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in cell proliferation, organ growth, and apoptosis. In our research,
it is found in the promoters of INS, RPS6KA2 (module 1), IRS1,
PIK3R1, PIK3CA (module 2), TNF (module 3), and TSC2 (mod-
ule 4). Akhtar et al. {2012) suggest that PLAG1 is overexpressed in
cancer cells when it binds to IGF2 promoter. Because of the close
proximity of the IRS1 and IGF genes, PLAG1 may also regulate
IRS1 as it was identified in our research.

Pre-core modules 1 (MAPK signaling) and 2 (Insulin signal-
ing) share SP1, MZF1, and PLAG! transcription factors. Apart
from it, module 2 has FOXF2 (forkhead box F2) and TBP (TATA-
binding protein). FOXF2 and TBP are already known in the
context of co-regulation with MTOR, RDS1, (adenine-repressible
gene) and TFAP2A (transcription factor AP-2 alpha) (Westergren,
2010). :

FOXF?2 is classified as TF, which regulates the mTOR pathway.
The increased amount of FOXF2 inhibits the activity of IRSI
(insulin receptor substrate 1), leading to inhibition of the whole
mTOR pathway via a negative-feedback loop (Westergren, 2010).
FOXF2 interacts with another transcription factor TBP (TATA-
binding protein), and in our research, both of them were found in
close proximity to IRS1. TBP additionally interacts with SP1 and
E2F1 transcription factors found in the intersection zone of mostly
interconnected genes in our study (Supporting Figure 1A). In
module 2, TBP is regulated by PI3K genes, and in the mTOR core,
TBP is regulated by the MTOR gene, thus, playing a vital role in
recruiting Polymerase I and modulating activity of Polymerase
1T (Cianirocco et al., 2013).

In consideration of the locations of TFAP2A binding motifs,
it is noteworthy that TFAP2A can regulate the mTOR path-
way and, in particular, its core path. A TFAP2A binding motif
was found in the promoters of IRS1 and PIK3R2 genes of an
insulin signaling pathway (module 2), a PTEN gene, which is an
inhibitor of the mTOR pathway thought the PIP3 (module 2)
and RRAGD genes (module 5). TFAP2A is thus involved in pro-
cesses of organ development and negative cell proliferation at the
same time. One of the probable scenarios concerning TFAP2A
is that by inhibition of IRS1, PIK3R2 (module 2), and RRAGD
(module 5) genes, TFAP2A stimulates the PTEN transcription
immobilizing mTOR pathway and negative feedback loop may
exist between insulin-signaling module 2 and amino-acid balance
module 5. Surprisingly, a TF characteristic for yeast RDS1 (an
adenine-repressible gene), responsible for the regulation of tran-
scription from RNA polymerase I, is identified in the human data
set. RDS1 binding motif is found in the promoters of IRS1, AKT1
(threonine-protein kinase) genes of pre-core module 2, and the
RRAGC (Ras-related GTP binding C) gene of post-core module 5.
It is difficult to assess RDS1 functions in an mTOR pathway due
to the fact that it is only been found in yeast to date. However, in
yeast organisms, it is responsible for transcription regulation and
response to xenobiotic'stimulus. In human organisms, its func-
tion may be very similar to the function in yeast, and human
ortholog might be identified in the future.

RDS! can influence the mTOR pathway from two sides:
first, being regulated by growth factors and hormones (IRS1
and AKT1 in module 2) and, second, being regulated by the
availability of amino acids or generally intracellular xenobiotics
(RRAGC in module 5). The above-described finding on RDS1

activity indicates the existence of crosstalk between module 2
(insulin signaling) and module 5 (amino-acid balance within a
cell) transcription regulation and existence of a negative feed-
back loop between them. This is a biologically reasonable finding
as insulin-control amino-acid metabolism is tightly related to
amino-acid-uptake balance.

