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Fig. 4. Surface data of ISGs: Among about 1,200 PSs induced at 24 hr, half of them were uniquely induced by PCP and were assigned to ISG pathway from
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Table 2).

JOAI] ASNOW UI YI0M]DU UOIDJIDIUL UO SN [0udydoIo[deIud ]

6¥9



-10€-

¥ 'ON 8¢ '10A

Akr1atl ™=z Akr1c20 "% Aox1 mer L Gat e @b e Ephx1 e

AK009462 BC021607 NM__007620 NM_010145

1424296 _at 1421817__at 21041_s__at 1423436 _at
G Cl C Gele Qsr | G m 3 7ZnBIJ.ll IGstat /il Gsta2 Gs;z
BC019374 AKO19177 NM__008182 Al172843

a

Gstal //l Gs!

1416368 _at 1425626 _at 1427473 _at 1450746 _at 1423627 _at
w it Gstm3 o o i
NM__010357 JO3952 J03953 AW764104 AV158882

LOC10086207%2: Psma1 Yis | Psmb8 . eSS Rassfl. | “VES CABm10 NS

Al120393 BC005762 NM__010724 BB757103 AV218447
HEdxl
e i

e ITXnip (Invert&.
AF173881

AF 173681

e | TXNip (Inverré:% Txnrdl 58 Gm1821 //EEbby

AF173681 | NM_015762 BQO42894

Fig. 5. Surface data of Nrf2-mediated oxidative stress response genes: Among about 1,200 PSs induced at 24 hr, another half of them were
Nrf2-mediated oxidative stress response genes commonly induced by PCP and other 10 or so chemicals (cf. Supplementary Table 2).
Nrf2 itself did not alter but Keapl was clearly induced.
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PCP Sum Set of Other chemicals in Percellome DB

NRF2-mediated Oxidative Stress Response 6.3x10-18
Protein Ubiquitination Pathway 3.0x10-"4
Xenobiotic Metabolism Signaling 2.2x10795
Cell Cycle Control of Chromosomal Replication 5.7x10705

Glutathione-mediated Detoxification 7.1x10-9%

Interferon Signaling 4.6x10-08
Activation of IRF by Cytosolic Pattern Recognition Receptors 1.2x10°9%
Role of PKR in Interferon Induction and Antiviral Response 2.9x1005

Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses = 6.4x10-%
IL-1 Signaling 2.2x10°04

Fig. 6. Venn diagram of the PSs of PCP and sum set of other chemicals in Percellome Database. The PS list unique to PCP was as-
signed to Interferon signaling and related networks. The PSs induced by PCP and were shared by other chemicals in Percel-
lome database were enriched in Nrf2-mediated oxidative stress response and Protein ubiquitination pathways. The names of
the responses and their probability scores are generated by the Ingenuity Pathway analysis.

Fig. 7. In situ hybridization of Irf7 and Statl. a) Vehicle control liver stained for Irf7. In a very low back ground, a small nest of
hepatocytes was positively stained for [rf7. b) Vehicle control liver stained for Statl. In a very low back ground, a small nest
of hepatocytes was positively stained for Irf7. It is likely that the same hepatocyte is producing both mRNAs. ¢, d) High
dose group stained for Irf7 and Statl. Hepatocytes were shown to produce both mRNAs in a ubiquitous manner.
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HQ, BQ,
OH radicals

PCP

PXR/SXRt

| Fosi.uunBL

Fig. 8.

DNA damage

Protein damage

Interferon
Signaling 1

Inflammatory
Cytokines —

Tentative summary scheme of the PCP induced networks in mouse liver. PCP or its metabolites may stimulate PXR/SXR or

CAR, thereby inducing Cyp2, 4, 7, Fmo2, 5 within 8 hr to facilitate PCP metabolism, generating HQ (TCoHQ.,TCpHQ), BQ
(TCpBQ) and hydroxyl radical. The metabolites/radicals induce DNA damage and Protein damage. These reaction triggers
Nrf2 networks and PRR system, initiating Irf mediated synthesis of Interferon alpha, which triggers the interferon signaling
networks by autocrine or paracrine mechanisms. On the other hand, there remains a possibility that the metabolites may act
as direct ligands to Tlr or [fnR and trigger downstream events as indicated in dotted lines with “?”". Before activating inter-
feron signaling networks, PCP suppressed Fos and JunB, which might have suppressed the inflammatory cytokine induction

)

as shown in dotted line with

accompanying distinct induction of Keapl, and other met-
abolic pathways (Figs. 5 and 6, Supplementary Table 1).
Those networks were in the Common list mentioned
above. Other networks were not effectively identified by
the Ingenuity pathway analysis.

DISCUSSION

Among the chemicals tested in the Percellome project,
PCP was slow to induce changes in gene expression;
only around one hundred PSs were induced before 8 hr
and 1,200 PSs at 24 hr. It would be plausible to hypoth-
esize that PCP was metabolized during the first 8 hr and
that the metabolite(s) then induced the 24 hr burst of
ISGs and Nrf2-mediated genes. The time course of PCP
action is in accord with the reported biological half-life
of PCP; 6 to 27 hr in rodents (Larsen ef al., 1972; Braun
et al., 1977). A few metabolizing enzymes located down-
stream of PXR/SXR were induced during the first 8 hr

Vol. 38 No. 4

(Fig. 3). The presence of DEHP in the top part of the
common chemical list in Table I is also consistent with
this hypothesis.

[t would be of interest to ascertain whether PCP or
its metabolite(s) could be PXR/SXR ligands. Metabo-
lites known are tetrachloro-p(o)-hydroquinone (TCpHQ
and TCoHQ) and tetrachloro-p-benzoquinone (chloranil,
TCpBQ). Further, TCpHQ is reported to be metabolized,
generating hydroxyl radicals with a help of H,0, without
Fenton reaction, to trichloro-hydroperoxyl-1,4-benzoqui-
none (TrCBQ-OOH) and trichloro-hydroxy-1,4-benzo-
quinone (TrCBQ-OH) (Zhu and Shan, 2009). We have no
Percellome data of those metabolites and, to date, there
are no reports on the interaction of PCP or its metabolites
with the PXR/SXR. There are reports that PCP affects the
function of estrogen receptor (Jung et /., 2004) and thy-
roid hormone receptor (Kawaguchi e al., 2008). Further
study will be needed to identify the triggering event for
the earliest responses to PCP.
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Hepatocarcinogenic activity of PCP has been shown
by rodent studies (NTP, 1999). The metabolites of PCP
mentioned above were considered as the cause of oxida-
tive stress or the hydroxyl radical insults against the liver
(Zhu and Shan, 2009; Tasaki er al., 2012).

[t was reported that Tlr4-mediated, lipopolysaccharide-
induced activation of the [fn-§ promoter was inhibited by
PCP in a Myd88-independent way (Ohnishi e al., 2008).
On the other hand, PCP was considered to trigger Tlr4
via the induction of hydroxyl radicals (Lucas and Maes,
2013). In our experiment, PCP had significantly up-regu-
lated Myd88, Irakl, Traf6, Tlr2, TIr3, Tlhe5, TIc9 at 24 hr,
Although the induction did not reach statistical signifi-
cance, Tlr4 expression was also elevated. In addition, Irf
3, Irf7 and Irf9 were also induced. These findings might
indicate that the TLR system was triggered'by PCP itself,
its metabolites or hydroxyl radicals via modifying the
cytoplasmic proteins; abnormal proteins might be sensed
by the TLRs or the pattern recognition receptors (PRR)
system. Since Irf3, 7, 9 and Ifn-al expression are also
increased, it could be possible that Irf mediated autocrine
or paracrine of the Ifn-a is triggered, resulting in a burst
of ISGs, as postulated by Sato er al. (Sato et al., 2000).

