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Table 3
{Cs values of inhibitors

database (hteps://www.oncomine.org/) were

accessed in June 2011. Five microarray studies

/ ) Inhibitors
Tumor cells iGRT14 (uM) ~PNU74654 (yM) DZNeP (uM)
mES #1 5.90 2.08 0.68
mMES #5 5.61 6.79 10.30
mES #33 0.76 1.96 10.95
hES_EWS 1.71 2.98 13.46
hES_KH 7.41 6.05 15.87
hCCS_KAS 2.16 3.16 16.58
h0QS_U208 14.79 3.42 19.33

containing 117 tumor samples that were analyzed
using Human Genome U133A Array (Affymecrix)
were queried for gene expression. CEL files from

Olaparib (uM
p (ub) E-MEXP-353 (61), E-MEXP-1142 (62), GSE6481

Zgg (63)% GSE7529 (64), GSEZI 122 (65), GSEG461 (66),
17.50 GSE42548 (67), GSE23972 (68), GSE20196 (69),
0.86 and GSE10172 (70) were downloaded. The probe
2.70 sets of the human U133A array were translated into
28.85 23,860 murine 430 2.0 arrays by the translation
40.42 function of GeneSpring using Entrez Gene ID to

Probes), anti-mouse CD99 (a gift of Dietmar Vestweber, Max Planck Insti-
tute for Molecular Biomedicine, Muenster, Germany), anti-COL2A (Mil-
lipore), anti-S100 (Dako), anti-COL10 (SLS), anti-CDS7 (Sigma-Aldrich),
anti-NGFR (Millipore), anti-B-catenin (Becton Dickinson), anti-nestin
(Chemicon), and anti-myosin (Nichirei). Immunofluorescent images were
photographed with a Zeiss LSM 710 laser scanning microscope with a x40
objective (Zeiss) and LSM Software ZEN 2009 (Zeiss).

Western blotting. Western blot analysis was performed using lysaces of
whole tumor tissues as described previously (54).

RT-PCR and real-time quantitative RT-PCR. Total RNA extraction, reverse
transcription, and RNA quantification were performed according to meth-
ods described previously (54). Conventional RT-PCR and real-time quan-
titative RT-PCR were performed by using a Gene Amp 9700 thermal cycler
(Applied Biosystems) and a 7500 Fast Real-Time PCR System (Applied Bio-

systems), respectively. The sequences of the oligonucleotide primers are’

shown in Supplemental Excel File 6. ;
Luciferase assay. A 1,340-bp genomic DNA fragment upstream from

the murine Gdf§ exon 1 was amplified by PCR using the following.

primers: forward (5'-TTCTATAATCCTACTCTGTAG-3') and reverse
(5'-CTGAAAATAACTCGTTCTTG-3'). The fragment'was inserced into
the pGL4.10 vector (Promega) and transfected into eSZ, eGP, eSyR, or
trunk cells using Lipofectamine 2000 (Invitrogen). Luciferase assays were
performed as described previously (54).

In vitro differentiation assay. Cells were plated ar 2 x 10° cells per well in
6-well plates and cultured in growth medium. Adipogenic, chondrogenic,
osteogenic, myogenic, and neurogenic differentiation assays were con-
ducted according to the methods previously described (55-57).

Microarvay analysis. GeneChip analysis was conducted to determine gene-

exptession profiles. A per cell normalization method was applied to eSZ
and eGP samples (58). Briefly, cellular lysates were prepared with RLT buf-
fer (QIAGEN). After RNA cockrails were added to the cell lysates accord-
ing to the amount of DNA; total RNA was extracted using the RNeasy
Mini Kit (QIAGEN). The murine Genome 430 2.0 Array (Affymetrix)
was hybridized wicth aRNA probes generared from eSZ and eGP cells-and
murine Ewing’s sarcoma tissue. After staining with strepravidin-phyco-
erythrin conjugates, arrays were scanned using an Affymetrix GeneChip
Scanner 3000 and analyzed using Affymetrix GeneChip Command Con-
sole Software (Affymetrix) and GeneSpring GX 11.0.2 (Agilent Technol-
ogies) as described previously (59). The expression data for eSZ and eGP
cells were converted to mRNA copy numbers per cell by the Percellome
method, quality controlled, and analyzed using Percellome software (58).
GSEA was performed using GSEA-P 2.0 software (60).