MODULE FOUR REGULATES HYPOXIA
ARNT (aryl-hydrocarbon
HIF-1B) is one that regulates gene expression in hypoxia module
4. It encodes a protein that is crucial for complex formation
with the ligand-bound aryl hydrocarbon receptor (AHR) and
proper functioning of this receptor. Current knowledge indicates
that the HIFI1- and/or HIF2-mediated hypoxia responses can

receptor nuclear translocator 3,

be oncogenic as well as tumor suppressive (Pawlis and Hu,
2013). ARNT induces activation of REDD1 (DDIT4) by creating
a dimer with HIF1, thereby inhibiting TORC1 and affecting
the TSC2-depending mechanism (Kapahi et al., 2010). ARNT
interacts with ESRI, co-activating its transcription (Endler
et al,, 2004), and with SP1, creating a reconstituent complex
(Mulero-Navarro et al,, 2006) with it. SP1 itself is able to bind the
Ah receptor and down-regulates its expression in leukemia cells
(Mulero-Navarro et al., 2006).

CORE MODULE OF mTOR

In the core of mTOR pathway KLF4 (Kruppel-like factor 4)
inhibits the MTOR gene and has an anti-proliferative effect on
the whole mTOR pathway (Wang et al., 2012), thereby promoting
self-renewal and precluding differentiation.

On the contrary, MEF2A (myocyte specific enhancer factor)
positively regulates genes of the mTOR/S6K pathway, so it belongs
both to the mTOR core and module 7 (VEGF pathway) (Percira
et al, 2009; Yin et al, 2012), promoting cell growth and dif-
ferentiation. However, the MEF2 family is also responsible for
cardiac hypertrophy and failure (Pereira et al., 2009), and its
overexpression leads to cardiac dysfunction.

MODULE SEVEN OF VEGF PATHWAY

Module 7 is associated with VEGF (vascular endothelial growth
factor) pathway-advancing cell growth, organ development, and
protein formation. This transcriptional module possesses four
transcription factors, namely, SP1, ESR1, E2F1, and EGR1, with
three first TFs tightly associated with the activities of the mTOR
pathway.

EGRI1 (early-growth-response protein 1), which is module 7
specific TF, directs cell differentiation. It was discovered that its
level in a prostate cancer was raised, showing a pro-oncogenic
character; however, in other tumor types (skin tumor, fibrosar-
coma, and glioblastoma), EGRI1 exhibits features of a tumor
suppressor by activating p53 and PTEN to halt the transcrip-
tion of other genes in the mTOR pathway (Zheng et al., 2009).
Moreover, it was discovered that the knockdown of EGRI affects
VEGFA, thereby affecting the VEGF pathway and mitogenesis
(Abdel-Malak et al., 2009).

An E2F group affects activation of RPS6KB1 (S6K) and stim-
ulates phosphorylation of S6K and 4EBP in the presence of
Leucine. E2F1 integrates cell division (as well as cell growth) and
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induces an apoptotic response (Real et al., 2011). In tumor cells,
it can activate EGR1 to endorse cell survival. Moreover, in tumor
cells, by up-regulating the production of EGRI, epidermal growth
factor (EGFR), platelet-derived growth factor (PDGFRA), and
insulin-like growth factor II (IGF2BP2), E2F1 can activate the
phosphoinositide-3-kinase/Akt (PIK3CA/AKT) pathway in a way
to inhibit drug-induced apoptosis (Zheng et al., 2009).

DISCUSSION

Transcription factors selected (24 genes) from the results analysis
where those identified by main and supportive motifs discov-
ery tools used in our study (Supporting Figure 1). Other tran-
scription factors that less frequently appear can be seen in the
process-module-assigned fashion in Supporting Figures 1A,B for
human and mouse, respectively. Transcription factors (24) are
classified into two groups: first, those expressed in the specific
module of mTOR and second, those commonly identified in
various modules.