Although Myd88 is mobilized, NF-xB, TNF, [L12
and CD40 were not induced, indicating that there may
be a’switch towards inflammatory thokine production
that was not directly induced by PCP. In relation to the
switching mechanism, there is a report that isopropanol
impaired AP~ activation by removing Fos and JunB from
the nuclear region of monocytes in vitro and suppressed
Tlr4-mediated lipopolysaccharide stimulated Tnf-a pro-
duction (Carignan ef al., 2011). In our data, Fos/JunB was
down-regulated at earlier phase. As this change might cor-

respond to AP-1 suppression (Gomard et al., 2010), one.

possibility could be that PCP itself (as an alcohol/phenol)
inhibited inflammatory cytokine production.

[n contrast to the possible indirect mechanisms not-
ed above, there are two examples that lead us to consid-
era possibility of direct activation of the ISGs. The first
example is a low-molecular weight compound “imiqui-
mod”, a Tlr7 agonist, already on the market for treatment
of skin viral infection (Hemmi ez al., 2002). Subcutane-
ous injection of imiquimod was reported to induce fever,
sickness behavior and induction of ISG in rats (Damm et
al., 2012).. The second example is a new polyfluorometh-
ylated compound, 8-(1, 3,4-oxadiazol-2-yl)-2, 4-bis (tri-
fluoromethyl) imidazo [1, 2-a] [1, 8] naphthyridine
(RO4948191) which was reported to be an orally avail-
able low molecular weight interferon receptor agonist.
RO4948191 was shown to induce a set of ISGs (Konishi
et al.,2012), such as Oas1, Adar, Bstl, Statl, Ifit3, Uspl8§,

Isgl5, Herc6 and Cxcl10. These two examples of direct
ligands to TLR and IFNR lead us to hypothesize that PCP
and/or its metabolites may be able to directly activate
these receptor systems (Fig. 8). Further investigation will
be needed to clarify the molecular mechanism(s) through
which PCP administration triggers the ISGs. It is tempt-
ing to speculate that this classic toxin, PCP, could be used
as a new lead for orally applicable interferon-manipulat-
ing and/or cytokine switching drugs.

Hyperthermia or hyperpyrexia, profuse sweating,
uncoordinated movement, muscle twitching, and coma
are reported in humans and experimental animals as acute
symptoms of PCP poisoning. These functional symptoms
were reported to be caused by the mitochondrial uncou-
pling effect of PCP. Ucp2 and Ucp3 and some mitochon-
drial genes are induced in this study (Supplementary
Table 2, Supplementary Fig 1). These genes are support-
ive for uncoupling effect. However, many of the Krebs
cycle enzymes were not induced and those that were
induced showed very small increases compared to the
induction of ISGs. Some peroxidases were also mildly
induced, but catalase was not induced by PCP. In the Per-
cellome database, chemicals reported as uncouplers are
aspirin, ethanol, sodium arsenite, and 2;4-dinitrophenol.
Under the current computational condition, none of them
was picked up as a chemical sharing PS list with PCP.

Taken together, our data may be interpreted to indicate
that the functional symptoms represented by hyperther-
mia can be induced by PCP mainly through the activation
of ISGs. This interpretation is backed up by the literature
on “endogenous pyrogens” (Dinarello, 1999) and on imi-
quimod (Damm erf al., 2012).

Finally, although not yet perfected, the performance of
the RSort and PE programs were demonstrated to be suf-
ficient to sort out biologically meaningful changes for the
comprehensive characterization of PCP. Manual search-
es employing different criteria added about 100 mild-
ly changing PSs (data not shown), but the conclusions of
our study were not affected. Nevertheless, further refine-
ment for the better coverage is underway.

In conclusion, the RSort program-based comprehen-
sive cross-reference of the Percellome database revealed
that PCP was the only chemical among 111 orally admin-
istered chemicals that significantly induced the ISGs
in hepatocytes. In situ hybridization confirmed that the
parenchymal hepatocytes are responding to PCP. Two
possible mechanisms were discussed; indirect mechanism
via the PRR system, and direct stimulation of the Tlr(s)
or IfnR(s). Further study is needed to clarify the possible
molecular mechanisms.
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ABSTRACT — The effects of neonatal exposure to low doses of 2,3,7.8-tetrachlorodibenzo-p-dioxin
(TCDD) Qﬁ prostatic secretory protein expression were investigated. Male C57BL mice were treated with
TCDD at 10, 100, or 1,000 ng/kg body weight at postnatal day (PND) 6. At PND42, the ventral, dorsola-
teral, and anterior prostatic lobes were dissected and the mRNA expression of prostatic proteins including
spermine-binding protein, serine protease inhibitor Kazal type 3, prostate secretory protein 94 (PSP94),
immunoglobulin binding protein-like protein (IgGBPLP), experimental autoimmune prostatitis antigen
proteins, and peroxiredoxin-6 (Prdx6) was measured by quantitative PCR. There was no significant. differ-
ence in the weight of the prostatic lobes between the control and TCDD-treated groups. The expression of
PSP94 and Prdx6 in the ventral prostate and IgGBPLP in the dorsolateral prostate at PND42 was signifi-
cantly increased by néonatal TCDD treatment in a dose-dependent manner, while no changes were noted
in other prostatic secretions. These data suggest that neonatal exposure to TCDD may have effects on the

~neonatal differentiation of the prostate and results in the hyper-expression of some prostatic proteins lat-

er in life.

Key words: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), Prostatic secretion, Mouse prostate,

Neonatal effects

INTRODUCTION

’ The developing male reproductive system of labora-
tory rodents is highly sensitive to 2,3,7,8-tetrachlorod-
ibenzo-p-dioxin (TCDD) (Mably er a/., 1992; Roman and
Peterson, 1998; Theobald er «l., 2000). Its toxic effects
include a decrease in:the,weight, of the testis and accesso-
ry sexw,organs, degeneration of germ cells, and decreased
spermatogenesis..The adverse effects of maternal expo-
sure to TCDD on the development of the prostate gland
have been studied extensively in rats and mice. In Holtz-
man rats, a single maternal dose of 64 ng/kg body weight
(bw) of TCDD caused a significant decrease in ventral
prostate (VP) weight (Mably er a/., 1992). More recent-
ly, it was reported that androgen receptor (AR) mRNA
expression was reduced in the VP of Holtzman rats fol-
lowing maternal treatment with as low as 12.5 ng/kg bw

TCDD (Ohsako er al., 2001). In the mouse, the C57BL/6J
strain appears to be sensitive to TCDD, in which the
maternal administration of 5 pg/kg bw TCDD sup-
pressed the development of the VP in the offspring, while
the weight of the dorsolateral prostate (DLP) and anteri-
or prostate (AP) decreased by approximately 50% (Lin er
al., 2002a). Exposure to TCDD during only the lactation-
al period also resulted in offspring with lower prostate
weights, but with less severe changes (Lin e/ al., 2002b).

