definition of S(dal da2), let us first define some notation. Let
kand A= {a;, as, ..., a; .. ak} be the number of algorlthms and
the list of the algorithms respectively.” AC = {(a;,a0),(ag,as),..

(ai1,3),..., (ag1,a5)} represents all possible combinations of two
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-algorithms among £ algorithms (k(k-1)/2 algorithm combinations).

For example, in this study, we examined 38 algorithms and have

38%37/2 =703 algorithm combinations. IXa;a;dal). represents
distances between two algorithms a; and ay for. dal.
Ddul {AG} = {D(ahaQJdal): D(Z\Q;ali)dal)a T D(ai—l;az}dal)a

Do(a;.y,a,dal)} represents a vector of A(k-1)/2 algorithm distances
for dal (in this study, we have a vector of 703 algorithm distances
for each of DREAMSJS datasets). We defined S(dal,da2) as
Spearman’s  correlation coefficient - between two  “vectors,

Dda] {AC} and Dd?‘Q{AC}‘

Cloud computing infrastructure on Amazon EC2 to infer
GRNs from the large-scale DREAMS5 expression-datasets

To infer GRNs from the large-scale cxpression data of
DREAMS5 (expression data of E.coli and S. cerevisiae), we built a
cloud computing infrastructure on Amazon EC2 ‘“High-memory
double” instances (34.2 GB memory and 4 virtual cores with 3.25
EC2 Compute Units each) with Redhad linux and R version
2.15.0 [42]. We placed all the input data on the ephemeral storage
disk (850 GB) of the Amazon EC2 instances and TopANet output
results (e.g., a listing of confidence scores between genes) to files on
the storage disk.

Supporting Information

Figure S1 The work flow of the experimental frame-
work of this study. Expression datasets were obtained from the
DREAMS5 challenge web page (http://wiki.c2b2.columbia.edu/
dream/index.php/The_DREAM_Project). Inferred network from
the expression datasets by a network-inference algorithm is
compared to the networks of the DREAMS challenge (Step (i1i)).
See Materials and Methods for details.

(TTF)

Figure S$2 PR curves of TopkNet and community
prediction based on integration of the 38 individual
algorithms. (A) PR curves for in silico datasets. (B) PR curves for
E. coli dataset. (G) PR curves for S. cerevisiae dataset. Vertical and
horizontal axes represent precision and recall, respectively.

(TIF)

Figure 83 ROC curves of TopkNet and community
prediction based on integration of the 38 individual
algorithms. (A) ROC curves for in silico datasets. (B) ROC
curves for E. coli datasct. (C) ROC curves for S. cerevisiae dataset.
Vertical and horizontal axes represent true-positive and false-
positive rate, respectively.

(TTF) '

Figure S4 PR curves of TopkNet and community
prediction based on integration of the top 10 highest-
performance algorithms. (A) PR curves for in silico datasets.
(B) PR curves for E. coli dataset. (C) PR curves for S. cerevisiae
dataset. Vertical and horizontal axes represent precision and
recall, respectively.

(TIF)

Figure S5 ROC curves of TopkNet and community
prediction based on integration of the top 10 highest-
performance algorithms. (A) ROC curves for in silico

datasets. (B) ROC curves for E. colz dataset. (G) ROC curves for

S. cerevisiae dataset. Vertical and horizontal axes represent true-
positive and false-positive 1ate, respectiv ely

(TIF)

Fxgure S6 Petformances : of community . prediction
based on integration of high- or low-diversity algorithm

November 2013 | Volume 9 | Issue 11 | 1003361



pairs by EUC distance. H and L represent high-diversity and
low-diversity algorithm pairs, respectively. (A) Box-plots of overall
score. (B) Box-plots of AUC-PR for in silico dataset. (C) Box-plots
of AUC-ROC for in silico dataset. (D) Box-plots of Max f~score for
in silico dataset. (E) Box-plots of AUC-PR for E. coli dataset. (F)
Box-plots of AUC-ROC for E. coli dataset. (G) Box-plots of Max f-
score for E. coli dataset. (H) Box-plots of AUC-PR for S. cerevisiae
dataset. (I) Box-plots of AUC-ROC for S. cerevisiae dataset. (J) Box-
plots of max f-score for S. cerevisiae dataset. * and ** represent
P<0.05 and P<0.01, by the Wilcoxon rank sum test.

(TIF)

Figure 87 Performances of ToplNet based on integra-
tion of high- or low- diversity algorithm pairs by PCA
distance. H and L represent high-diversity and low-diversity
algorithm pairs, respectively. (A) Box-plots of overall score. (B)
Box-plots of AUC-PR for in silico dataset. (C) Box-plots of AUC-
ROC for in silico dataset. (D) Box-plots of Max f-score for in silico
dataset. (E) Box-plots of AUC-PR for E. coli dataset. (F) Box-plots
of AUC-ROC for E. coli dataset. (G) Box-plots of Max f-score for
E. ¢oli dataset. (H) Box-plots of AUC-PR for §. cerevisiae dataset. (I)
Box-plots of AUC-ROC for . cerevisiae dataset. (J) Box-plots of
max f-score for S. cerevisiae dataset. * represents P<<0.05 by the
Wilcoxon rank sum test.

(TTF)

Figure S8 Performances of community prediction
based on integration of high- or low- diversity algorithm
pairs by PCA distance. H and L represent high-diversity and
low-diversity algorithm pairs, respectively. (A) Box-plots of overall
score. (B) Box-plots of AUC-PR for in silico dataset. (C) Box-plots
of AUC-ROC for in silico dataset. (D) Box-plots of Max f-score for
in silico dataset. (E) Box-plots of AUC-PR for E. coli dataset. (F)
Box-plots of AUC-ROC for E. coli dataset. (G) Box-plots of Max -
score for E. coli dataset. (H) Box-plots of AUC-PR for . cerevisiae
dataset. I) Box-plots of AUC-ROC for S. cerevisiae dataset. (J) Box-
plots of max f-score for §. cerevisiae dataset. ¥ and ** represent
P<0.05 and P<<0.01, by the Wilcoxon rank sum test.

(TIF)
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Figure 89 Comparison of algorithm performances
across gene-expression datasets. The scatter plots show
correlation of algorithm performance between two gene-expres-
sion datasets. Vertical axis represents algorithm performance for
one gene-expression dataset, while horizontal axis represents that
for the other gene-expression dataset. (A) Scatter plots of AUC-PR
for in silico and E. coli datasets. (B) Scatter plots of AUC-PR for in
silico and §. cerevisiae datasets. (C) Scatter plots of AUC-PR for £
coli and S. cerevisiae datasets. (D) Scatter plots of AUC-ROC for in
silico and E. coli datasets. (E) Scatter plots of AUC-ROC for in
silico and . cerevisiae datasets. (F) Scatter plots of AUC-ROC for E.
coli dataset and S. cerevisiae datasets. (G) Scatter plots of max f-score
for in silico and E. coli datasets. (H) Scatter plots of max f-score for
in silico and S. cerevisiae datasets. (I) Scatter plots of max f-score for
E. coli and S. cerevisiae datasets.

(TIF)

Table S1 Performances of the 38 individual algorithms.
The table shows overall score, AUC-PR, and AUC-ROC of the
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(XLS)

Table 82 Correlation coefficient of performance met-
rics across the DREAMS5 gene-expression datasets. The
table shows Spearman’s correlation coefficient of performance
metrics across the DREAMDS gene expression datasets.
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Abstract

Background: Influenza is a common infectious disease caused by influenza viruses. Annual epidemics cause severe
illnesses, deaths, and economic loss around the world. To better defend against influenza viral infection, it is
essential to understand its mechanisms and associated host responses. Many studies have been conducted to
elucidate these mechanisms, however, the overall picture remains incompletely understood. A systematic
understanding of influenza viral infection in host cells is needed to facilitate the identification of influential host
response mechanisms and potential drug targets.

Description: We constructed a comprehensive map of the influenza A virus (1AV) life cycle (FluMap') by
undertaking a literature-based, manual curation approach. Based on information obtained from publicly available
pathway databases, updated with literature-based information and input from expert virologists and immunologists,
FluMap is currently composed of 960 factors (i.e., proteins, mRNAs etc) and 456 reactions, and is annotated with ~500
papers and curation comments. In addition to detailing the type of molecular interactions, isolate/strain specific
data are also available. The FluMap was built with the pathway editor CellDesigner in standard SBML (Systems

using the FluMap.

available at http//www influenza-x.org/flumap/.

Biology Markup Language) format and visualized as an SBGN (Systems Biology Graphical Notation) diagram.
It is also available as a web service (online map) based on the iPathways+ system to enable community
discussion by influenza researchers. We also demonstrate computational network analyses to identify targets

Conclusion: The FluMap is a comprehensive pathway map that can serve as a graphically presented knowledge-base
and as a platform to analyze functional interactions between IAV and host factors. Publicly available webtools will allow
continuous updating to ensure the most reliable representation of the host-virus interaction network. The FluMap is

Keywords: Drug targets, FluMap, Host factors, Influenza virus, Pathways

Background

Rapid adaption to new hosts and frequent antigenic alter-
ations make the prevention and treatment of influenza A
virus (IAV) infections challenging. To develop better inter-
vention methods, a deeper understanding of the viral in-
fection process and the host response to infection are
critical. TAV possesses an RNA genome of ~12 kilobases
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(kb) that encodes 10—12 proteins. As a consequence of
this small coding capacity, IAVs usurp and modify the host
cell machinery to replicate. Several studies have now pro-
vided extensive datasets on cellular factors that may dir-
ectly or indirectly affect the viral life cycle [1-6] (works are
reviewed in [7,8]). However, it has been challenging to in-
tegrate and compare this information with other published
data, and to develop a complete picture of the viral life
cycle. To this end, a comprehensive illustration and anno-
tation of the current knowledge of the IAV infection
process with underlying textual descriptions would greatly
assist in elucidating the mechanisms by which influenza

© 2013 Matsuoka et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (httpi//creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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viruses utilize host cell machinery and evade host defence
mechanisms.