The first group of TFs includes ESRI, ELK1 (MAPK signaling,
module 1), FOXF2 (Insulin signaling, module 2), KLF4 (mTOR
core), ARNT (Hypoxia, module 4), E2F1, and EGR1 (VEGF
signaling, module 7). The second group includes SP1, MZFI1,
PLAGI, TFAPIA, TBP, and RDS1. Among member of the second
group, MZF1, PLAGI1, TFAP1A, and RDS are newly identified.
Other transcription factors identified in the promoters of genes
in our analysis are EGR2, EGR3, YY1, SREBF1, SREBF2, ELFI,
and ARID3A. They are less frequently share by the promoters in
our dataset but they are well-known to be involved in the mTOR
pathway regulation (YY1, SREBFs).

One-third (21) of the human transcription factors were found
to be conserved in the case of a mouse. Among them most con-
fident are SP1, TFAP2A, MZF1, EGR3, KLF4, USF1, KLF9, and
ARNT (Supporting Figure 1B). They are transcription factors
having multiple copies in gene promoters and/or shared by many
genes within the dataset. Cross-species-conserved TFs identified
corroborate the consistency of our methodology. However, a part
of frequently appearing mouse TFs, such as HSF1, CDC5L, HES6,
and FOXLI1, were not identified in orthologous human promot-
ers. This might be regarding to the difference in the transcription
regulation between two species.

The results described in the paper indicate that the proper
selection of online motif-discovery tools without parameters
tuning is feasible to bring accurate results for the discovery
transcription regulation on medium size data. However the
aim to reduce false positives might result in the omitting low
sensitivity-degenerate motifs (Polouliakh et al., 2005). Creation
of sophisticated analytic workflow might be warranted to cope
with large-scale sequence data for de novo motif discovery.
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Supporting Figure 1 | Transcription-factor (TF) binding motifs in the mTOR
pathway identified in human (A) and mouse (B) orthologous datasets. The
intensity of the blue color reflects frequency of motif occurrence per
gene. The colors above transcription-factor names point to those
supportive programs (Cscan, LocaMo, TransFind, and TRAP), which also
identified a motif after it was detected by the five main programs
(MEME_Chip, PASTAA, Pscan, TFM-Explorer, and XXmotif). Transcription
factors were sorted according to the sum of occurrences in the whole
data set. The red horizontal line in the human-case results highlights 24
genes with average number of motifs per gene higher than 26 (Gene
threshold, Gene_TH), and the vertical red line shows the top-24
transcription factors (TF_TH) identified as the most significant in our study.
Sub-table (B) shows mouse transcription factors and genes in the same
order with the human ones and extended red lines from human data in
order to depict similarities between two species. Sub-table (C) includes
description of transcription factors and estimated positions of their motifs
in human promoters based on the results of the five main programs
(MEME_Chip, PASTAA, Pscan, TFM-Explorer, and XXmotif) and asterisks
point to human-mouse orthologous TFs.
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ABSTRACT — Pentachlorophenol (PCP) was monitored for transcriptome responses in adult mouse liv-
erat 2, 4, 8 and 24 hr after a single oral administration at four dose levels, 0, 10, 30 and 100 mg/kg. The
expression data obtained using Affymetrix GeneChip MOE430 2.0 were absolutized by the Percellome
method and expressed as three dimensional (3D) surface graphs with axes of time, dose and-copy num-
bers of mRNA per cell. We developed the programs RSort, for comprehensive screening of the 3D sur-
face data and PercellomeExploror for cross-referencing and confirmed the significant responses by visu-
al inspection. In the first 8 hr, approximately 100 probe sets (PSs) related to PXR/SXR and Cyp2a4 and
other metabolic enzymes were induced whereas Fos and JunB were suppressed. At 24 ln‘, about 1,200 PSs
‘wue strongly mducn,d We cross-relerenced the Percellome database consisting of 111 chemicals on the
liver transcriptome and found that about half of the PSs belonged to the metabolic pathways mcludmo
Nrf2-mediated oxidative stress response networks shared with some of the 111 chemicals: The other half"
of the induced genes were interferon signaling network genes (ISG) and their induction was unique to
PCP. Toll like receptors and other pattern recognition receptors, interferon regulatory factors and interfer-
on alpha itself were included but inflammatory cytokines were not induced. In summary, these data indi-
cated that functional symptoms of PCP treatment, such as hyperthermia and profuse sweating might be
mediated by the ISG rather than the previously documented mitochondrial uncoupling mechanism. PCP
might become a hint for developing low molecular weight orally available interferon mimetic drugs fol-
lowing imiquimod and RO4948191 as agonists of toll-like receptor and interferon receptor.