" Although the previous studies have been clearly dem-
onstrated that TCDD affect the development of the pros-
tate morphologically, it is important to examine the effect
on the prostatic function, production of prostatic proteins.
We recently reported the identification of the major pro-
teins secreted from the mouse prostate (Fujimoto er al.,
2006). The secreted proteins included spermine-bind-
ing protein (SBP), serine protease inhibitor Kazal type 3
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(SPI-KT3), prostate secretory protein 94 (PSP94), glu-
cose-regulated protein, 78kDa (GRP78), peroxiredoxin-6
(Prdx6), probasin, experimental autoimmune prostatitis
antigen protein (EAPA2), and immunoglobulin binding
protein-like protein (IgGBPLP). The expression profile
of these proteins would be useful for studying prostat-
ic function and may also provide markers for evaluating
the effects of environmental chemicals on the prostate. In
the present study, we investigated the effects of nconatal
exposure to low doses of TCDD on the mRNA expression
of prostatic proteins as well as AR in the prostate.

MATERIALS AND METHODS

Animal experiments

The animal experiments were conducted under the
approval of the Animal Experiment Committee of the
National Institute of Health Sciences (NTHS). All exper-
iments involving TCDD-treated animals were car-
ried out following the rules for the use of TCDD set by
NIHS. Five-day-old male C57BL mice were purchased
from Charles River Japan Co. and maintained with free
access to a basal diet and tap water. At postnatal day
(PND) 6, the animals were divided into 4 groups (n = 0,
each group): control and 3 TCDD-treated groups. TCDD
(Cambridge Isotope Laboratories, Inc., Andover, MA,
USA) in corn oil (50 pl) was injected intraperitoneally
(ip) at doses of 0, 10, 100, or 1,000 ng/kg bw). At PND42,
the animals were killed under ether anesthesia, since our
previous study indicated that the mRNA expression of
prostatic proteins is matured at PND42 (Fujimoto et al.,
2006). The prostatic lobes were dissected under a micro-
scope, then immediately fixed in RN Alater Solution (Life
technologies, Grand Island, NY, USA).

Quantification of mMRNA by real-time RT-PCR
Total RNA was prepared from prostatic tissues using
an RNA isolation kit (NucleoSpin RNA II; Machery-
Nagel GmbH & Co. KG, Diren, Germany). An ABI
Prism 7500 (Applied Biosystems/Life Technologies

Table 1. Weight of body and prostatic lobes at PND42

Co., Carlsbad, CA, USA) was employed for the RT-
PCR based quantification of prostatic protein mRNAs as
described previously (Fujimoto ez al., 2006). All mRNA
levels were normalized with reference to B-actin mRNA.

Statistical analysis
Statistical comparisons were made by Dunnett’s multi-
ple comparison test.

RESULTS

Body and prostate lobe weights

There was no significant difference in body weight
between the control and 3 TCDD-(reated groups at
PND42 (Table 1). There was no significant change in the
weight of either the VP, DLP, or AP.

Expression of prostatic protein and AR mRNAs

SBP and SPI-KT3 were preferentially expressed in
the VP, while probasin, EAPA2, and [gGBPLP expres-
sion was localized in the DLP and AP (Table 2). PSP94
was expressed in both the VP and DLP, while GRP78 and
Prdx6 were expressed in all prostatic lobes. The effects of
neonatal treatment of TCDD on mRNA expression were
evident for PSP94, Prdx6, and IgGBPLP. The effects
were lobe specific; that is, neonatal TCDD increased the
expression of PSP94 and Prdx6 mRNA in the VP as well
as IgGBPLP mRNA in the DLP in a dose-dependent man-
ner. Neonatal TCDD exposure did not change the expres-
sion of AR mRNA in the VP or DLP, but decreased its
expression in the AP.

DISCUSSION

Maternal exposure to TCDD reportedly causes irre-
versible changes to the reproductive systems of off-
spring, including reduced sperm count and reduced size
of the reproductive organs. The development of the male
reproductive organs in rodents, in particular the pros-
tate gland, has been recognized as a sensitive target to

Treatment body weight (g) VP (mg/g bw) DLP (mg/g bw) AP (mg/g bw)
control 16.8 £0.28 0.20 £ 0.03 0.21 £0.02 0.30 £ 0.02
TCDD 10 16.9 +0.37 0.19 £ 0.02 0.23 + 0.01 0.22 & 0.06
TCDD 100 17.7£0.25 0.30 £ 0.08 0.20 £ 0.02 0.34 £0.03
TCDD 1000 18.9+£0.38 0.24 £ 0.08 0.24 +0.01 0.31 £0.03

Mean + S.EM. (n = 6). Male C57BL mice were treated with TCDD (10, 100, or 1,000 ng/kg bw)

at postnatal day (PND) 6 and sacrificed at PND42.
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Table 2. mRNA expression of prostatic protéins and AR in prostatic lobes

Treatment SBP SPI-KT3 PSP94 GRP78 Prdx6 Probasin EAPA2 ~1gGBPLP AR
VP } : :
control 315+ 644 280 + 85.7 124 +42 5.7+036 154021 73+1.24
TCDD 10 293 + 131.2 495+ 95.7 40.0+11.9 7.6 £0.92 2.4+ 038 8.6 £1.08
TCDD 100 322+£63.6 - 278+44.1 65.7 £ 21.1%* 8.3+ 1.89 4.5+ 0.79% 48+ 0.27
TCDD 1000 450 + 84.7 308 £46.5 110 + 16.6%* 7.1+ 1.68 5.6+ 1.0*% 7.5 £0.71
DLP ;
control 923+£202 - 112+ 1.23 272447 o 7.8+ 0.65. 2.5+£044 0.80 £ 0.09 4.5+096
TCDD 10 59.0+24.3 95+ 1.21 31.7+1.93 9.1 £1.36 2.8+0.44 2.2+0.59 3.9+045
TCDD 100 82.3+20.7 8.9+ 1.07 31.6 +£3.02 8.5+ 0.57 2.4+0.29 2.7 £0.75* 3.54+£0.22
TCDD 1000 56.9 £ 159 7.3+0.71 3134 2.46 7.9+ 0.07 2.5 +£0.28 33+£047% 3.2+ 0.50
AP , ;
control 13.7+3.23 38154 45+ 0.66 3.4+ 0.29 195+ 1.95 3.6 +£0.35
TCDD 10 18.0 &+ 1.59- 67.1+4.1 5.84+0.21 3.0+£033 278+5.63 3.]0 +0.31
TCDD 100 9.8+091 40.9 £6.13 3.9+0.52 3.0+0.57 11.2 £1.90 1.9+022
TCDD 1000 14.6 £ 1.90 73.6+ 154 5.9+ 0.75 3.34+0.37 283+ 6.19 2.1+0.32

Mean + S.E.M. (11 =5 or 6). Values are mRNA levels divided by beta actin mRNA levels (*p < 0.05 and **p < 0.01 vs. control).
Male C57BL mice were treated with TCDD (10, 100, or 1,000 ng/kg body weight) at postnatal day (PND) 6 and sacrificed at PND42,
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TCDD, especially when it is administered maternally
(Bjerke and Peterson, 1994; Lin e al., 2002b; Mably et
al., 1992; Theobald er al., 2000). In the present study, we
examined the effects of neonatal TCDD exposure on the
expression of prostatic proteins and demonstrated that the
administration of low doses of TCDD at PNDG6 resulted
in the abnormal hyper-expression of PSP94, Prdx6, and
[gGBPLP mRNAs at PND42 in C57BL mice. Although
the expression of all the prostatic proteins is regulated
by androgen as we previously reported (Fujimoto er al.,
2006), only three of them were hyper-expressed, that may
suggest the neonatal TCDD did not change androgen lev-
els.