Interaction networks, such as protein-protein inter-
action (PPI) networks, are often used to visualize interac-
tions among entities (for example, proteins), but such
networks do not capture the directionality of interactions
(for example, “who stimulates whom”). In addition, in-
teraction networks typically do not capture interactions
between different types of molecules (for example, pro-
tein—-RNA interactions). For these purposes, pathway
visualization approaches, that is, ‘pathway maps’ — such as
those described for Epidermal Growth Factor Receptor
(EGFR) [9], Toll-like receptor (TLR) [10,11], retinoblast-
oma protein/E2F (Rb/E2F) [12], yeast [13], or mammalian
target of rapamycin (mTOR) [14] — are better suited. Fur-
thermore, while a graphical representation provides the
best overview of biological phenomena, it is also import-
ant to represent the model in a machine-readable format
that can be rigorously analysed using in silico methods.

Several projects have generated open-source, open-
access databases of viral genome sequences, structural
and interaction data for viral proteins, and host re-
sponse data (e.g., the Influenza Research Database [15],
the Influenza Virus Resource [16], and VirusMINT
[17]); or pathway maps of IAV infections (e.g., Reactome
[18,19] and KEGG [20]). Among the available pathway
maps, the Influenza A’ KEGG map contains only a lim-
ited number of entities and reactions. A greater amount
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of detail is available in the Reactome ‘Influenza Life
Cycle’ and ‘Host Interactions with Influenza Virus Fac-
tors’ maps; however, these maps have not been updated
since their creation in 2006, and the lack of integration
between them makes it difficult to obtain insights into
how they are interrelated. Both the KEGG and Reac-
tome maps also lack significant additional information
about pathway entities (e.g., PubMed IDs, supportive
references) and neither is readily amenable to computa-
tional analysis approaches unless their pathways are
converted to standard file formats that can be imported
to analytic tools such as Cytoscape. Therefore, the use-
fulness of both the KEGG and the Reactome pathways
as information- and hypothesis-generating platforms is
limited.

To address these shortcomings and improve our un-
derstanding of influenza virus infections, we created an
integrated, comprehensive and interactive map that in-
cludes both viral life cycle and host response processes
(i.e., the “FluMap”) (Figure 1). Here, we describe the
FluMap construction strategy, highlight some of the
map’s major characteristics, and demonstrate how it
can be used as a bioinformatics tool. FluMap will be
made available at a website (http://www.influenza-x.
org/flumap) and can be used in conjunction with the
online curation platform Payao [21] and a pathway
browsing platform iPathways+ [22]. Together, these
tools enable the scientific community to freely and
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in the legend of Additional file 3. (See also Additional file 2).

Figure 1 FluMap, a comprehensive IAV pathway map. FluMap was created with CellDesigner version 4.3. A total of 960 factors and 456
reactions were included. The SBML and high-resolution image PDF files are available as Additional Data. When FluMap is opened in CellDesigner,
all factors, reactions, and cellular compartments included in the map are listed in the SBML file, and symbols used to build the map are illustrated
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simultaneously browse, add, and update FluMap informa-
tion, thus providing the foundation for a powerful,
community-curated knowledge base to further influ-
enza virus research.

Construction and contents

Construction of a comprehensive, knowledge-based
pathway map of influenza virus infection (FluMap)

The information used to build the FluMap (Figure 1;
Additional file 1, Additional file 2, Additional file 3, and
Additional file 4) was derived from several different
sources. First, we manually reconstructed the Reactome
‘Influenza Life Cycle’ and ‘Host Interactions with Influenza
Virus Factors’ maps [18,19] into a single map file (the
FluMap pathway ‘skeleton’). Next, we manually incorpo-
rated information about host pathways that are activated
in response to influenza virus infection, and - for all vali-
dated interaction partners of IAV factors - we included in-
formation about downstream signalling and processing
events. (e.g., phosphorylation cascades). Host factor and
pathway data were obtained by using published pathway
maps, KEGG [20], PANTHER [23] and/or Reactome
[18,19] pathway map databases. Finally, we manually inte-
grated literature-based information regarding the influenza
virus replication cycle and virus-host interactions that was
absent from the Reactome pathway ‘skeleton’ (Approxi-
mately 13% of the interactions in the map were derived
from the “skeleton”, and another 10% were collected from
the public pathway databases). This information was iden-
tified from review articles, extensive searches on PubMed,
and text-mining platforms such as iHOP [24].

Although recent siRNA screens [2-4,6], protein-protein
interaction studies [5,25-28] and global proteome analyses
[29,30] have identified a substantial number of cellular fac-
tors with potential roles in the IAV infection process,
FluMap includes only those with roles that have been ex-
perimentally confirmed. In addition, FluMap focuses on
intracellular events, and does not include intercellular
events (e.g., immune cell interactions). All curated reac-
tions and interactions in the FluMap were categorized into
specific parts of the influenza infection process (e.g., 'vVRNP
export), and for reactions imported from Reactome, we
kept the reaction name from this database (e.g., ‘Entry of
Influenza Virion into Host Cell via Endocytosis’). A similar
naming strategy was used for other reactions manually
added to the map (Additional file 2 and Additional file 5).

To build the graphical representation of the FluMap
(Figure 1; Additional file 2, Additional file 3, and Additional
file 4), we used CellDesigner ver.4.3 [31], a modeling soft-
ware that can be used to depict cellular processes step-
by-step, edit annotations, and provide links to reference

databases [32]; we also used Payao, a community-based,

collaborative web service platform for gene-regulatory and
biochemical pathway model curation [21]. The map is
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stored in the standard Systems Biology Markup Language
(SBML) (Additional file 4), a data exchange format based
on XML [33]; and it is represented in the CellDesigner’s
graphical notation [34], which adheres to the Systems
Biology Graphical Notation (SBGN) standards [35]. Map
graphics were produced using SBGN ‘process description’
language (Additional file 2), which allows for visualization
of state transitions (e.g., stimulation or inhibition events).
By using standard formats, we have enabled FluMap to
be adaptable to multiple network analysis tools such as
Cytoscape or to simulation by employing user-supplied
kinetic laws and SBML-compliant simulators.

In addition to a detailed visual representation, we gener-
ated comprehensive, text-based annotations, which are
stored in the same map file. CellDesigner enables annota-
tion of information in three different ways: (1) in the Notes
section; (2) in the MIRIAM (Minimum Information Re-
quired In the Annotation of Models) [36] format section;
and (3) in an additional layer overlaying the base model.
For FluMap, we used all three annotation options to maxi-
mise data accessibility (see Additional file 2 for details).
Gene IDs, UniProt accession numbers, PubMed (reference)
IDs, and Reactome IDs are stored in the Notes and MIR-
IAM sections. The Notes section also includes information
about the intracellular location of specific interactions or
reactions (e.g., Nucleus' or ‘Mitochondria’), the stage of the
infection process at which it occurs (e.g., Virus Entry or
‘VRNP Export), the participation of specific viral proteins,
and association with multi-protein complexes that regulate
host processes (e.g., ‘Apoptosome’) or signalling pathways
(e.g, MAPK’). Additional reference information (e.g., HAI:
Yoshida R et al. 2009’) is captured in the layer that overlays
the base model. CellDesigner provides direct access to the
relevant databases mentioned in the Notes section through
the CellDesigner database menu, and the weblinks in the
MIRIAM section by pressing the access button.

While process description diagrams capture all details
of biological processes, it is also useful to have a simpli-
fied overview of the system. We, therefore, used the ‘re-
duced notations’ option in CellDesigner to illustrate the
relationships between entities (positive/negative infer-
ences, modulation, trigger, etc.). This notation depicts
positive/negative influence interactions, rather than de-
tailed events, such as phosphorylation or catalysis in the
process description notation (see Additional file 2 sec-
tions B and C). Finally, we used this notation to manu-
ally construct a simplified map (Figure 2; compare to the
fully detailed FluMap in Figure 1) that provides a high-
level overview of the IAV replication cycle.

The FluMap is posted under http://www.influenza-x.
org/flumap, where users can browse its contents using a
pathway-browsing platform (iPathways+) and provide
updates and improvements using a manual curation
platform (Payao).
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Figure 2 Simplified version of FluMap. To generate a simplified version of FluMap for a high-level overview, we extracted central components
and reactions from the FluMap (virus factors (purple), host factors (green), antiviral factors (orange)), focusing on the inhibition (red) or activation

General characteristics of FluMap

The comprehensive FluMap (Figure 1; see Additional file
4 for the original SBML file) contains 960 factors (696
species + 264 factors hidden in complexes) and 456 re-
actions. Among these, there are 558 viral and cellular
proteins, 212 molecular complexes (composed of more
than one component), 12 ions, 55 ‘phenotypes’ (repre-
senting biological events such as apoptosis or autophagy),
and 18 antiviral compounds. As described, all reactions
are annotated with PubMed IDs in the Notes section; the
entire map is annotated with 476 papers (Additional file 5
and Additional file 6). FluMap thus provides a significant
improvement over the Reactome influenza infection
pathway, which included 156 species and 58 reactions
as of April 2012.

While the FluMap adopts the SBGN’s process descrip-
tion graphical notation, the simplified map (Figure 2;
Additional file 7) adopts the ‘reduced notation’ similar to
SBGN’s activity flow, which better facilitates visualization
of the virus-host interplay at different stages of the virus

life cycle. To better highlight the virus-host interplay, we
manually restructured the simplified FluMap into a lin-
ear flowchart that is divided into viral and host response
events (Figure 3; Additional file 8). In this representa-
tion, it is easier to track the different phases of the viral
life cycle (entry, endocytosis, transcription/translation,
assembly, and budding).

Description of the IAV replication cycle

In the following sections, we summarize our current
knowledge of the IAV replication process as outlined in
the FluMap (Figure 1), focusing on virus-host interactions.