Key words: Pentachlorophenol, Mouse, Liver, Interferon signaling genes, Percellome toxicogenomics

INTRODUCTION and eleven chemicals (as of June 2013, Supplementary
Table 1), most of which are known for their toxicity, were
examined using the standard protocol of the project.

Pentachlorophenol (PCP) was examined in adult male

The Percellome Toxicogenomics Project is designed
to identify dynamic and extensive networks of genes

whose time- and dose-dependent patterns of expression in
response to a chemical allows its toxic effects to be pre-
dicted. For this project, we developed a standardization
method for microarrays and quantitative PCR that pro-
duces copy number of mRNAs per one cell (designated
as “Percellome method”) (Kanno et a/., 2006). This meth-
od allowed us to directly and quantitatively compare gene
expression data among samples, studies, organs and even
species using four arithmetic operations. One hundred

C57BL/6 mouse liver. This compound has been used for
multiple purposes such as herbicide, insecticide, fungi-
cide, disinfectant, and other preservative purposes, more-
over, its metabolism and toxicity, including carcino-
genicity have been well studied. PCP is known to induce
morphological changes in liver, kidney, hematopoietic,
respiratory, immune and neural systems together with irri-
tation of exposed sites. Hepatocarcinogenicity was dem-
onstrated in rodents; the postulated mechanism involves
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hydroxyl radical mediated DNA adduct formation and
oxidative stress by the PCP metabolites. Functional symp-
toms, such as hyperthermia (sometimes life-threatening),
profuse sweating, nausea, and uncoordinated movements
were noted. Hyperthermia and other functional symptoms
have been explained by the uncoupling of oxidative phos-
phorylation in mitochondria.

Here, we report that a comprehensive Percellome anal-
ysis revealed that PCP was the only chemical among the
111 tested in our project that strongly induced the inter-
feron signaling gene (ISG) network. Additional pathways
induced by PCP were Nrf2-mediated oxidative stress
responses and other metabolic pathways more commonly
seem among the 111 chemicals.

MATERIALS AND METHODS

Test chemical

PCP, standard grade (100.0% by gas chromatogra-
phy coupled with flame ionization detector, Wako Pure
Chemical Industries, Ltd., Tokyo, Japan) was dissolved
in water containing 0.5% methyl cellulose (Shin-Etsu
Chemical Co., Ltd., Tokyo, Japan).

Animal experiments

All experiments were carried out under approval
of Experimental Animal Use Committee of National
Institute of Health Sciences, Japan. C57BL/6 Cr Slc
(Japan SLC, Inc., Shizuoka, Japan) twelve week-old male
mice maintained in a barrier system with a 12 hr photope-
riod were used in this study. Prior to the main study, a
dose finding study was performed. This study revealed
that 100 mg/kg was the maximum dose without clini-
cal symptoms or alteration in- H&E histology of the liv-
er sampled 24 hr after single oral administration (a stand-
ard criteria for the top dose of the Percellome Project
study). For the liver transcriptome experiments, for-
ty eight mice were divided into four groups with twelve
each, and given a single dose of PCP at 0, 10, 30 and
100 mg/kg by oral gavage. At 2, 4, 8 and 24 hr post-gav-
age, three randomly selected mice from each dose groups
were euthanized by exsanguination under ether anesthe-
sia and the livers were excised into ice-cooled plastic
dishes. Tissue blocks weighing 30 to 60 mg were placed
in an RNase-free 2 ml plastic tube (Eppendorf GmbH.,
Hamburg, Germany) and soaked in RNAlater (Ambion
Inc., Austin, TX, USA) within 3 min of the beginning of
anesthesia. The 12 animal sampling for each time point
was finished within 25 to 30 min in order to avoid circa-
dian-based variation within a time point.