There is a difference in the acute lethality of TCDD
among different mouse strains, with an LD50 of approxi-
mately 100 pg/kg bw in the “sensitive”™ C57BL/6J strain,
while it is more than 3 mg/kg bw in “non-sensitive” DBA
mice (Weber et al., 1995). The C57BL/6] strain demon-
strated a higher susceptibility to developmental disruption
of the male reproductive system by maternal exposure to
TCDD (Theobald e al., 2000). In the rat, there are also
great differences in the acute lethality of TCDD among
strains, but the effects of TCDD on the development of
the prostate seem to be similar among strains (Simanainen
et al., 2004).

The development of the prostatic gland begins with the
formation of epithelial buds from the urogenital sinus at
gestational day (GD) 17; these then develop into the pro-
static main ducts (Cunha er «l., 1987). After birth, exten-
sive branching and growth from the duct takes place to
generate the mature prostate. Approximately 70-80% of
ductal tips and 50-70% of branching points are formed
during the first 15 days after birth, while ductal branching
continues throughout adolescence (Sugimura ef al., 1986).
Vulnerability to the effects of TCDD on the development
of the prostate has been studied extensively in C57BL/6J
mice, in which the oral administration of 5 pg/kg bw
TCDD on GD 13 reduced VP weight by 84%. Lactation-
al exposure alone to TCDD also significantly suppressed
VP weight by 41%. For the DLP and AP, the effects were
less severe, with lactational exposure alone reducing their
weight by approximately 20%, while in utero exposure
caused a 50% reduction (Lin ef a/., 2002b). Our data may
suggest that the prostate at PND 6 may be less susceptible
for TCDD suppressing the prostatic growth but sensitive
for the functional alteration. Further studies are needed to
understand what timing of TCDD exposure is critical to
lead to changes in expression of prostatic proteins.

Although prostatic secreted proteins are found in the
seminal fluid, it is not clear what their physiological roles
are. PSP94 is one of the major proteins secreted by the
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human prostate and is also abundantly secreted by the
rodent prostate. PSP94 is known to be expressed mainly
in the VP and DLP in mice. This protein may function as
an immunoglobulin-binding protein and is involved in the
regulation of the immune response in the female repro-
ductive tract (Kamada ez al., 1998). It also functions as
an inhibitor of sperm motility and of the acrosome reac-
tion. [gGBPLP is abundantly expressed in the DLP and
AP and may have a similar function to PSP94 (Kumar e/
al., 2010). Prdx6 is an antioxidant enzyme that reduces
peroxide and alkyl hydroperoxide to water and alcohol,
respectively, and it may have a seminal plasma antioxi-
dant capability (Wang et al., 2004). The changes in the
composition of prostatic secretions caused by the hyper-
expression of these proteins might eventually affect nor-
mal fertility.

The present study demonstrated that neonatal expo-
sure to low levels of TCDD changes the normal expres-
sion pattern of prostatic protein mRNAs later on in life,
although it is not known whether these changes are phys-
iologically detrimental. Previous studies have emphasized
the suppressive effects of TCDD on the size of the pros-
tate. However, the present study suggested that exposure
to low doses of TCDD in the neonatal period may affect
the expression patterns of prostate proteins.
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Abstract

Elucidating gene regulatory network (GRN) from large scale experimental data remains a central challenge in systems
biology. Recently, numerous techniques, particularly consensus driven approaches combining different algorithms, have
become a potentially promising strategy to infer accurate GRNs. Here, we develop a novel consensus inference algorithm,
TopkNet that can integrate multiple algorithms to infer GRNs. Comprehensive performance benchmarking on a cloud
computing framework demonstrated that (i) a simple strategy to combine many algorithms does not always lead to
performance improvement compared to the cost of consensus and (ii) TopkNet integrating only high-performance
algorithms provide significant performance improvement compared to the best individual algorithms and community
prediction. These results suggest that a priori determination of high-performance algorithms is a key to reconstruct an
unknown regulatory network. Similarity among gene-expression datasets can be useful to determine potential optimal
algorithms for reconstruction of unknown regulatory networks, i.e., if expression-data associated with known regulatory
network is similar to that with unknown regulatory network, optimal algorithms determined for the known regulatory
network can be repurposed to infer the unknown regulatory network. Based on this observation, we developed a
quantitative measure of similarity among gene-expression datasets and demonstrated that, if similarity between the two
expression datasets is high, TopkNet integrating algorithms that are optimal for known dataset perform well on the
unknown dataset. The consensus framework, TopkNet, together with the similarity measure proposed in this study provides
a powerful strategy towards harnessing the wisdom of the crowds in reconstruction of unknown regulatory networks.

Biol 9(11): e1003361. doi:10.1371/journal.pcbi.1003361

Editor: Andrey Rzhetsky, University of Chicago, United States of America

manuscript.

* E-mail: ghosh@sbi.jp (SG); kitano@sbi.jp (HK)

® These authors contributed equally to this work.

Citation: Hase T, Ghosh S, Yamanaka R, Kitano H (2013) Harnessing Diversity towards the Reconstructing of Large Scale Gene Regulatory Networks. PLoS Comput

Received June 20, 2013; Accepted October 10, 2013; Published November 21, 2013

Copyright: © 2013 Hase et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is, in part, supported by funding from the HD-Physiology Project of the Japan Society for the Promotion of Science (JSPS) to the Okinawa
Institute of Science and Technology (OIST). Additional support is from a Canon Foundation Grant, the International Strategic Collaborative Research Program
(BBSRC-JST) of the Japan Science and Technology Agency (JST), the Exploratory Research for Advanced Technology (ERATO) programme of JST to the Systems
Biology Institute (SBI), a strategic cooperation partnership between the Luxembourg Centre for Systems Biomedicine and SBI, and from Toxicogenemics program
of Ministry of Health, Labour and Welfare. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the

Competing Interests: The authors have declared that no competing interests exist.

Introduction

Most genes do not exert their functions in isolation [1], but
make their functions through regulations among them. Such
regulatory interactions are in the same cell, between different cells,
and even between different organs, forming large-scale gene
regulatory networks (GRNs). The impact of genetic abnormality
can spread through regulatory interactions in GRNs and alter the
activity of other genes that do not have any genetic defects [2].
Analyses of GRNs are key to identify disease mechanisms and
possible therapeutic targets for the future [1]. Therefore,
reconstruction of accurate and comprehensive GRNs from
genome-wide experimental data (e.g., gene expression data from
DNA microarray experiments) is one of the fundamental
challenges in systems biology [3,4].