Virus entry

The first step in the AV life cycle is virus binding to host
cells ('Virus Entry, Figure 1). The viral hemagglutinin
(HA) protein is critical for this step since it binds to sialic
acids on host cell glycoproteins or glycolipids. The HA
proteins of human IAVs preferentially recognize sialic acid
linked to galactose by an a2,6-linkage (Siaa2,6Gal) [37-42]
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IAV Virus - Host Interaction Timeline
Phase

Figure 3 Flowchart of the IAV life cycle. The simplified FluMap (Figure 2) was converted into a linear process flow diagram and separated into
the different phases of the viral life cycle (top portion), viral processes (middle portion), and host interaction factors (lower portion). Interactions
are classified as inhibitory (red), stimulating (blue), and transition (black). Enclosure in the middle (orange line) indicates nucleoplasm

that is predominant on epithelial cells in the human upper
respiratory tract [43-49]. In contrast, avian virus HA pro-
teins preferentially bind to Siaa2,3Gal [37-42], which is
predominantly found on epithelial cells of the duck intes-
tine (where avian influenza viruses replicate) [39,50-52].
These differences in HA receptor specificity are a critical
determinant of TAV host range (reviewed in [53-55]).

Endocytosis

Following receptor binding, IAVs enter cells through
receptor-mediated endocytosis (‘Endocytosis’ in Figure 1).
Clathrin-mediated endocytosis appears to be the primary
internalization pathway of IAVs [56]; however, clathrin-
independent endocytosis [57,58] and macropinocytosis
[59,60] have also been described for TAV internalization.
Several host factors including the small GTPases Rab5
and Rab7 [61], and interferon-inducible transmembrane
IFITM protein family members (i.e., IFITM1, IFITM2,
IFITM3) interfere with IAV internalization [1,62].

Fusion

At the low pH of the late endosome, HA undergoes an
irreversible conformational shift which expels the N-
terminus of the HA2 subunit (the so-called ‘fusion pep-
tide’) so that it can insert into the endosomal membrane,
resulting in the fusion of the viral and endosomal mem-
branes (reviewed in [63]) (‘Fusion’ in Figure 1). Through
an ion channel formed by the viral M2 protein, proton
influx also acidifies the interior of the virus particles,
leading to the dissociation of the viral matrix protein
(M1) from viral ribonucleoprotein (VRNP) complexes
[64]. VRNPs are composed of one of the eight viral
RNAs (VRNAs), which are wrapped around the nucleo-
protein (NP) and are also associated with the viral poly-
merase complex (see below). Dissociation from M1
allows VRNP release into the cytoplasm and subsequent
nuclear import, which is mediated by the cellular nu-
clear import factors importin-a (karyopherin-a) and
importin-f (karyopherin-f) [65-72] (‘Nuclear import’ in

Figure 1). The M1 protein, after dissociating from vRNP
complexes in late endosomes, is imported into the nu-
cleus separately [73].

Virus replication and transcription

The replication and transcription of IAV genomic RNAs
takes place in the nucleus and is catalysed by the trimeric
viral polymerase complex composed of PB2, PB1, and PA
subunits (‘Replication’, and ‘Transcription’ in Figure 1).
Viral RNA replication starts with the synthesis of a
positive-sense copy of the vVRNA, termed complementary
RNA (cRNA) (reviewed in [74]). This cRNA is then copied
to produce large amounts of VRNA (reviewed in [75,76]).
Several host factors have been identified that may play a
role in viral genome replication (reviewed in [77-79]).

Viral RNA transcription is initiated by the binding of
PB2 to the 5'-cap structure of host mRNAs [80-82]. The
endonuclease activity of PA [83] then ‘snatches’ the cap
structure and the 10-13 nucleotides included with the cap
serve as a primer for viral mRNA synthesis. The synthesis
of viral mRNAs is carried out by the polymerase activity
of PB1 [84]. The nuclear export of viral mRNAs is
reviewed in York and Fodor [79]. Transcription proceeds
until the polymerase complex stalls at a polyadenylation
signal near the end of the viral RNA [85-88].

Two IAV mRNAs (derived from the two smallest
VRNA segments, M and NS) are spliced to yield the M1
and M2, or the interferon antagonist (NS1) and nuclear
export (NEP/NS2) proteins. Splicing is carried out by
the host cell splicing machinery, but is likely regulated
by NS1 [89,90], which binds to several cellular splicing
components such as U6 small nuclear RNAs [91,92]
and UAP56, a splicing factor involved in spliceosome
formation [93,94].

Translation

Influenza viral mRNAs are translated by the host cell
translation machinery (‘Translation’ in Figure 1); thus
not surprisingly, several cellular translation factors such
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as elF4A (eukaryotic initiation factor-4A), eIF4E, and
e[F4G interact with viral mRNAs and/or polymerase
complexes [95-98]. Upon IAV infection, host cell protein
synthesis is limited, and TAV mRNAs are preferentially
translated [99-101]. In particular, ‘cap-snatching’ may de-
plete newly synthesized, nuclear mRNAs of their cap
structures, resulting in their rapid degradation before
nuclear export and translation. In addition, the inter-
action of NS1 with the cellular PABII (poly(A)-binding
protein II) [95,98] and CPSF (cleavage and polyade-
nylation specificity factor) proteins [102,103], and the
interaction of the viral polymerase complex with the C-
terminal domain of the largest subunit of cellular DNA-
dependant RNA polymerase II (Pol II) [104,105] may
contribute to the inhibition of host mRNA synthesis
(reviewed in [106]).

After their synthesis in the cytoplasm, the viral polymer-
ase subunit proteins and NP are imported into the nucleus
via their nuclear localization signals [71,74,107-118] to
catalyse the replication and transcription of vVRNA. In
addition, the M1 [64,119], NEP/NS2 [120], and "NS1 [121]
proteins are imported into the nucleus to execute their
roles in VRNP nuclear export (M1 and NEP/NS2) or the
processing and export of cellular and viral mR\IAs (NSI)
(1ev1ewed in [122]).

VRNP export

The nuclear export of newly synthe51zed vRNP com-
plexes requires the viral NEP/NS2 [123-126] and M1
[66,127,128] proteins. The latter is thought to form a
bridge between VRNPs and NEP/NS2 [129-131];, and M1
association with vRNP may require M1 SUMOylation
[132]. In the nucleus, VRNPs destined for export are
targeted to chromatin where they associate with Recl,
and export is mediated by the cellular export factor
Crml1 (‘"VRNP export’ in Figure 1) [125,127,133] in a
manner that is likely regulated by phosphorylation
[65,128,134-137]. . The cellular 'Y box binding protein 1
(YB-1) protein also associates with vRNPs in the nu-
cleus, is likely exported from the nucleus in-conjunction
with vRNPs, and facilitates vRNP association with
microtubules for transport to the plasma membrane
(see below) [138].

Following their synthesis by the cellular :translation
machinery, the viral HA, neuraminidase (NA), and M2
proteins enter the endoplasmic reticulum (ER) where
they are glycosylated (HA- and “NA) (reviewed in

[139,140]):or palmitoylated (HA and M2). Cleavage of

the HA proteins of highly pathogenic avian H5 and H7
viruses (which possess multiple basic amino acids at the
HA cleavage site) into the HA1 and HA2 subunits oc-
curs most likely by cellular furin-like proteases [141] in
the trans-Golgi network; this cleavage event is:critical
for the virulence of influenza viruses [142,143].:
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Transport of virus proteins to the cell membrane

Transport of viral proteins to the plasma membrane
(‘“Transport to membrane’ in Figure 1) likely requires
MTOCs (microtubule-organizing centers) [144,145], mi-
crotubules [144-146], and additional host factors includ-
ing COPI (coatomer I) protein family members [147], a
Rab GTPase (Rabl1A) [145,148-150], and the HIV Rev-
binding protein (HRB) [151].

Packaging and budding

At the plasma membrane, HA and NA associate with
lipid rafts (membrane regions rich in sphingolipids and
cholesterol) that are the site of influenza virus budding
[152-160] ('Pacl(aging' and ‘Budding’ in Figure 1). The
assembly and virion incorporation of the eight vRNPs
requires segment-specific packaging signals in the viral
RNAs [161,162]. The M1 protein may play a role in the
assembly process since it interacts with lipid membranes
[163-165], vVRNPs [130,131,166] (reviewed in [167,168]),
and NEP/NS2 {129,169]. In addition, some evidence
suggests the possibility that the M2 cytoplasmic tail me-
diates vRNP incorporation into the assembling virus par-
ticle [170].

Influenza virus budding does not require the proteins
of the endosomal sorting complexes that are required to
transport- ESCRT complexes, which are utilized by a
number of other viruses for budding. Rather, M2, which
is found in the raft periphery [152,157,171], appears to
mediate membrane scission and particle release [172].
This process may also require the cellular F1IFo ATPase
[25]. The enzymatic activity of the viral NA protein
removes sialic acids' from host cells and -from glycopro-
teins on virions, allowing virus release and pleventmg
virion aggregation (reviewed in [55,75]).

Post-translational processing

Several post-translational - modifications have been de-
scribed for IAV proteins, including the glycosylation of HA
(reviewed in [75,142]) and NA [173], the palmitoylation
(S-acylation) of HA and M2 (reviewed in [174]), and the
SUMOylation (i.e., conjugation with the small ubiquitin-
like modifier) of M1 [132,175], NS1 [176,177], NP [175],
PB1 [175], and"NEP/NS2 [175] (‘Post-translational pro-
cessing” in Figure '1). Moreover, phosphorylation:of M1
[137,178] and NP [107,179-183] may affect vRNP nuclear
import and export [66,113,128,134]: Phosphorylation of
NS1 [184] and PB1-F2 (a short protein synthesized from
the PB1 gene; see below) affects virulence [185], although
the mechanisms are not yet fully understood. These phos-
phorylation events are-catalysed by several cellular kinases
such as PKC (protein: kinase C) which phosphorylates M1
[136], PBI-F2 [185], NS1 [184,186], and PB1 [186], or by
CDKs (cyclin-dependent kinases) and ERKs (extracellular
signal-regulated kinases); which phosphorylate NS1 [187].
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Host responses

TAV infections trigger multiple host antiviral responses
(reviewed in [188,189]). These interactions are sum-
marized in the FluMap (Figure 1) and in the flowchart
that depicts the different stages of the viral life cycle
(Figure 3).