Vol. 38 No. 4

Sample preparation and GeneChip measurement

The tissue blocks soaked in RNAlater were kept over-
night at 4°C or until use. RNAlater was replaced in the
2 ml plastic tube with 1.0 ml of RLT buffer (Qiagen GmbH.,
Hilden, Germany), and the tissue was homogenized by
adding a 5 mm diameter Zirconium bead (Funakoshi,
Tokyo, Japan) and shaking with a MixerMill 300 (Qiagen
GmbH) at a speed of 20Hz for 5 min (only the outermost
row of the shaker box was used).

Three separate 10ul aliquots were taken from each sam-
ple homogenate to another tube and mixed thoroughly. A
final 10 pl aliquot there from was treated with DNAse-
free RNase A (Nippon Gene Inc., Tokyo, Japan) for
30 min at 37°C, followed by Proteinase K (Roche
Diagnostics GmbH., Mannheim, Germany) for 3 hr
at 55°C in 1.5 ml capped tubes. The aliquot was trans-
ferred to a 96-well black plate. PicoGreen fluorescent dye
(Molecular Probes Inc., Eugene, OR, USA) was added to
each well, shaken for 10 sec four times and then incubat-
ed for 2 min at 30°C. The DNA concentration was meas-
ured using a 96 well fluorescence plate reader with exci-
tation at 485 nm and emission at 538 nm. A phage DNA
(PicoGreen Kit, Molecular Probes Inc.) was used as
standard.

As reported previously, the graded-dose spike cocktail
(GSC) made of the following five Bacillus subtilis RNA
sequences were selected from the gene list of Affyme-
trix GeneChip arrays (AFFX-ThrX-3_at, AFFX-LysX-3
at, AFFX-PheX-3_at, AFFX-DapX-3_at, and AFFX-Trp-
nX-3_at) present in the MOE430 arrays was added to the
sample homogenates in proportion to their DNA concen-
trations (Kanno e al., 2006). Then, the sample homoge-
nates spiked with GSC were processed according to the
Affymetrix standard protocol. The GeneChips used were
Mouse 430 2.0. We used the in house developed SCal4
(Spike Calculation version 4, by K.A.) to check the effi-
ciency of in vitro transcription, and the dose-response lin-
earity of the five GSC spikes and to produce Percellome
data, i.e. absolutized mRNA copy numbers of each PS
were generated.

The data consist of four dose levels and four time
points, generating a 4 x 4 matrix. The mean value (m)
with standard deviation (sd) was calculated from the trip-
licates for all of the probe sets (PSs) for each dose-time
points. In order to better visualize the changes at 2 hr,
the vehicle value was used for putative zero point, and
drawn a 5 x 4 surface three-dimension (3D) surface graph
with X-axis for dose, Y for time, and Z for expression as
shown in Fig. 1.