A plethora of algorithms have been developed to infer GRNs
from gene expression data, ie, mutual-information (MI) based
algorithms [5-12], correlation-based algorithms [5], Bayesian
networks (BNs) [13-17], regression-based algorithms [18-22],
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graphical gaussian model (ggm) [23], meta predictors that
combine several different methods [24,25], and several other
approaches that were recentdy proposed [26-32], i.e, random
forests based algorithm [26] (GENIE3) and two-way ANOVA
based algorithm [27] (ANOVA). Each network-inference algo-
rithm generates a confidence score for a link between two genes
from expression data and assumes that a predicted link with higher
confidence score is more reliable. Systematic and comparative
assessment of the performance of these inference algorithms
remains a major challenge in network reconstruction [33].
Several studies compared performances of the network-infer-
ence algorithms [7,8,9,34]. Especially, the DREAMS5 (Dialogue on
Reverse Engineering Assessment and Methods) challenge evalu-
ated performances of many and diverse network-inference
algorithms (29 algorithms submitted by challenge participants
and 6 commonly used “off-the-shelf” algorithms) by using
benchmark dataset composed of large-scale FEscherichia coli,
Saccharomyces cerevisiae, and in silico regulatory networks and their
corresponding expression datasets [35]. The evaluation demon-
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Author Summary

Elucidating gene regulatory networks is crucial to under-
stand disease mechanisms at the system level. A large
number of algorithms have been developed to infer gene
regulatory networks from gene-expression datasets. If you
remember the success of IBM’s Watson in “Jeopardy!” quiz
show, the critical features of Watson were the use of very
large numbers of heterogeneous algorithms generating
various hypotheses and to select one of which as the
answer. We took similar approach, “TopkNet”, to see if
“Wisdom of Crowd"” approach can be applied for network
reconstruction. We discovered that “Wisdom of Crowd” is
a powerful approach where integration of optimal
algorithms for a given dataset can achieve better results
than the best individual algorithm. However, such an
analysis begs the question “How to choose optimal
algorithms for a given dataset?” We found that similarity
among gene-expression datasets is a key to select optimal
algorithms, i.e., if dataset A for which optimal algorithms
are known is similar to dataset B, the optimal algorithms
for dataset A may be also optimal for dataset B. Thus, our
“TopkNet” together with similarity measure among
datasets can provide a powerful strategy towards harness-
ing “Wisdom of Crowd” in high-quality reconstruction of
gene regulatory networks.

strated that no single individual algorithm performs optimally
across all the three expression-datasets, .., GENIE3 and ANOVA
perform optimally for E. coli dataset, while two algorithms based
on regression techniques are optimal for in silico dataset. Further,
algorithm-specific biases influence the recovery of different
regulation patterns, z.e., MI and correlation based algorithms can
recover feed-forward loops most reliably, while regression and BNs
can more accurately recover linear cascades than MI and
correlation based algorithms [35].

Above observations suggest that different network-inference
algorithms have different strengths and weaknesses [33,35]. A
natural corollary to the observations is that combining multiple
network-inference algorithms may be a good strategy to infer an
accurate and comprehensive GRIN. Recentdy, Marbach et al.
proposed a new network-inference algorithm, “Community
Prediction”, by combining several network-inference algorithms
that were submitted to DREAMS challenge [35]. The Community
Prediction combining 29 algorithms (*‘off-the-self”” algorithms are
not used) shows higher or at least comparable performance to the
best among the 29 algorithms across all DREAMS datasets.
Further, performance of community prediction increases as the
number of integrated algorithms increases. Thus, community
prediction based on integration of many algorithms can be a
robust approach to infer GRNs across diverse datasets and waill
provide a powerful framework to reconstruct unknown regulatory
networks.

Analysis of DREAMS results [35] reveal that algorithms
complement each other in a context-specific manner and
harnessing the combined strengths and weaknesses of diverse
techniques can lead to high quality inference networks. Thus, 1t 1s
important to analyze the anatomy of diversity and quantify it. This
is particularly important to systematically evaluate the character-
istics of individual techniques and leverage their diversity in
finding an optimal combination set for a specific experimental data
context. Recently, Marbach et al. showed that integration of
algorithms with high-diversity outperform that with low-diversity
[35]. However, their diversity analysis 1s qualitative and, to our
knowledge, there is no measure to quantify algorithm diversity.
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Analysis of small in silico datasets of the DREAMS3 challenge
demonstrated that integration of the best five algorithms
outperforms integration of all algorithms submitted to the
challenge [33]. Selection of optimal algorithms for a given
expression data and integration of the selected optimal algorithms
may be more powerful strategy to reconstruct accurate GRNs than
using many algorithms. Development of a method to determine
optimal algorithms is a key to reconstruct accurate and compre-
hensive GRNs, although it is difficult to identify beforehand
optimal algorithms for reconstruction of an unknown regulatory
network because of biological and experimental variations among
expression datasets.

A measure to quantify similarity among gene-expression
datasets could be a clue to determine the optimal algorithms for
reconstruction of unknown regulatory networks. This is because, if
expression-data associated with known regulatory network (e.g.,
the DREAM datasets) is similar to that with unknown regulatory
network, optimal algorithms for data with known regulatory
network could be also opumal for data with unknown regulatory
network.

Motivated by the above observations and issues, this paper
focuses on four strategies towards building a comprehensive
network reconstruction platform —

e A computatonal framework to integrate diverse inference
algorithms.

e Systematically assess the performance of the framework against
the DREAM)S datasets composed of genome-wide transcrip-
tonal regulatory networks and their corresponding expression
data from actual microarray experiments as well as in silico
simulation.

® Develop among inference

techniques towards identfying optimal combination of algo-

a measure to quantfy diversity
rithms which elucidate accurate GRNS.

e Develop a measure to quanufy similarity among expression
datasets towards selecung optimal algorithms for reconstruc-
ton of unknown regulatory networks.

To investigate these possible strategies, we first develop a novel
network-inference algorithm that can combine multiple network-
inference algorithms. Second, to evaluate inference performances
of the algorithms precisely, we used the DREAMS5 datasets
composed of E. coli and S. cerevisiae transcriptional regulatory
networks and their corresponding expression data from large-scale
microarray experiments, together with synthetic network and
corresponding expression datasets (http://wiki.c2b2.columbia.
edu/dream/index.php/D5c4). A cloud-based computing frame-
work was developed on the Amazon Web Services (AWS) system
to systematically benchmark the large data-sets and compute-
intensive algorithms. Third, we define a mathematical function
quantifying diversity between algorithm pairs to analyze the
anatomy of diversity and its role in improving the performance of
reverse engineering techniques. Finally, we present a similarity
measure among expression-datasets and its potential to identfy
optimal algorithms for reconstruction of unknown regulatory
networks.

Results

We developed a computational workflow for the combination of
network-inference algorithms and systematic assessment of their
performance. The workflow of our framework is composed of
three steps (see Supplementary figure S1 and Materials and
Methods for details):
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L Inference Methods: We obtained confidence score
between gene pairs based on 29 algorithms submitted by
DREAMS participants and 6 commonly used “off the shelf”
algorithms from Marbach et al [33]. Furthermore, we
calculated confidence score between two genes based on
other three algorithms, i.e., c3net [9], ggm [23], and mrnet
[8] algorithms. We used, in total, 38 nectwork-inference
algorithms for the study.

II.  TopkNet: A novel algorithm to generate predicted list of
regulatory links by the network-inference algorithms that
can combine multiple network-inference algorithms (in this
case, 38 algorithms) (see Figure 1).

IIl. Performance Assessment: Comparative evaluation of
the performance of TopiNet with that of the 38 network-
inference algorithms and Community Prediction, bench-
marked using the DREAMS network-inference challenge
dataset composed of the large synthetc data (number of
genes = 1,643 and sample size = 803), large-scale E. coli and
S. celevisiae networks (mumber of gene=4,511 and 5,950,
respectively), and their corresponding real microarray gene
expression data (with sample size of 805 and 536,
respectively). Table 1 summarizes the different data-sets
employed in the performance assessment for this study. We
used a cloud-computing infrastructure built on Amazon
EC2 instances to infer GRNs from the large-scale DREAMS5
dataset (see Materials and Methods for details).