As a major host defence mechanism, pattern recognition
receptors (PRRs) recognize infecting agents and trigger
cellular antiviral responses (reviewed in [190]). To date,
three major classes of PRRs [Toll-like receptors (TLRs);
RIG-I-like receptors; NOD-like receptors (NLRs)] are rec-
ognized, all of which play a role in the defence against IAV
infections. The activation of PRRs leads to increased pro-
duction of type I interferon (IFN) and chemokines/cyto-
kines, resulting in the upregulation of antiviral factors.

IAV infections are recognized by TLR3 [191,192],
which acts through the adaptor molecule TRIF (TIR-
domain-containing adapter-interferon-beta) to stimulate
IFN-regulated factor 3 and NF«B (nuclear factor-kappa
beta); TLR7 [193,194], which signals through the adaptor
protein MYD88 (myeloid differentiation factor 88) and
induces IRF7 (interferon regulatory factor 7) and NF«B;
and RIG-I [195-198], which signals through MAVS
(mitochondrial antiviral signalling), also known as IPS-1,
and leads to the stimulation of IRF3, IRF7, and NFkB.
Moreover, IAV infection activates the inflammasome
[199-203], resulting in the cleavage and activation of
pro-caspase-1, interleukin-1 beta (IL-1f), and IL-18.

PRR stimulation leads to the synthesis of IFNa/B, which
binds to the ubiquitously expressed IFNa/p (IFNAR) re-
ceptor, resulting in the upregulation of the JAK/STAT
(janus kinase/signal transducer and activator of transcrip-
tion) pathway. JAK/STAT signalling induces the forma-
tion of a transcription factor complex (composed of
STATI1, STAT2, and IRF-9) that upregulates the expres-
sion of IFN-stimulated genes (ISGs). A number of ISGs
encode proteins with antiviral functions, such as PKR
(protein kinase R), OAS (2'-5'-oligoadenylate synthetase),
RNaseL (ribonuclease L), Mx, ISG15, IFITM family mem-
bers, and viperin (see below for details). IAVs have thus
evolved mechanisms to counter these host anti-viral de-
fence strategies, primarily through the actions of the NS1
and PB1-F2 proteins.

NS1 is the major viral IFN antagonist ([204]; reviewed
in [189,205]). It blocks RIG-I-mediated innate immune
responses by targeting RIG-I [195,206] and/or TRIM25
(tripartite motif-containing protein 25) [207], and inter-
feres with caspase-1 activation [208].

NS1I also interferes with the effects of several antiviral
host factors. IAV infection activates PKR, resulting in the
phosphorylation of the eukaryotic translation initiation
factor elF2a and the subsequent shutdown of protein syn-
thesis. This activation is inhibited by NS1 [209-214]. NS1
also controls the antiviral activity of OAS and RNaseL, a
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cellular nuclease that degrades viral RNA [215]. ISG15
(interferon-stimulated gene 15) is an IFNa/p-induced,
ubiquitin-like protein that conjugates to a wide array of
cellular proteins, thus blocking their function. It affects
IAV infection by interfering with the function of NS1
[216,217].

IAV infection stimulates the phosphoinsitide-3-kinase
PI3SK/Akt pathway [218-226], which has pro- and anti-
viral functions (reviewed in [219]). In particular, this
pathway is activated by NS1 binding to the p85 subunit
of PI3K [218,221,224,226-228] and by IAV vRNAs via
RIG-T [229]. Activation of the PI3K/Akt pathway is crit-
ical for efficient IAV replication [219,220], likely by
preventing premature apoptosis [222,227,230-232].

The C-terminal four amino acids of most NS1 pro-
teins comprise a PDZ ligand domain motif [233] that af-
fects virulence [234-236] (reviewed in [237]), most
likely through interaction with the cellular PDZ domain
proteins Scribble, Dlgl (disks large homolog 1), and
membrane-associated guanylate kinase MAGI-1, -2,
and -3 [238-240], which play roles in the regulation of
apoptosis or tight junction formation.

NS1 also reduces the levels of IFNa/p mRNA by inter-
fering with mRNA splicing [90-92,241] and the poly-
adenylation and nuclear export of cellular pre-mRNAs
[90,91,102,241-246].

PB1-F2 is a short protein of 87-90 amino acids
encoded by the +1 reading frame of most, but not all,
IAV PBI genes. It localizes to the mitochondrial mem-
brane [247-249] where it interacts with the mitochon-
drial membrane proteins ANT3 (adenine nucleotide
translocator 3) and VDAC1 (voltage-dependent anion-
selective channel 1) [250], resulting in membrane
depolarization [251,252] and the induction of apoptosis
[247,248,250]. However, a recent study suggested that the
induction of apoptosis may not be the major function of
PB1-F2 [253]. Rather, PB1-F2 may interfere with the func-
tion of MAVS (mitochondrial antiviral-signalling protein)
[254], and the resulting inhibition of IEN induction may
contribute to PB1-F2-conferred increases in pathogenicity,
inflammation, and the frequency and severity of bacterial
co-infections [255-259]. In addition, PB1-F2 binding to
PB1 affects the intracellular localization of the polymerase
protein and reduces polymerase activity, potentially affect-
ing virulence [260].

Other host antiviral factors include the Mx proteins
[261-263], which most likely interfere with viral replica-
tion [264-266]; members of the IFITM protein family,
which interfere with IAV cell entry [1,62,267]; and
viperin, which executes its antiviral activity by disrupting
lipid rafts that are critical for IAV budding [268].

Other important host responses to 1AV infection in-
clude the mitogen-activated protein kinase (MAPK) sig-
nalling pathways, which regulate multiple cellular events
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including cell cycle control, cell differentiation, and
apoptosis. All four of the currently recognized MAPK
pathways [extracellular signal-regulated kinases 1/2
(ERK1/2); c-jun-N-terminal kinase (JNK); p38; and
ERK5] are activated upon IAV infection [135,269-276].
Some of these pathways may have both pro- and anti-
viral functions [135,274,277-279].

Antiviral compounds

The FluMap also captures antiviral compounds that are
directed against a viral factor or a host target that is crit-
ical for efficient viral replication (reviewed in [280-283]).
See Additional file 9 for a summary table.

Currently, there are two types of FDA-approved anti-
IAV compounds: M2 ion channel inhibitors (amantadine,
rimantadine), and NA inhibitors (oseltamivir, zanamivir).

M2 ion channel inhibitors block the ion channel in the
viral envelope formed by the viral M2 protein. They pre-
vent the influx of hydrogen ions from the acidic late en-
dosome into the interior of the virion, a process that is
necessary for the release of vRNPs into the cytoplasm.
However, these inhibitors are no longer recommended
for use in humans because most circulating IAVs are re-
sistant to these compounds. [284].

The NA inhibitors oseltamivir and zanamivir are the
only antivirals currently recommended worldwide for
human use: Both compounds block the enzymatic activ-
ity of NA that is critical for efficient virus replication
[285-288]. ‘ Resistance to NA inhibitors has been de-
scribed but is not widespread among currently circulat-
ing IAVs (reviewed in [289]).

Several new antiviral compounds are in different stages
of clinical development and/or have been approved for hu-
man use in some countries, including two new NA inhibi-
tors, peramivir [290,291] and laninamivir [292], and a viral
polymerase inhibitor, T-705 [293-295].

Other strategies include the development of com-
pounds that interfere with virus replication (ribavirin)
[296,297], NP function (nucleozin) [298-301], NS1 func-
tion. (several candidates) [302-304], or HA function
[chemical compounds such as arbidol [305] that block
HA-mediated membrane fusion, or monoclonal anti-
bodies (MABs) directed ‘against HA]. In particular, the
development of monoclonal antibodies that target con-
served regions of the HA protein and interfere with
HA-mediated receptor-binding or fusion has received
increased attention [306-314].

Host factors that are crucial for efficient IAV replica-
tion but dispensable for cell viability may be interesting
drug targets since they are less likely to acquire resist-
ance to an antiviral compound compared with IAV pro-
teins (reviewed in [281,283]). For example, the sialidase
DAS181 (Fludase, NexBio), which cleaves sialic acids on
human bronchial- tissue and - inhibits TAV" infection
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[315-317], is currently in Phase II clinical trials in the U.S:
[283]: Several other approaches that are in early stages of
development include: (i) protease inhibitors that block cel-
lular enzymes required for HA cleavage [318-320]; (if) spe-
cific inhibitors of MAPKSs, such as U0126 (a MAPK/ERK
inhibitor), which blocks the nuclear export of vRNP com-
plexes ' [135,321]; -(iii) NFxB inhibitors such as acetylsali-
cylic acid (ASA; commonly known as aspirin) [322],
although aspirin may have adverse effects in JAV-infected
individuals [323,324]; and (iv) agonists of sphingosine-
1-phosphate (S1P) receptors, such as AAL-R, which re-
duce lung pathology upon IAV infection, likely because of
their effect on dendritic cell activation, T-cell responses,
and cytokine levels [325,326].