-295-



645

Pentachlorophenol turns on interferon network in mouse liver

1449851 at
Pert
AF022992

) 1317

=z 12 vy %

> 1 . g R

8 Q 10

T T s

.=

= 2 [ |

S I
o 5 |

©

@ - s |

e

o 4 oo \ }

g 3 ', | 8hrdata |

2br vehicle
value is used
for virtual Ohr

4 3 3 ; ‘ 4‘
4hr data |-
i

Three dimensional surface expressions of Percellome
Project data: The project data consist of four dose levels
and four time points, generating 4 x 4 matrix. The mean
value and standard deviation were calculated from the
triplicate data. In order to better visualize the changes at
2 hr, the vehicle value was used for zero hour data to draw
a 5 x 4 surface graph with X-axis for dose, Y for time,
and Z for expression. Here, Affymetrix 1D 1449851 _at
(Perl, period homolog 1) is shown. The 5 x 4 mesh
made by the mean values was painted in translucent
green (mean surface). The mean surface is rainbow-
colored from blue, green, red to yellow according to its
peak absolute values (cf. Fig. 3, Supplementary Fig. 1).
Above and below the mean surface, +1sd and -1sd sur-
faces were overlaid using transparent blue. The dose-re-
sponse curve at 2 hr, 4 hr, 8 hr and 24 hr are highlighted
in blue, green, yellow and red. In a direction perpen-
dicular to the dose-response curves, time course of each
dose groups and vehicle group is indicated (not high-
lighted). The graph reads that the highest dose peaked at
4 hr at around 9 copies per cell; the middle dose peak-
ed at 8 hr above 10 copies per cell. The vehicle group
(V) showed the circadian change and peaked at 8 hr.
The small red crosses are data of each animal sample
(n = 3). Yellow asterisks indicate that the marked mean
values were significantly different from concurrent ve-
hicle value by p < 0.05 (Student’s t-test).

Fig. 1.

Comprehensive selection of treatment-responding
mRNAs

The in house developed software, RSort (Roughness
Sort by K.A.) was used for automatic selection of treat-
ment-responding mRNAs. This program sorts the PSs
based on the roughness of the 3D surface. In other words,
calculate the numbers of peaks (upward and downward)
in a surface and sort by the number of peaks (maximum
of eight peaks in 4 x 4 grid of the surface). Next, it fil-

ters the PSs by the number of peaks (normally three or
less peaks) and additional parameters such as maximum
expression level (normally more than one copy per cell
for liver samples), p values between vehicle and top dose
groups (P < 0.05 or p < 0.01). Here, a surface was select-
ed when it had three peaks or less, the first peak in high
doses (at any time) or the first peak in middle doses if its
value is not significantly different from the neighboring
high dose at p < 0.01 by Student’s t-test, and the value of
the peak is significantly different from that of vehicle con-
trol at p < 0.05 by Student’s t-test. These automatically
selected PSs were then visually checked for their 3D-sur-
face shapes (to eliminate noisy data), and subdivided into
those showed initial changes at 2, 4, 8, and 24 hr. A cross-
referencing program named PE (Percellome Explorer,
by K.A.) was used to select a list of chemicals that share
PSs common to the visually confirmed list of PCP. The
PE contains the gene lists automatically selected by the
RSort of all data in our Percellome Project (168 datasets
for liver samples, 286 for all samples), and automatically
cross-refers and sorts out the chemicals sharing the same
PSs (Fig. 2). The automatically selected gene lists (prod-
uct sets) were visually checked to remove noise surfaces.

In Situ Hybridization

For in situ hybridization of Irf7 and Statl mRNAs,
QuantiGeneViewRNA ISH Tissue Assay kit (Affymetrix,
Inc., Santa Clara, CA, USA) was used. The probes were
designed and synthesized by Affymetrix; regions cov-
ered were 2-1461 bases for Irf7 and 707-1710 bas-
es for Statl. 10% buffered formalin fixed liver tis-
sues were dehydrated and embedded in paraffin. Tissue
sections were mounted on “FRONTIER coated glass
slides” (Matsunami Glass Ind., Ltd. Osaka, Japan).
The slides were completely dried and stored until use.
The slides were re-fixed in 10% formaldehyde for 1 hr
at room temperature and washed with PBS and deparaffi-
nized with xylene, pretreated in 1x Pretreatment Solution
at 98°C for 30 min and digested with Protease QF at 40°C
for 20 min. The probes were hybridized at 40°C for 2 hr
and the signals were detected with Fast Red.