TopiNet (the maximum value of £ is the number of integrated
algorithms, 38 in this case) is based on leveraging the diversity of
the different techniques by combining the confidence of each gene
pair interaction computed by the algorithms. TopiNet applied a

bagging method, which was introduced by Breiman L [36], to"

combine confidence scores between each gene pair from muldple
network inference algorithms. TopINet assumes that two genes
have a regulatory links between them, if at least one network-
inference algorithm assigns high confidence level to the link
between them, while Top38Net assumes that two genes have a
regulatory link between them, only if all the 38 algorithms assign
high confidence levels to the link between them (see below and
Figure 1 for details). TopiNet with £#=2-37 and Community
prediction (which takes the average of ranks assigned by different
algorithms), are intermediates between ToplNet and Top38Net.

Figure 1 gives an illustrative example of TopiNet (for
simplicity, in this illustrative example, we used 5 individual
algorithms) on a sample target network (Figure 1A). As shown in
Figure 1B, a network-inference algorithm assigns a confidence
level to each link and links are ranked according to their
confidence levels, i.e., a link with higher confidence level has
higher rank value. For each link, 5 individual network-inference
algorithms (represented by different colors) assigned 5 rank values
to each link (Figure 1C). Among the five rank values of each link,
Top/Net regards Ath highest rank value as the rank value of the
link (Figure 1D). For example, five rank values (1, 3.5, 10, 10.5,
and 12) are assigned to the regulatory link between nodes 1 and 2
(Figure 1C). In this case, TopINet and Top2Net regards | and
3.5 as the rank value of the link, respectively (see Figure 1D). As
shown in color spectrums in Figure 1D, TopiNet algorithms
reconstruct GRNs which include predicted connections from
multiple algorithms.

Based on the observation that network-inference algorithms
tend to assign high confidence levels to true-positive links [6,34],
ToplNet algorithm would infer the largest number of true-
positive links among all algorithms, ue, TopiNet algorithms
would infer smaller number of true-positive links as the value of &

PLOS Computational Biology | www.ploscompbiol.org

-313-

Harnessing Diversity to Get Accurate Gene Networks

increases and, at the same time, can avoid inferring false-positive
links. Thus, in general, ToplNet would outperform other
algorithms in terms of inference performances, as seen in the
predicted network in Figure 1.

Comparative performance assessment

Network inference algorithms have increased following Moore’s
Law (doubling every two years) [33,37]. Consequenty, it has
become increasing important to develop comprehensive perfor-
mance benchmarking platforms to compare their relative strengths
and weaknesses and leverage them to improve quality of inferred
network. Two key components fundamental to performance
assessment are representative metrics to quantify performance
and standardized data sets on which to evaluate them.

In this section, we first outline these components employed in
this study on the basis of which the performance of TopiNet is
evaluated.

Benchmarking data sets. The performance of gene network
reconstruction algorithms require benchmarking against various
data sets representing network dynamics (for example, gene
expression profiles) for which the underlying network is known.
However, the ability to generate biologically plausible networks
and validate them against experimental data remains a funda-
mental tenet in network reconstruction. In this respect, the
DREAM initiative provides a community platform for the
objective assessment of inference methods. The DREAM
challenges provide a common framework on which to evaluate
inference techniques against well-characterized data sets. In this
study, we used large scale experimental data from the DREAMS5
network inference challenge. -

Performance metrics. True-positive rate, false-positive rate,
recall, and precision are representative metrics to evaluate perfor-
mances of network inference algorithms (see Materials and Methods
for details). True-positive (false-positive) rate is, among all true (false)
links, how many of them are with ranks beyond a threshold.
Precision is, among all links with ranks beyond a threshold, how
many of them are true links, while recall is, among all true links, how
many of them are with ranks beyond a threshold. For example, in
Figure 1, Top2Net for threshold of 3.5 shows recall=6/7 (one
missing) and precision =6/7 (one mistake). By changing threshold
gradually, we obtained a receiver operating characteristic (ROC)
and Precision/recall (PR) curves that are graphical plots of true-
positive rate vs. false-positive rate and precision vs. recall,
respectively. These curves are straightforward visual representation
of performances of network-inference algorithms.

Further, we calculated three representative metrics, z.e., AUC-
PR (area under the PR curve), AUC-ROC (area under the ROC
curve), and max f-score (f-score is harmonic mean of precision and
recall) for these algorithms (see Materials and Methods for details).
AUC-PR and AUC-ROC evaluate the average performances of
network-inference algorithms, while max f-score evaluates the
optimal performance of network-inference algorithms. A network-
inference algorithm with higher inference performance would
show higher AUC-PR, AUC-ROC, and max f-score. Moreover,
DREAMS5 also provides performance benchmarking package
which computes an overall score (OS) across the entire dataset
[35]. By using the package, we also calculated overall score to
evaluate performance of TopiNet algorithms against community
prediction and 38 algorithms (for performance of the individual 38
algorithms, see Supplementary table Sl1).

TopkNet performance on DREAMS data set

To evaluate how TopiNet leverages diversity amongst the
candidate algorithms to infer consensus network, we used the
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Figure 1. Example of a prediction by TopkNet formed from five individual network predictions. (a) Target Network. Circles and links are
genes and regulatory links among genes, respectively. (b) The five lists are ranked according to the confidence levels of links, the most reliable
prediction is at the top of the list and has the highest rank, i.e., Algorithm1 assigns the highest confidence level and the rank value of 1 to a link
between nodes 1 and 2. The true link of the target network is highlighted in yellow. We regard links with rank of 1-7 as regulatory links inferred by
the algorithms because the target network composed of 7 links. Red lines and blue dashed lines represent true positive and false negative links,
respectively. (c) Five rank values for each link and the mean value among the five values. Green, red, orange, blue, and purple represent rank values
from Algorithm1, Algorithm2, Algorithm3, Algorithm4, and Algorithm5, respectively. (d) Rank value of a link by TopkNet and that by Community
Prediction. TopTNet and Top2Net regards 1st and 2nd highest value among five rank values for a link as the rank value of the link, respectively.
Community Prediction calculates the mean value among five rank values for a link and regards the mean as the rank of the link. For example, rank of
the links between genes 1 and 2 for Community Prediction is 7.4. This example illustrates how Top1Net can be more accurate than the other
algorithms.

doi:10.1371/journal.pcbi.1003361.g001
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Table 1. The DREAM5 datasets used in this study.

- In silico’ E col? S. celevisiae®
Number of genes 1643 4511 5950
Number of samples 805 805 536

'In silico Dream 5 dataset.

?Dream 5 dataset from E.coli,
*Dream5 dataset from S.cerevisiae.
doi:10.1371/journal.pcbi. 100336 1.t001

DREAMS benchmarking data comprised of large scale synthetic
and experimental gene regulatory networks for E.coli and
S.cerevesiae as outlined in Table 1 and computed different
performance metrics on them. As seen in the PR and ROC
curves for in silico, E. coli, and S. cerevisiae datasets (Supplementary
figures $2 and $3), Topbnet shows constantly higher performance
compared to community prediction. Other three performance
metrics (AUC-PR, AUC-ROC, and Max f-score) of TopiNet with
k= 5-8 are also higher than those of community prediction for all
the three datasets (see Figures 2B-]). Thus, overall score of
TopiNet with £=5-8 1is significantly higher than that of
community prediction (see Figure 2B). However, the performance
metrics of TopiNet is only comparable to the best individual
algorithms and not significantly better. Gommunity prediction also
showed significantly lower performances than the best individual
algorithm.