In silico prioritization of potential drug targets

A critical quest in infectious disease research is to iden-
tify-and prioritize novel potential therapeutic targets. In
our in silico analysis of FluMap, we exploited a specific
aspect of the network called controllability to identify
molecules that, when inhibited, increase the likelihood
of deregulating the virus replication cycle. Controllability
is the ability to drive a network from any initial state
to any desired state in a finite-amount of time given a
suitable choice of inputs [327]. From a biological net-
work perspective, controllability analyses identify key
molecular entities and processes that when perturbed
can drive a biological system from a disease state to a
healthy state [328]. :

To begin, we identified the smallest set of driver nodes
(molecules, complexes, etc.) needed to attain complete
control ofall of the other nodes-in the network. The size
of this smallest set was directly related to how difficult it
was to control the network in question. Networks that
demand a large set of driver nodes are inherently more
difficult to control. Further, as nodes are removed from
the network, the identity of the driver nodes may change
but; more importantly to our application, the number of
driver nodes — and the associated difficulty of control-
ling the network — may remain fixed or also change:
Thus, the second step of the analysis involved identifying
‘critical’ nodes that when removed from the network, in-
creased the number of driver nodes necessary to elicit
complete control, that is, increase the difficulty in con-
trolling ‘the network [329]. From a therapeutic perspec-
tive, inhibition of critical nodes/links would make it
increasingly difficult for the virus to maintain control of
the replication process. Further, controllability “analysis
can also be performed for the network links. Lastly, we
investigated ‘whether the critical nodes/links are associ-
ated with more commonly used network topology mea-
sures (e.g; nodes with-a high  number of neighbours
(degree) or nodes that are bottlenecks in the network
(betweeness)).
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To facilitate the above analyses, we converted FluMap
to a binary network by taking the direction of connec-
tions while ignoring the type of reaction (catalysis, inhib-
ition etc.) (Figure 4; Additional file 10 and Additional
file 11). Note that controllability analysis does not use
the type of reaction (e.g., catalysis, inhibition etc.). Thus,
ignoring the type of reaction does not affect the results.

Within the FluMap, we found that 256 (41.2%) of the
nodes were driver nodes and 112 (18.0%) were critical
nodes. Among the 137 critical links (15.3%), ~15% ac-
counted for interactions among viral factors, whereas ~10%
accounted for virus-host interactions. The remaining
two-thirds accounted for reactions between host factors.
Compared with previous studies [327], the driver nodes
ratio of the FluMap is similar to that of metabolic net-
works (30%-40%), and lower than the gene regulatory
networks (>80%).

Topology analysis revealed that critical nodes tended
to have a higher degree and higher betweenness than
noncritical nodes (two-sided Wilcoxon rank sum test
[WRST] of the degree and log,, of the betweenness; P <
2.2E-16 and P = 3.452e-06, respectively, see Additional
file 12). By using the node degree to prioritize the crit-
ical nodes, we found that the nuclear pore complex
(NPC) and the three host proteins, Akt, PKC, and the
Ran/GTPase complex (which plays a critical role in the
export of proteins from the nucleus to the cytoplasm),
are both critical and highly connected within the network.
PKR and Y-box binding protein 1 (YB-1) come in the
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second tier. YB-1 is reported to assist in the transport of
influenza virus RNP to microtubules [138]. Perturbation
of these complexes/factors would thus be expected to have
the greatest impact on the IAV life cycle.

Among the 137 critical interactions identified, we did not
find that critical interactions have a higher or lower edge
betweeness than noncritical interactions (P=0.1, WRST of
the log,, of the edge betweenness), but we did find that the
ISG15-NS1 interaction and several interactions related to
pH control involved molecules with high degree. Our con-
trollability analysis identified several current antiviral com-
pounds and targets, such as M2 ion channel inhibitors
(which affect the pH inside the virion), the targets of si-
alidase, and viral polymerase inhibitors (Figure 4).

Our results suggest that the controllability analysis, to-
gether with network topology characteristics, can identify
important factors for the viral life cycle that may be poten-
tial therapeutic targets as well as known drug targets.
Given that the current map is constructed by manual cur-
ation, many important edges and nodes may be missing,
so that the robustness of the controllability analysis cannot
be assessed. Nonetheless, we show the potential of identi-
fying and prioritizing critical nodes and edges that may be
targeted for antiviral drug development.

Utility and discussion

Here, we present FluMap, a comprehensive pathway
map for TAV infections. This map is the most recent ver-
sion of the IAV host-virus interaction map and includes
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a significantly higher number of factors than previous
versions. It is intended to provide a platform for data
sharing, community curation, and in silico analysis, such
as network controllability “analysis. We have made
FluMap accessible online to allow for pathway and anno-
tation browsing. We have also provided interactive fea-
tures that will allow the research community to actively
participate in improving and updating FluMap.”

FluMap as a data analytic platform

We applied a network controllability analysis to demon-
strate that maps like FluMap can be used for in silico
analysis. Although the controllability analysis we applied
here does not take into  consideration the nature of the
interaction” (for example, activating “or inhibitory), our
analysis identified several events known to be critical for
the TAV life cycle, suggesting that the algorithm [327]
can be effectively applied to process-descriptive pathway
networks such as FluMap to identify and prioritize fac-
tors that could be targeted to affect the IAV life cycle. In
addition to known targets, our analysis also identified
factors that are not currently recognized as critical, such
as YB-1; further experimental testing could address the
significance of these events in IAV infections.

A comprehensive map such as FluMap can also be
used to analyze large-scale data sets (obtained -from
‘omics’ or siRNA' inhibition studies) by using the data
mapping function -of CellDeswner or other visualization
tools. RS '

For a deeper insight into IAV virus-host interactions,
the next step in pathway modeling is the integration of
additional datasets of host responses to IAV infections.
FluMap includes critical host response factors such as
RIG-I, PKR, and the NLRP3-inflammasome. However,
the pathways regulated by these factors are complex and
a significant amount of ‘cross-talk’ occurs between the
pathways, making it extremely challenging to compre-
hensively map host responses. Here, the integration of
additional experimental data as they become available
will improve our understanding of host responses to
IAV infections. Moreover, future versions of FluMap
could integrate intercellular reactions, such as events
stimulated by interferons and cytokines/ chemokines.

Lastly, a key distinction of FluMap compared with pre-
vious influenza replication cycles “is"the inclusions of
strain-specific information. There are strong differences
between the pathogenic potential of individual virus
strains, and highly pathogenic strains may exploit differ-
ent host machinery to ensure rapid replication and im-
mune suppression [330-333]. Within FluMap, users can
exploit the various annotations tools to analyse isolate-
specific pathway interactions and attempt to identify
critical molecular events associated with highly patho-
genic infections. As future studies with H5N1, H7N9, or
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reconstructed Spanish influenza viruses reveal more in-
formation regarding virus-host interactions, the FluMap
presented here will provide a basis for lapld consolida-
tion and in silico exploration.

Conclusions ; ) ;
We constructed a publicly available knowledge base
called "FluMap” that contains 960 factors and 456 reac-
tions. All reactions are annotated with PubMed IDs in
the Notes section and isolate-specific information is
available from many interactions; the entire map is an-
notated with 476 papers. FluMap is a comprehensive In-
fluenza A virus replication life cycle and host response
map, and is expected to be a valuable guidance map for
those who study influenza infection.

Availability and requirements
The FluMap is accessible at http://www.influenza-x.org/
flumap/. '

Additional files

Additional file 1: FluMap building and workflow of literature-based
pathway modeling. (a) FluMap Was built based on information from the
literature and from several pathway databases such as Reactorne, KEGG,
and, PANTHER The resulting map captures the viral life cycle and host
responses. Extensive annot s are provided. We then manu al!y
generated a simplified map for gh-level overview, and a map in which
arrows outline the sequence of events during IAV infection {Le, binding,
internalization, nuclear import, etc.), We conducted cont 'ollabwl* 1y and
network analyses over the FluMap to identify nodes essential to the
replication process. Key interactions and nodes from these analyses are
highlighted. (b) Summary of the literature-based pathway modeling
process that converts and integrates textual information into a graphical
representation. FluMap allows the community te browse, use, and
comment on the information provided; this interface with the researcn
communily is shown in green.

Additional file 2: How to browse FluMap. This document explains
how to browse FluMap at the website http//www influenza-x.org/
flurnap/, and shows its graphical notation scheme, as well as the
annotation policy we adopted for curation of the map. It also describes
how to open the map file with CellDesigner for further analysis or
modification, and how to curate the map on the Payao system
(http//www.payaologue.org).

Additional file 3: A poster version of FluMap.

Additional file 4: SBML map file of FluMap. The SBML map file
FluMap.xml can be browsed using CellDesigner. Please download
CellDesigner at http//www celldesigner.org/, install it, and open the
SBML file FluMap.xml to browse FluMap by using CellDesigner. For usage
of the software, see the documentation provided at the CellDesigner
website: hitp//www.celldesigner.org/documents.huml

Additional file 5: Entities & Reactions List of FluMap. This is a list of
the entities {such as proteins, genes, etc.) and reactions (interactions
between entities) in FluMap.

Additional file 6: Reference List of FluMap. This contains all of the
references annotated in FluMap.

Additional file 7: SBML map file of the simple version of FluMap.
The SBML map file of the simplified version of the IAV virus-host
interaction map can be browsed by using CellDesigner. Please download
CellDesigner at htip//www celldesigner.org/. For detall usage of the

-336-



Matsuoka et al. BMC Systems Biology 2013, 7:97
http://www.biomedcentral.com/1752-0509/7/97

software, see the documentation provided at the CeliDesigner website:
hitp://www.celldesigner.org/documents.ntml

Additional file 8: SBML map file of the flowchart version of FluMap.
The SBML map file of the 1AV virus-host interaction timeline can be
browsed by using CellDesigner. Please downlcad CellDesigner at http://
www.celldesigner.org/. For detail usage of the software, see the
documentation provided at the CellDesigner website: hitp/www.
celldesigner.crg/documents.himl

Additional file 9: Antiviral Drug List. This is a list of the influenza-
related antiviral drugs.

Additional file 10: Controllability Analysis. This document describes
the protocol for the controllability analysis we conducted with FluMap.

Additional file 11: Controllability Analysis Results. This file contains
the results of the controllability analysis, listing the critical, ordinary, and
redundant nodes/links.