RESULTS

The numbers of PSs that started to change in response
to PCP treatment at 2, 4, 8 and 24 hr were 98, 55,
127 and 1192 respectively (Supplementary Table 2,
Supplementary Fig. 1). Chemicals or treatment in the Per-
cellome database (Supplementary Table 1), that shared
the PS list with PCP are shown in Table 1. The chem-
icals that shared the most with the 2 hr PS list of PCP

Vol. 38 No. 4
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Fig. 2.

PercellomeExplorer (PE) Software: The PE contains the gene lists automatically selected by the RSort software program of

all data in our Percellome Project (168 datasets for liver samples, 286 for all samples, as of May 2013), and automatically
picks up the chemicals sharing same PSs. TTG016-L(C), the study code for PCP was selected from the upper window and
the chemicals sharing the PSs were listed in the lower window. These lists await visual confirmation.

was sodium dihydroacetate (TTG154-L); 51 PSs, fol-
lowed by acephate (TTG109-L); 24 PSs, down to 5-fluor-
ouracil (TTG160-L); 4 PSs. The sum set (or union
of sets in set theory) of the 2 hr PS lists that are list-
ed in the 2 hr column of the Table | contained 75 PSs
(up-regulated (Up) 59, down-regulated (D) 16). Like-
wise, the sum set of the 4 hr PS lists contained 31 PSs
(Up 22, D 9), 8 hr 46 PSs (Up 23, D 23) and 24 hr 636
PSs (all Up). The PS list unique to PCP (Unique list) at
each time point contained 23, 24, 81, and 556 PSs at each
time points (cf. Supplementary Table 2).

Profiles of genes changed at 2, 4 and 8 hr

The PS list common to other chemicals (Common
list) contained the gluconeogenesis pathway of PGC-1A
(Ppargcla)/Foxol/HNF4 (Puigserver e al., 2003) that
were induced at 2 hr (Fig. 3). This finding is in concord-
ance with the report in experimental animals that PCP
acutely induces hyperglycemia (Deichman ef al., 1942;
Clayton and Clayton, 1981). Ppargcla was reported to
increase the expression of Lpinl (Finck er al., 2006),
which was also the case here. A small set of genes encod-
ing metabolic enzymes was induced during the first 8 hr,

Vol. 38 No. 4

including Cyp2a4, Cyp4fl16, Cyp7al, Cypl7al, Cyp39al,
Fmo2, and Fmo5 (Fig. 3).

Ingenuity pathway analysis (Ingenuity Systems, Inc.
Redwood City, CA, USA) indicated that these genes
are likely to be induced by Nrli3 (CAR), Nrli2 (PXR/
SXR) or Nr5al (data not shown). Although our RSort
program did not identify these nuclear receptors, man-
ual search showed that PXR/SXR was induced by PCP
(Fig. 3). These changes were not unique to PCP and
shared by some of the chemicals in the Common list (cf.
Supplementary Table 2).

Down regulation of Fos and JunB at 2, 4, and 8 hr
(Fig. 3) was uniquely found in the PCP gene list. Bioinfor-
matic analysis did not identify any associated pathways.