These results indicate that, while TopiNet would provide better
strategy to integrate multple algorithms than community predic-
tion, such a strategy does not always significant increase in
performance compared to the cost of integration. As seen in this
section, the overall score of the best individual algorithm (40.279)
is comparable to that of TopiNet with £=5-7 (40.110-41.251)
and is much higher than that of community prediction and
TopkNet with £=1 (30.228 and 10.432, respectively). This is
because, for the DREAMYJS datasets, several low-performance
algorithms assign high confidence scores to many false-positive
links and such false links could decrease the performance of
TopkNet (especially, with 4=1) and community prediction
algorithms.

Thus, by integrating only high-performance algorithms that
tend to assign high confidence score to true-positive link, TopiNet
(especially, with £= 1) and community prediction may show much
higher performances than the best individual algorithms. To
investigate this issue, we evaluate TopiNet (and community
prediction) based on integration of 10 optimal algorithms
(algorithms within top 10 highest AUC-PR) for each of the in
silico, E. coli. and S. cerevisiae datasets. As seen in Supplementary
figures S4 and 85, PR and ROC curves of ToplNet are constantly
over those of the best individual algorithm and community
prediction for in silico and E. coli datasets, although, for S. cerevisiae,
PR-curve of the best individual algorithm slightly over that of
ToplNet. Other three metrics (AUC-PR, AUC-ROC, and Max f-
score) of TopiNet with low & (k=1 for in silico and E. coli and £=2
for S. cerevisiae) are significantly higher or at least comparable to
those of the best individual algorithm and community prediction
(see Figures 3B-]). Therefore, the overall score of TopiNet with
k=1 and 2 (74.935 and 73.261, respectively) are significantly
higher than that of the best individual algorithm (40.279) and
community prediction (56.158) (see Figure 3A). These results
highlight that integration of multiple high-performance algorithms
by ToplNet or Top2Net consistently reconstructs the most
accurate GRNs for different datasets.
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As demonstrated in this section, selection of optimal algorithms
for a given expression data and ToplNet, Top2Net, and
community prediction based on integration of the selected optimal
algorithms could be a powerful approach to reconstruct high-
quality GRNs. However, currently, to our knowledge, there is no
method to determine beforehand optimal algorithms for expres-
sion data associated with an unknown regulatory network.
Development of a method to determine optimal algorithms is a
key to reconstruct unknown regulatory networks (We investigate
this issue in the next section).

Selection of optimal algorithm pairs to infer GRNs based
on algorithm diversity

Different network-inference algorithms employ different and
often complementary techniques to infer gene regulatory interac-
tons from an expression dataset. Therefore, a consensus driven
approach, which leverages diersity in network-inference algo-
rithms, can infer more accurate and comprehensive GRNs than a
single network-inference algorithm. However, as demonstrated in
this study, a simple strategy of increasing the number of algorithms
may not always yield significant performance gains compared to
the cost of consensus, ie., the computation cost (CPU time and
memory usage).

It is pertinent to analyze the anatomy of diversity between
different algorithms in a theoretical framework to answer the
questions of -

e To what extent, then, are the algorithms different from each
other?

® Does bringing diversity of the algorithms into community
prediction improve the quality of inferred networks?

For the purposes, Marbach et al. conducted principal compo-
nent analysis (PCA) on confidence scores from 35 network-
inference algorithms [35]. They mapped 35 algorithms onto 2"
and 3™ principal components and grouped the algorithms into
four clusters by visual inspection. The analysis demonstrated that
integration of three algorithms from different clusters shows higher
performance than that from the same cluster. It indicates that the
diversity signature of the selected algorithms, and not just the
number of algorithms, plays an important role in the performance
of the network reconstruction techniques.

However, their algorithm diversity is qualitative and, to our
knowledge, there is no quantitative measure for algorithm
diversity. In order to quantify diversity among the individual
algorithms employed in this study, we developed two quantitative
measures of diversity which calculates distance between algorithms
pairs on the basis of confidence scores of regulatory interactions
inferred by the algorithms. One is based on simple Euclidean
distance (EUGC distance) and the other is based on EUC distance
on 2"4 and 8™ components from PCA analysis (PCA distance) (see
Materials and Methods for details). In Figure 4, we provide a toy
model to explain how diversity among network-inference algo-
rithms is defined.

By using the diversity measures, we calculated distance among
10 optimal algorithms for each of the DREAMYJS datasets to
examine whether bringing quantified algorithm diversity into
ToplNet (and Community prediction) improves the performances
of network reconstruction. Based on the calculated distances, we
defined high-diversity pairs as top 10% of algorithm pairs with
highest distance, while low-diversity pairs are defined as bottom
10% of algorithm pairs with lowest distance. In this study, we have
45 algorithm pairs among 10 optimal algorithms and thus top 5
algorithm pairs with highest distance are high-diversity pairs, while
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Figure 2. Performances of TopkNet and community prediction based on integration of the 38 network-inference algorithms. Black
squares and lines show performances of TopkNet algorithm. For example, values at k=1 represent performances of Top1Net algorithm. Red and
green lines represent performances of community prediction and those of the best algorithm, respectively. (A) Overall score. (B) AUC-PR for in silico
dataset. (C) AUC-ROC for in silico dataset. (D) Max f-score for in silico dataset. (E) AUC-PR for E. coli dataset. (F) AUC-ROC for E. coli dataset. (G) Max f-
score for E. coli dataset. (H) AUC-PR for S. cerevisiae dataset. (I) AUC-ROC for S. cerevisiae dataset. (J) Max f-score for S. cerevisiae dataset.

doi:10.1371/journal.pcbi.1003361.g002

bottom 5 algorithm pairs with lowest distance are low-diversity
pairs.

Next, we evaluated the performances of ToplNet (or commu-
nity prediction) based on integration of high-diversity pairs and
those of low-diversity pair. As seen in Figures 5B-] and
Supplementary figures S6B-], AUC-PR, AUC-ROC, and max
f-score of high-diversity pairs by EUC distance are higher or at
least comparable to those of low-diversity pairs by EUC distance
across all datasets. Especially, for in silico and E. coli datasets, AUC-
PR and Max f-score of high-diversity pairs by EUC distance are
significantly higher than that of low-diversity pairs by EUC
distance. Thus, the overall score of high-diversity pairs is also
significantly higher than that of low-diversity pair (P<<0.05) (see
Figure 5A and Supplementary figure S6A). The performances of
high-diversity pairs by PCA distance are also higher or at least
comparable to those of low-diversity pairs by PCA distance (see
Supplementary figures 87 and S8). Furthermore, median value of
the overall score of high-diversity pairs (47.725 and 50.250 by
ToplNet, for EUC and PCA distances, respectively) are much
higher than that by the best individual algorithms (40.279) and
that by community prediction that integrates 38 network-inference
algorithms (30.228). In summary, these results indicate that -,

® [Lven for the same number of algorithms (in this case, two
algorithms are integrated), the quantitative diversity to selected
pairs can improve the performance of the consensus methods
(TopiNet and community prediction).

e Quantitative diversity-guided consensus can reduce the cost of
consensus (only 2 algorithms integration instead of 38
algorithms integration in this case) without compromising the
quality of the inferred network as shown in this study where
the inference performance of high diversity pair is much higher
than that of 38 algorithms combinaton.