Additional file 12: Topology Analysis Results. This file contains the
results of the topology analysis based on the controllability analysis
results to prioritize the target candidates.

Abbreviations
IAV: Influenza A virus; SBML: Systems biolegy markup language;
SBGN: Systems biology graphical notation.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

Y, HK, and YK conceived the idea of FluMap. YM, HM, and MK developed
the map. AJE, TW, SW, SF, GN, and TL reviewed and curated the map. TH, SG,
JS, and YM cenducted the contrellability analysis. Yid, Hi, and GN wrote the
manuscript. All authors approved the manuscript.

Acknowledgements

We thank the fellowing participants of several ‘'mapathons {map-building
meetings): Members of the Division of Virology, Department of Microbiclogy
and Immunology, The Insttute of Medical Science, The University of Tokyo
(Takec Gorai, Al Kakumoto, Hirotaka Imai, Ryo Takano, Eiji Takeda, and Ryuta
Uraki); members of the Department of Pathobiological Sciences, School of
Veterinary Medicine, University of Wisconsin-Madison (Masato Hatta, Chenjun
Li, and Makoto Ozawa); a member of the Systems Biology Institute, Tokyo
(Natal'a Polouliakh); and members of the JST ERATO Kawaoka infection-
induced host response network project {Hiroke Fujii, Ken Fujii, Eirye
Kawakamni, Yukiko Muramoto, Tadasuke lizumi, Saori Sakabe, Yuko Shoya-Imal,
and Yuriko Tomita). We also thank the software/platform development
teams of CellDesigner, Payao, and iPathways+ at the Systems Biology
Institute, Kelo University, and Okinawa Institute of Science and Technology
Graduate University. The authors would like to particularly thank to the
anonymous reviewers for their valuable comments and suggestions 1o
improve the quality of the paper. This research was funded by the
Exploratory Research for Advanced Technology (ERATO} program (Japan
Science and Technology Agency).

Author details

'JST ERATO Kawaoka infection-induced host responses project, Minato-ku,
Tokyo 108-8639, Japan. “The Systems Biology Institute, Minato-ku, Tokyo
108-0071, Japan. *Department of Bioinformatics, Medical Research Institute,
Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8540, Japan.
“Department of Pathological Science, School of Veterinary Medicine,
University of Wisconsin-Madison, Madison, WI 53711, USA. SLaboratory of
Veterinary Microbiology, Department of Veterinary Sciences, University of
Miyazaki, Miyazaki 889-2192, Japan. 6Sony Computer Science Laboratories,
Inc., Shinagawa, Tokyo 141-0022, Japan. “Okinawa Institute of Science and
Technology Graduate University, Onna-son, Okinawa 904-0495, Japan.
®Division of Virology, Department of Microbiology and Immunology, The
Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo
108-8639, Japan. “Department of Special Pathogens, International Research
Center for Infectious Diseases, Institute of Medical Science, University of
Tokyo, Minato-ku, Tokyo 108-8639, Japan. IOLaboratory of Bioresponses

=-337-

Page 11 of 18

Regulation, Department of Biological Responses, Institute for Virus Research,
Kyoto University, Kyoto 606-8507, Japan.

Received: 1 July 2013 Accepted: 24 September 2013
Published: 2 October 2013

References

1.

w

o

20.

Brass AL, Huang IC, Benita Y, John SP, Krishnan MN, Feeley Ei, Ryan BJ,
Weyer JL, van der Weyden L, Fikiig E, e1 af The IFITM proteins mediate
cellular resistance to influenza A HIN1 virus, West Nile virus, and
dengue virus. Cell 2009, 139(7):1243-1254.

Hao L, Sakurai A, Watanabe T, Sorensen E, Nidom CA, Newton MA, Ahlquist P,
Kawaoka Y: Drosophila RNAi screen identifies host genes important for
influenza virus replication. Nature 2008, 454(7206):890-893.

Karlas A, Machuy N, Shin Y, Pleissner KP, Artarini A, Heuer D, Becker D,
Khalil H, Ogilvie LA, Hess S, et al. Genome-wide RNAI screen identifies
human host factors crucial for influenza virus replication. Nature 2010,
463(7282)818-822.

Konig R, Stertz S, Zhou vV, Inoue A, Hoffmann HH, Bhattacharyya S, Alamares JG,
Tscherne DM, Ortigoza MB, Liang Y, et af: Human host factors required for
influenza virus replication. Nature 2010, 463(7282):813-817.

Shapira SD, Gat-Viks 1, Shum BO, Dricot A, de Grace MM, Wu L, Gupta PB,
Hao T, Silver SJ, Root DE, et al: A physical and regulatory map of
host-influenza interactions reveals pathways in HIN1 infection. Cell 2009,
139(7):1255-1267.

Sui B, Bamba D, Weng K, Ung H, Chang S, Van Dyke J, Goldblatt M, Duan R,
Kinch MS, Li WB: The use of random homozygous gene perturbation to
identify novel host-oriented targets for influenza. Virology 2008,
387(2):473-481.

Watanabe T, Watanabe S, Kawaoka Y: Cellular networks involved in the
influenza virus life cycle. Cell Host Microbe 2010, 7{6):427-439.

Stertz S, Shaw ML: Uncovering the global host cell requirements for
influenza virus replication via RNAI screening. Microbes infect 2011,
13(5):516-525.

QOda ¥, Matsuoka Y, Funahashi A, Kitano H: A comprehensive pathway
map of epidermal growth factor receptor signaling. Mo/ Syst Biol 2005,
1:2005-0010.

Oda K, Kitano H: A comprehensive map of the toll-like receptor signaling
network. Mol Syst Bicl 2006, 2:2006-0015.

LI F, Thiele |, Jamshidi N, Palsson B@: Identification of potential pathway
mediation targets in Toll-like receptor signaling. PLoS Compurt Biol 2003,
5(2):21000292-e1000292.

Calzone L, Gelay A, Zinovyev A, Radvanyi F, Barillot E: A comprehensive
modular map of molecular interactions in RB/E2F pathway. Mol Syst Biol
2008, 4:173-173.

Kaizu K, Ghosh S, Matsuoka Y, Moriya H, Shimizu-Yoshida Y, Kitano H:

A comprehensive molecular interaction map of the budding yeast cell
cycle. Mol Syst Biol 2010, 6:415-415.

Caron E, Ghosh S, Matsuoka Y, Ashton-Beaucage D, Therrien M, Lemieux S,
Perreault C, Roux PP, Kitano H: A comprehensive map of the mTOR
signaling network. Mol Syst Biol 2010, 6:453-453,

Squires RB, Noronha J, Hunt V, Garcia-Sastre A, Macken C, Baumgarth N,
Suarez D, Pickett BE, Zhang Y, Larsen CN, et al Influenza research
database: an integrated bioinformatics resource for influenza research
and surveillance. influenza Other Respi Viruses 2012, 6{6):404-416.

Bao Y, Bolotov P, Dernovoy D, Kiryutin B, Zaslavsky L, Tatusova T, Ostell J,
Lipman D: The influenza virus resource at the National Center for
Biotechnology Information. J Vrof 2008, 82{2):506-601.

Chatr-aryamontri A, Ceol A, Peluso D, Nardozza A, Panni S, Sacco F, Tinti M,
Smolyar A, Castagnoli L, Vidal M, et al VirusMINT: a viral protein interaction
database. Nucleic Acids Res 2008, 37(Database issue).D669-D673.

Joshi-Tope G, Gillespie M, Vastrik |, D'Eustachio P, Schmidt E, de Bono B, Jassal B,
Gopinath GR, Wu GR, Matthews L, et al Reactome: a knowledgebase of
biological pathways. Nucleic Acids Res 2005, 33(Database issuerD428-D432.
Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, de Bono B, Garapati P,
Hemish J, Hermjakob H, Jassal B, et al: Reactome knowledgebase of
human biological pathways and processes. Nucleic Acids Res 2009,
37(Database issue):Do19-D622.

Kanehisa i, Goto S: KEGG: kyoto encyclopedia of genes and genomes.
Nucleic Acids Res 2000, 28(1).27-30.



Matsuoka et al. BMC Systems Biology 2013, 7:97
http://www.biomedcentral.com/1752-0509/7/97

21

22.
23

24,

25.

29.

s
W

38.

39,

40.

41,

42.

43.

[SS RN
o

Matsuoka Y, Ghosh S, Kikuchi N, Kitano H:Payao: a community platform
for SBML pathway model curation. Bicinformatics 2010, 26(10):1381-1383.
Pathways+. [hitp/vevewipathways.org/phis/]

Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S, Guo N,
Muruganujan A, Doremieux O, Carnpbell MJ, er al The PANTHER database
of protein families, subfamilies, functions and pathways.

Nucleic Acids Res 2005, 33(suppl 1:0284-D288.

Hoffrmann R, Valencia A: A gene network for navigating the literature.
Nat Genet 2004, 36(71664-664,

Gorai T, Goto H, Noda T, Watanabe T, Kozuka-Hata H, Oyama M, Takano R,
Neurnann- G, Watanabe S, Kawaoka Y: F1Fo-ATPase, F-type proton-translocating
ATPase, at the plasma membrane is critical for efficient influenza virus
budding. Prec Nail Acad Sci USA 2012, 10911 2)4615~4620.

Jorba N, Juarez S, Torreira E, Gastaminza P, Zamarreno N, Albar JP, Ortin ).
Analysis of the interaction of influenza virus polymerase complex with
human cell factors. Proteornics 2008, 8(10):2077-2088.

Guan ZH, Zhang ML, Hou PL, Duar M, Cui YM, Wang XR: Identification of
cellular proteins interacting with influenza A virus PB1-F2 protein.

Acta Virol 2012, 56{31159-207.

Mayer D, Molawi K, Martinez-Sobrido L, Ghanem A, Thomas S, Baginsky S,
Grossmann J, Garcia-Sastre A, Schwermimle M: Identification of cellular
interaction partners of the influenza virus ribonucleoprotein complex
and polymerase complex using proteomic-based approaches.