Profiles of genes started to change at 24 hr

The list of PSs induced at 24 hr contained two large
networks. About half of the PSs showing altered expres-
sion by PCP were assigned to the interferon signaling
pathway (Fig. 4, Supplementary Fig. 1). The interfer-
on signaling genes (ISG) were highly up-regulated from
Statl, Stat2, Tyk, to Irf7, Myd88, Oas, Ifit, Cxcl10 and
other downstream targets. Toll like receptors (TLRs) and
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Table 1. The total numbers of probesets induced by PCP at each time points and those shared with other chemicals.
2 hr 4 hr 8 hr 24 hr
Percellome No. Treatment PS  Percellome No. Treatment PS  Percellome No. Treatment PS  Percellome No. Treatment PS
TTGO16-L(C) Pentachlorophenol 98  TTGO16-L(C) Pentachlorophenol 55 TTGOl6-L(C) Pentachlorophenol 127 TTGO16-L(C) Pentachlorophenol 1192
TTG154-L TTG104-L _ 21 TTG098-L DEHP 15 TTG098-L DEHP 258
TTG109-L TTG098-L DEHP 16 TTG041-L Valproic Acid : 14 TTGO32-L 3-Amino-1H-12,4-triazole 212
TTGO059-L TTG037-L — 14 TTGI104-L 14 TTG104-L
TTG062-L(C) TTG032-L 3-Amino-1H-1,2 4-triazole 12 TTGI09-L 13 TTGO37-L
TTGO41-L TTG144-L — 12 TTGI160-L 10 TTGO041-L Va]proic;Aci(’i
TTGO9S-L  DEHP 17 THESOL  yupeloncidsedpmsalx g pygiser 9 TTGIST-L
TTGO19-L 15 TTGl41-L 8 TTGl4l-L 8 TTGO31-L
TTG104-L 12 TTGO74-L 8 TTGO31-L 8 TTGI154-L
TTG165-L 12 TTGISI-L x::g:g:z o 22}; X 7 TTGO32-L  [SEATMCHERIDHIECSOEE 3 TTGl62-L
TTG034-L 12 TTGO31-L 7 TTGIl46-L Forskolin 6 TTGO044-L
TTG166-L 10 TTGO044-L 6 TTG062-L(C) 6 TTG074-L
TTGO31-L 10 TTG162-L 5 TTGOS4-L Pé;‘;‘g{‘,:;"sami”e 5 TTGI09-L
TTG141-L 9 TTG132-L Curcumin 3 TTGI160-L
TTG032-L 3-Amino-1H-1,2 4-triazole 9 TTG136-L _ 2
TTG027-L 9
TTG160-L 4
Sum Set (common) 15 Sum Set (common) 31 Sum Set (common) 46 Sum Set (common) 636
Sum Set (Up) 59 Sum Set (Up) 22 Sum Set (Up) 23 Sum Set (Up) 636
Sum Set (Dn) 16 Sum Set (Dn) 9 Sum Set (Dn) 23 Sum Set (Dn) 0
PCP NOT Sum (unique to 23 PCP NOT Sum (unique to 24 PCP NOT Sum (unique to 81 PCP NOT Sum (unique to 556
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Representative surface data of PSs induced at 2, 4 and 8 hr after PCP single gavage: Ppargcla and Foxol are the members

of gluconeogenesis pathway. A small set of genes of metabolic enzymes, such as Cyp2a4, Cyp4t16, Cyp7al, Cypl7al,
Cyp39al, Fmo2, and Fmo35 are induced during the first 8 hr. Nr1i2 or PXR/SXR is also induced. Down regulation of JunB
and Fos at 2, 4, and 8 hr are noted. The graphs marked with (Inverted) are plotted with inverted z-axis, zero on top for better
indication of suppression. The graphs with (Inverted, subtracted) are plotted, in addition to inverted z-axis, with the 2, 4, 8
and 24 hr values compensated by concurrent vehicle values so that the vehicle line is straight and cancels out the circadian

changes.

other pattern recognition receptors (PRR), interferon reg-
ulatory factors (Irf) and interferon (Ifn) itself were includ-
ed. These ISGs were uniquely induced by PCP. It is nota-
ble that inflammatory cytokines such as Tnf-o, IL-12 and
CD40 were not effectively induced by PCP. The Ingenui-
ty Pathways also plotted many genes in the interferon sig-

Vol. 38 No. 4

naling with a very high probability score (Fig. 6).

In situ hybridization confirmed that hepatocytes were
producing the Irf7 and Statl in a dose dependent manner
(Fig. 7, only vehicle and top dose were shown).

The other half was assigned, by Ingeunity Pathway
analysis, to Nrf2-mediated Oxidative Stress Responses
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