Selection of optimal algorithms based on similarity
among expression datasets towards reliable

reconstruction of regulatory networks

ToplNet or Top2Net based on integration of highest-perfor-
mance algorithms consistently reconstruct the most accurate
GRNs, as demonstrated in the previous section (see Figure 3).
However, as Marbach et al. mentioned, ““Given the biological variation
among organisms and- the experimental variation among gene-expression
datasets, it is difficult to determine beforehand which methods will perform
optimally for reconstruction an unknown regulatory network” [33], and, to
our knowledge, there is no method to select the optimal network-
inference algorithms. Development of a method to select optimal
network-inference algorithms for each of the expression datasets
remains a major challenge in network reconstruction.

A measure to quantify similarity among expression datasets can
be a key to select optimal network-inference algorithms for each of
the datasets, because, if similarity between expression-data
associated with known regulatory network (eg., DREAMS
datasets) and that with unknown regulatory network is high,
optimal algorithms for the known dataset can be repurposed to
infer regulatory network from unknown dataset. Driven by this
observation, we developed a similarity measure among gene-
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expression datasets based on algorithm diversity proposed in
previous section.

First, we briefly explain the overview of the procedure to
calculate similarity among expression datasets (see Figure 6 and
Materials and Methods for the details). The procedure is
composed of 4 steps. (1) The expression datasets were split into
a dataset for which optimal algorithms are unknown (e.g, Datal in
Figure 6A) and datasets for which optimal algorithms are known
(e.g., Data2 and Data3 in Figure 6A). (2) For each of the datasets,
confidence scores of links were calculated by network-inference
algorithms. In the example shown in Figure 6B, each of 5
algorithms calculates 6 confidence scores for 6 links. (3) By using
the confidence scores calculated in the step (2), diversity among
algorithms was calculated based on a distance measure proposed
in the previous section (EUC and PCA based distances, see
Figure 6C and Materials and Methods for details), for each of the
datasets. In the example shown in Figure 6C, we have 10
algorithm pairs among 35 algorithms and thus, as shown in
matrices in the figure, we have 10 distances between two
algorithms for each of the three datasets. (4) By using algorithm
diversity calculated in the step (3), we calculated correlation
coefficient of the algorithm distances between two datasets (see
Figure 6D). In terms of algorithm diversity, the correlation
coefficient is regarded as similarity measure between. the two
datasets. In the example shown in Figure 6D, Datal is more
similar to Data2 than Data3. Thus, optimal algorithms for Data2
are better fit than those for Data3 to infer GRN from Datal.

Next, to evaluate whether dataset similarity can be used to
govern optimal selection of inference algorithms, we calculated the
similarity among the DREAMJ genc-expression datasets and
compared the performance of the algorithms across the datasets.
As seen in Figure 7 and Table 2, correlation between S. cerevisiae
and E. coli datasets (Spearman’s correlation coefficient p = 0.99) is
much higher than that between E. coli and in silico (p =0.87 and
0.81 by EUC and PCA distances, respectively) and that between .
cerevisiae and in silico (p=0.83). In terms of algorithm diversity,
similarity between E. coli and S. cerevisiae datasets is much higher
than that between E. coli and in sifico and that between S. cerevisiae
and i silico.

Further correlation of algorithm performances between dataset
pair with high similarity (eg., E. coli and S. cerevisiae pair) is higher
than that between dataset pair with low similarity (e.g., in silico and
E. coli pair and in silico and S. cerevisiae pair) (see Supplementary
figure S7 and Supplementary Table S2). These results indicate
that, for dataset pair with high similarity, optimal network-
inference algorithms for one dataset also tend to be optimal for the
other dataset.

From above observations (observations in Figure 7, Supple-
mentary figure S9, Table 2, and Supplementary table S2), we
hypothesized that, if similarity between the two expression-
datasets is high, integration of algorithms that are optimal for
one dataset could perform well on the other dataset. To examine
this issue in more detail, we integrated algorithms that are
optimal for . cerevisia dataset (algorithms with 10 highest AUC-
PR values on the dataset) and those for the in silico dataset and
evaluated their performance of these two integrations against £.
colt dataset.
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Figure 3. Performances of TopkNet and Community prediction based on integration of top 10 highest-performance algorithms.
Black squares and lines show performances of TopkNet algorithm. For example, values at k=1 represent performances of Top1Net algorithm. Red
and green lines represent performances of community prediction and those of the best algorithm, respectively. (A) Overall score. (B) AUC-PR for in
silico dataset. (C) AUC-ROC for in silico dataset. (D) Max f-score for in silico dataset. (E) AUC-PR for E. coli dataset. (F) AUC-ROC for E. coli dataset. (G)

Max f-score for E. coli dataset. (H) AUC-PR for S. cerevisiae dataset. (I) AUC-ROC for S. cerevisiae dataset. (J) Max f-score for S. cerevisiae dataset.

doi:10.1371/journal.pcbi.1003361.g003

As seen in Figures 8A, B, and C, against the E.coli dataset,
performances (AUC-PR, AUC-ROC, and max f-score) of optimal
integration from S. cerevisiae dataset (green lines) are generally
higher than those from in silico dataset (red lines). Further, against
the S. cerevisiae dataset, we evaluate performances of optimal-
algorithm integration from E. coli dataset and that for in silico
dataset and found that optimal integration from F. coli dataset
(green lines) generally outperform that from in silico dataset (red
lines) (see Figures 8D, E, and F). Because similarity between .
cerevisiae and E. coli datasets are much higher than that between E.

coli and 1n silico datasets and that between S. cerevisiae and in silico
datasets (see Figure 7 and Table 2), these results support the above
hypothess.

Further, as shown in Figure 8, performance of Topknet
Iintegrating optimal algorithms from a dataset with high-similarity
(green lines) is comparable to that integrating top 10 highest-
performance algorithms (blue lines). Thus, data-similarity based
optimal algorithm selection together with TopiNet (or community
prediction) based integration of the selected optimal algorithms can
be a powerful strategy to reconstruct unknown regulatory network.
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Figure 4. A toy example to calculate diversity among algorithms. (A) Confidence scores from algorithms. Confidence score of a link between
two genes were generated by each of three algorithms. In this case, each algorithm has 6 confidence scores for 6 links. Note that the three algorithms
in this example are algorithms to infer non-directional algorithms and make symmetrical matrices of confidence scores, i.e., confidence score of link
from genel to gene 2 is same as that from gene2 to genel. Thus, for simplicity, upper triangles of confidence score matrices are not shown in the
figure. (B) Diversity among algorithms based on Euclidean distances. In this example, each of three algorithms has a vector of 6 confidence scores for
6 links between two genes. Euclidean distance between two vectors of confidence scores from two algorithms is calculated and is defined as diversity
between the two algorithms. (C) Diversity among algorithms based on 2nd and 3rd components of PCA analysis. In this example, PCA analysis is
conducted on three vectors of 6 confidence scores from three network-inference algorithms and the three algorithms are mapped on to 2nd and 3rd
principal components (see left panel of C). Euclidean distance between two algorithms is calculated by using the 2nd and 3rd principal components
and is defined as diversity between the two algorithms.

doi:10.1371/journal.pcbi.1003361.g004

PLOS Computational Biology | www.ploscompbiol.org 9 November 2013 | Volume 9 | Issue 11 | e1003361

-319-