J Protecrme Res 2007, 6(2):672-682.

Coomibds Kivl, Berard A, Xu W, Krokhin O, Meng X, Cortens JP, Kobasa D,
Wilkins J, Brown EG: Quantitative proteomic analyses of influenza
virus-infected cultured human lung cells./ Vire! 2010, 84(20):10888-10906.
Shaw ML, Stone KL, Colangelo CM, Gulcicek EE, Palese P: Cellular proteins
in influenza virus particles. 715 Fathog 2008, 4(6)e 1000085

CellDesigner: [http/celldesigner.org]

Funahashi A, Matsucka v, Jouraku A, Morohashi M, Kikuchi N, Kitano H:

Cell designer 3.5: a versatile modeling tool for biochemical networks.
Proc IEEE 2008, 96(8):1254-1265. :

Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP,
Barnstein BJ, Bray [, Cormish-Bowden A, er al The systems biology markup
language (SBML): a medium for representation and exchange of
biochemical network models. Bioinformatics 2003,19(41:524=531,

Kitano H, Funahashi A, Matsucka Y, Oda K Using process diagrams for the
graphical representation of biological networks. Nat Biotechnol 2005,
23(8):961-966, :

Le Noveére N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E,
Wegner K, Aladjem M, Wimalaratne SM, et al The systems biology
graphical notation. Nat Biotechnol 2009, 27(8):735-741.

Le Novere N, Finney A, Hucka M, Bhalla US, Campagne F, Collado-Vides J,
Crampin EJ, Halstead M, Klipp €, Mendes P, et°al: Minimum information
requested in the annotation of biochemical models (MIRIAM).

Nat Biotechnol 2005, 23{12):1509-1515.

Connor RJ; Kawaoka Y, Webster RG, Paulson JC: Receptor specificity in
human, avian, and equine H2 and H3 influenza virus isolates.

Virology 1994, 205(1).17-23.

Gambaryan AS, Tuzikov AB, Piskarev VE, Yarnnikova SS, Lvov DK, Robertson JS,
Bovin NV, Matrosovich MN: Specification of receptor-binding
phenotypes of influenza virus isolates from different hosts using
synthetic sialylglycopolymers: non-egg-adapted human H1 and H3
influenza A and influenza B viruses share a common high binding
affinity for 6-sialyl(N-acetyllactosamine). Virclogy 1997, 232(2):345-350.
lto T, Kawaoka Y: Host-range barrier of influenza A viruses. Ver Microbiol
2000, 74(1-21:71-75. d

Matrosovich M, Tuzikov A, Bovin N, Gambaryan A, Klimov A, Castrucci MR,
Donatelli |, Kawaoka Y: Early alterations of the receptor-binding properties
of H1, H2, and H3 avian influenza virus hemagglutinins after their
introduction into mammals. J Virol 2000, 74{181:8502-8512.

Rogers GN, Pritchett TJ, Lane JL, Paulson JC: Differential sensitivity of human,
avian, and equine influenza A viruses to a glycoprotein inhibitor of
infection: selection of receptor specific variants. Virolcgy 1983, 131(2):394-408.
Rogers GN, Paulson JC: Receptor determinants of human and animal
influenza virus isolates: differences in receptor specificity of the H3
hemagglutinin based on species of origin. Virology 1983, 127(2):361-373.
Baum LG, Paulson JC Sialyloligosaccharides of the respiratory epithelium
in the selection of human influenza virus receptor specificity.

Acta Histochem Suppl 1990, 40:35-38.

—-338-

45,

47.

48.

I
)

55.

58.

w
A0

Page 12 of 18

Couceiro JN, Paulson JC, Baum LG: Influenza virus strains selectively
recognize sialyloligosaccharides on human respiratory epithelium; the
role of the host cell in selection of hemagglutinin receptor specificity.
Virus Res 1993, 29(2):155-165. o o -
Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk HD: Human and
avian influenza viruses target different cell types in cultures of human
airway epithelium. Froc Narl Acad Sci USA 2004, 101(13):4620-4624,

Nicholls Ji, Chan MC, Chan WY, Wong HE, Cheung CY, Kwong DL, Wong MP,
Chui WH, Poon LL, Tsao SW, et al Tropism of avian influenza A (M5N1) in the
upper and lower respiratory tract. Nar Med 2007, 13(2):147-149,

Shinya K, Ebina M, Yarmada S, Ono M, Kasai N, Kawaoka Y: Avian flu: influenza
virus receptors in the human airway. Nature 2006, 440(7083):435-430.

van Riel [, Munster VJ, de Wit £, Rimmelzwaan GF, Fouchier RA, Osterhaus AD,
Kuiken T: H5SN1 virus attachment to lower respiratory tract.

Science 2006, 312(5772:399,

Yao L, Korteweqg C, Hsueh W, Gu J: Avian influenza receptor expression in
H5N1-infected and noninfected human tissues, FASES J 2008, 22(3):733-740,
Fillai SP, Lee CW: Species and age related differences in the type and
distribution of influenza virus receptors in different tissues of chickens,
ducks and turkeys. Virol J 2010, 7:5.

Nicholls JM, Chan RW, Russell RJ, Air GM, Peiris JS: Evolving complexities of
influenza virus and its receptors. Trends Microbiol 2008, 16(4):145-157.

Ito T, Suzuld ¥, Suzuki T, Takada A, Horimoto T, Wells K, Kida H, Otsuki K,
Kiso M, Ishida H, er al Recognition of N-glycolylneuraminic acid linked to
galactose by the alpha2,3 linkage is associated with intestinal replication
of influenza A virus in ducks. J Virol 2000, 74(19):9300-9305.

Wilks &, de Graaf M, Smith DJ, Burke DF: A review of influenza
haemagglutinin receptor binding as it relates to pandemic properties.
Vaccine 2012, 30{29):436%-4376.

Viswanathan K, Chandrasekaran A, Srinivasan A, Raman R, Sasisekharan V,
Sasisekharan R Glycans as receptors for influenza pathogenesis.
Glycoconj / 2010, 27(6x561-570.

Wright PF, Neumann G, Kawaoka Y: Orthomyxoviruses. In Fields Virology.
vol 2. 5th edition. Edited by Knipe DM, Howley PM, Griffin DE, Lamb RA,
Martin MA, Roizman B, Straus SE. Philadelphia, Baltimore, New York, London,
Buenos Aires, Hong Kong, Sydney, Tokyo: Wolters Kluwer; Lippincott
Williarns & Wilkins; 2007:1691-1740.

Matlin KS, Reggio H, Helenius A, Simons K: infectious entry pathway of
influenza virus in a canine kidney cell line. J Cell Bic/ 1981, 91(3 Pt 1):601-61 3,
Nunes-Correia |, Eulalio A, Nir 5, Pedroso de Lima MC: Caveolae as an
additional route for influenza virus endocytosis in MDCK cells.

Cell Mol Biol Lett 2004, 9(1):47-60.

Sieczkarski SB, Whittaker GR: Influenza virus can enter and infect cells in
the absence of clathrin-mediated endocytosis. J Virol 2002,
76(20):10455~10464.

de Vries E, Tscherne DM, Wienholts MJ, Cobos-Jimenez V, Scholte F,
Garcia-Sastre A, Rottier PJ, de Haan CA: Dissection of the influenza A virus
endocytic routes reveals macropinocytosis as an alternative entry
pathway. PLoS Patheg 2011, 7(3):e1001329.

Rossman JS, Leser GP, Lamb RA: Filamentous influenza virus enters cells
via macropinocytosis. J Virol 2012, 86(20):10950-10960.

Sieczkarski SB, Whittaker GR: Differential requirements of Rab5 and Rab7
for endocytosis of influenza and other enveloped viruses. Traffic 2003,
4(5):333-343.

Feeley EM, Sims JS, John SP, Chin CR, Pertel T, Chen LM, Gaiha GD, Ryan BJ,
Donis RO, Elledge SJ, et al: IFITM3 inhibits influenza A virus infection by
preventing cytosolic entry. PLoS Pathog 2011, 7(10)e1002337.

Skehel 1J, Wiley DC: Receptor binding and membrane fusion in virus
entry: the influenza hemagglutinin. Annu Rev Bicchern 2000, 69:531-569.
Martin K, Helenius A: Transport of incoming influenza virus nucleocapsids
into the nucleus. J Virol 1991, 65(11:232-244,

Bui M, Whittaker G, Helenius A: Effect of M1 protein and low pH on nuclear
transport of influenza virus ribonucleoproteins. J Virol 1996, 70(12):8391-8401.
fAartin K, Helenius A: Nuclear transport of influenza virus ribonucleoproteins:
the viral matrix protein (M1) promotes export and inhibits import. Cell 1991,
67(1):117-130." : '
Whittaker G, Bui M, Helenius A: Nuclear trafficking of influenza virus
ribonuleoproteins in heterokaryons. J Virol 1996, 70(5):2743-2756.

Wu WW, Sun YH, Pante N: Nuclear import of influenza A viral
ribonucleoprotein complexes is mediated by two nuclear localization
sequences on viral nucleoprotein. Virol J 2007, 4:49.



Matsuoka et al. BMC Systems Biology 2013, 7:97
http://www.biomedcentral.com/1752-0509/7/97

69.

70.

71.

72.

77.

78.

80.

81

82.

83.

84,

85.

86.

87.

88.

90.

O'Neill RE, Jaskunas R, Blobel G, Palese P, Moroianu J: Nuclear import of
influenza virus RNA can be mediated by viral nucleoprotein and
transport factors required for protein import. J Biol Chem 1995,
270(39):22701-22704.

O'Neill RE, Palese P: NPI-1, the human homolog of SRP-1, interacts with
influenza virus nucleoprotein. Virology 1995, 206(1):116-125.

Wang P, Palese P, O'Neill RE: The NPI-1/NPI-3 (karyopherin alpha) binding
site on the influenza a virus nucleoprotein NP is a nonconventional
nuclear localization signal. J Viro/ 1997, 71(3):1850-1856.

Cros JF, Garcia-Sastre A, Palese P: An unconventional NLS is critical for the
nuclear import of the influenza A virus nucleoprotein and
ribonucleoprotein. Traffic 2005, 6(3):205-213.

Helenius A: Unpacking the incoming influenza virus. Cell 1992, 69(4).577-578.
Resa-Infante P, Jorba N, Zamarreno N, Fernandez Y, Juarez S, Ortin J: The
host-dependent interaction of alpha-importins with influenza PB2
polymerase subunit is required for virus RNA replication.

PLOS One 2008, 3(12):e3904.

Palese P, Shaw ML: Orthomyxoviridae: The Viruses and Their Replication.
In Fields Virology, vol. 2. 5th edition. Edited by Knipe DM, Howley PM, Griffin DE,
Lamb RA, Martin MA, Roizman B, Straus SE. Philadelphia: Wolters Kluwer;
Lippincott Williarms & Wilking, 2007:1647-1689.

Neumann G, Brownlee GG, Fodor E, Kawaoka Y. Orthomyxovirus
replication, transcription, and polyadenylation. Curr Top Microbicl
Immunol 2004, 283:121-143.

Boivin S, Cusack S, Ruigrok RW, Hart DJ: Influenza A virus polymerase:
structural insights into replication and host adaptation mechanisms.

J Biol Chem 2010, 285(37128411-28417.

Nagata K, Kawaguchi A, Naito T: Host factors for replication and transcription
of the influenza virus genome. Rev Med Virol 2008, 1814):247-260.

York A, Fodor E: Biogenesis, assembly and export of viral messenger
ribonucleoproteins in the influenza A virus infected cell. RNA biology
2013,10{8):1274-1282.

Blaas D, Patzelt £, Kuechler E: Identification of the cap binding protein of
influenza virus. Nucleic Acids Res 1982, 10(15):4803-4812.

Blaas D, Patzelt E, Kuechler £: Cap-recognizing protein of influenza virus.
Virclogy 1982, 116(11:339-348.

Ulmanen |, Broni BA, Krug Rivi: Role of two of the influenza virus core P
proteins in recognizing cap 1 structures (m7GpppNm) on RNAs and in
initiating viral RNA transcription. Proc Natl Acad Sci USA 1981, 78(12):7355-7356.
Dias A, Bouvier D, Crepin T, McCarthy AA, Hart DJ, Baudin F, Cusack S,
Ruigrok RW: The cap-snatching endonuclease of influenza virus
polymerase resides in the PA subunit. Nature 2009, 458(7240):914-918.
Braam J, Ulmanen |, Krug RM: Molecular model of a eucaryotic
transcription complex: functions and movements of influenza P proteins
during capped RNA-primed transcription. Cell 1983, 34(2):009-618.

Li X, Palese P: Characterization of the polyadenylation signal of influenza
virus RNA. J Virol 1994, 68(2):1245-1242.

Luo GX, Luytjes W, Enami M, Palese P: The polyadenylation signal of
influenza virus RNA involves a stretch of uridines followed by the RNA
duplex of the panhandle structure. J Viro/ 1991, 65(6):2861-2867.
Robertson JS, Schubert M, Lazzarini RA: Polyadenylation sites for influenza
virus mRNA. J Virol 1981, 38(1):157-163.

Poon LL, Pritlove DC, Fodor £, Brownlee GG: Direct evidence that the poly
(A) tail of influenza A virus mRNA is synthesized by reiterative copying
of a U track in the virion RNA template. J Virol 1999, 73(4):3473-3476.
Park YW, Katze MG: Translational control by influenza virus.
Identification of cis-acting sequences and trans-acting factors which
may regulate selective viral mRNA translation. J Biol Chem 1995,
270(47):28433-284309.

Fortes P, Beloso A, Ortin J: Influenza virus NS1 protein inhibits pre-mRNA
splicing and blocks mRNA nucleocytoplasmic transport. EMBO J 1994,
13(3):704-712.

Lu Y, Qian XY, Krug RM: The influenza virus NS1 protein: a novel inhibitor
of pre-mRNA splicing. Genes Dev 1994, 8(15):1817-1828.

Wang W, Krug RM: U6atac snRNA, the highly divergent counterpart of U6
snRNA, is the specific target that mediates inhibition of AT-AC splicing
by the influenza virus NS1 protein. Rna 1998, 4(1):55-64.

Momose F, Basler CF, O'Nelll RE, lwamatsu A, Palese P, Nagata K: Cellular
splicing factor RAF-2p48/NPI-5/BAT1/UAP56 interacts with the influenza
virus nucleoprotein and enhances viral RNA synthesis. J Virol 2001,
75(4):1899-1908.

94,

D
[«

97.

0
@

©
)

100.

101,

102.

103.

108.

(RN

112

113

114,

115.

116.

17

-339-

Page 13 of 18

Momose F, Handa H, Nagata K: Identification of host factors that
regulate the influenza virus RNA polymerase activity. Biochimie 1996,
78(11-12):1103-1108.

Burgui |, Aragon T, Ortin J, Nieto A: PABP1 and elF4Gl associate with
influenza virus NS1 protein in viral mRNA translation initiation
complexes.  Gen Virol 2003, 84(Pt 12):3263-3274.

Yanguez E, Castello A, Welnowska E, Carrasco L, Goodfellow |, Nieto A:
Functional impairment of elF4A and elF4G factors correlates with
inhibition of influenza virus mRNA translation. Virology 2011,
413(1)93-102.

Yanguez E, Rodriguez P, Goodfellow |, Nieto A: Influenza virus polymerase
confers independence of the cellular cap-binding factor elF4E for viral
mRNA translation. Virology 2011, 422(2):297-307.

Bier K, York A, Fodor E: Cellular cap-binding proteins associate with
influenza virus mRNAs. J Gen Virol 2011, 92(Pt 7):1627-1634.

Katze MG, Chen YT, Krug Rit: Nuclear-cytoplasmic transport and VAl
RNA-independent translation of influenza viral messenger RNAs in late
adenovirus-infected cells. Cell 1984, 37(2):483-490.

Katze MG, DeCorato D, Krug RM: Cellular mRNA translation is blocked at
both initiation and elongation after infection by influenza virus or
adenovirus. J Virol 1986, 60(3):1027-1039.

Katze MG, Detjen BM, Safer B, Krug RM: Translational control by influenza
virus: suppression of the kinase that phosphorylates the alpha subunit
of initiation factor elF-2 and selective translation of influenza viral
mRNAs. Mol Cell Biol 1986, 6(5):1741-1750.

Chen Z, Li ¥, Krug Rt Influenza A virus NS1 protein targets
poly(A)-binding protein Il of the cellular 3-end processing machinery.
EMBO J 1999, 18(8):2273-2283.

Chen Z, ¥rug Rt Selective nuclear export of viral mRNAs in
influenza-virus-infected cells. Trends Microbiol 2000, 8(8):376-383.

.. Engelhardt OG, Fodor E: Functional association between viral and cellular

transcription during influenza virus infection. Rev Aed Virol 2006,
16(5):329-345.

. Engelhardt OG, Smith M, Fodor E: Association of the influenza A virus

RNA-dependent RNA polymerase with cellular RNA polymerase II. J Viro!
2005, 79(2):5812-5818.

. Hutchinson EC, Fodor E: Nuclear import of the influenza A virus

transcriptional machinery. Vaccine 2012, 30(51):7353-7358.

. Bullido R, Gomez-Puertas P, Albo C, Portela A: Several protein regions

contribute to determine the nuclear and cytoplasmic localization of the
influenza A virus nucleoprotein. J Gen Virol 2000, 81{(Pt 1):135-142.

Deng T, Sharps J, Fodor E, Brownlee GG: In vitro assembly of PB2 with a
PB1-PA dimer supports a new model of assembly of influenza A virus
polymerase subunits into a functional trimeric complex. J Virol 2005,
79(131:8669-8674.

. Fodor E, Smith M: The PA subunit is required for efficient nuclear

accumulation of the PB1 subunit of the influenza A virus RNA
polymerase complex. J Virol 2004, 78(17):9144-9153,

. Jones 1M, Reay PA, Philpott KL: Nuclear location of all three influenza

polymerase proteins and a nuclear signal in polymerase PB2.

EMBO 11986, 5(9):2371-2376.

Mukaigawa J, Nayak DP: Two signals mediate nuclear localization of
influenza virus (A/WSN/33) polymerase basic protein 2. J Virol 1991,
65(1):245-253.

Nath ST, Nayak DP: Function of two discrete regions is required for
nuclear localization of polymerase basic protein 1 of A/WSN/33 influenza
virus (H1 N1). Mol Cell Biol 1890, 10(8):4139-4145.

Neumann G, Castrucci MR, Kawaoka Y: Nuclear import and export of
influenza virus nucleoprotein. J Virol 1997, 71(12:9690-39700.

Nieto A, de la Luna S, Bdrcena J, Portela A, Ortin J: Complex structure of
the nuclear translocation signal of influenza virus polymerase PA
subunit. J Gen Virol 1994, 75(Pt 1):29-36.

Smith GL, Levin JZ, Palese P, Moss B: Synthesis and cellular location of the
ten influenza polypeptides individually expressed by recombinant
vaccinia viruses. Virology 1987, 160(2):336-345.

Weber F, Kochs G, Gruber S, Haller O: A classical bipartite nuclear
localization signal on Thogoto and influenza A virus nucleoproteins.
Virology 1998, 250(1):9-18.

Deng T, Engelhardt OG, Thomas B, Akoulitchev AV, Brownlee GG, Fodor E: Role
of ran binding protein 5 in nuclear import and assembly of the influenza
virus RNA polymerase complex. J Virol 2006, 80(24):11911-11919.