Datd comparisons and clustering between murine and buman microarray data
sets. The microarray data from 10 murine Ewing’s sarcoma samples were
compared with human microarray dara secs. Dara from the ONCOMINE
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make a novel common platform. Hierarchical clus-

tering was achieved using log-transformed data and

the following procedure. For the initial statistical
analysis, 13,026 genes that showed a “present” or “marginal” call in ac
least 24 of a rotal of 32 human Ewing’s sarcoma samples were selected.
Then, 12,340 probes were selected by 1-way ANOVA (P < 0.05) analysis.
Finally, 1,819 probes that showed >2-fold differences of expression in
at least 3 tumor types were selected. With these 1,819 probes, hierarchi-
cal clustering was performed using the average linkage method and the
Pearson’s centered measurements. In addition, a probe set consisting of
the 2,000 sequences that were the most altered in expression in human
and mouse round cell tumors (Ewing’s sarcoma, neuroblastoma, poorly
differentiated synovial sarcoma, and malignant lymphoma) was used
to distinguish each tumor from the other 3 using a fold-change analy-
sis. Then, the frequencies of these 2,000 probes were compared berween
mouse Ewing’s sarcoma and 4 human tumor types and berween human
Ewing’s sarcoma and 4 mouse tumor types to find the closest tumor type
using similar entities from GeneSpring.

ChIP. A votal of § x 10° cells per immunoprecipitation were cross-

“linked with 10% formaldehyde for 10 minutes at room temperacure.
Histone immunoprecipiration was performed with anti-histone anri-
bodies targeted against H3K9/K14Ac, H3K4/me3, H3K27/me3, total
H3 (Cell Signaling Technologies), or H3K9/me3 (Millipore) precon-
jugated to prorein G magnetic beads. Immunoprecipitated DNA was
amplified with primers specific for each region. Sequences are shown
in Supplemental Excel File 6.

Cre/loxP-mediated gene silencing. eSZ cells were transduced with a floxed
EWS-FLII retrovirus, and Ewing’s sarcoma cells were obtained from a sub-
cutaneous tumor developed in anude mouse. Tumor cells were transduced
with pMSCV-Cre-puro retrovirus in vitro. Senescence-associated f-galac-
tosidase expression was detected using a Senescence Detection Kit (Biovi-
sion) 4 days after transduction of the retrovirus. :

siRNA interference studies. For knockdown of FLII, Dkk2, Catnb, Prkcbl,
Ezh2, Igfl, Dkk1, and Erg, siRNAs were purchased from QIAGEN. The list
of siRNAs is shown in Supplemental Excel File 7. siRNAs were introduced

" into mouse Ewing’s sarcoma cells according to the manufacturer’s pro-
tocol: Knockdown efficiencies were confirmed by Western blotting using
anti-FLAG (Sigma-Aldrich), anti-ERG and anti-PKC 1 (Santa Cruz Bio-
technology), anti-B-catenin (Becton Dickinson), and anti-EZH2 (Cell Sig-
naling Technologies) or RT-PCR.

Pharmacological experiments with specific inbibitors. Mouse Ewing’s
sarcoma cells were treated with MEK1 inhibicor U0126 (Cell Signal-
ing Technologies) in vitro. Both mouse'and human Ewing’s sarcoma
cell lines were treated with WNT/f3-catenin inhibitors, iCRT14 and
PNU74654 (Tocris Bioscience); an EZH2 inhibitor, DZNeP (Cayman
Chemical); or a PARP1 inhibitor, olaparib (Selleckchem), both in vitro
and in vivo. Inhibition of ERG phosphorylation was examined by Wesc-
ern blotting using anti-P-ERK1/2 and anti-ERK1/2 (Cell Signaling
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Technologies). For in vivo experiments, 1 x 10¢ tamor cells were trans-
planted subcutaneously into nude mice, and the mice were treated with
specific inhibitors when the tumor diamerter reached 5 mm. All the
inhibitors were dissolved in 0.2% DMSO, and they were administered by
intraperitoneal injection 3 times per week.

Cell cycle assay. Single-cell suspensions were permeabilized with 0.1% Tri-
ton X-100 in PBS, and 50 mg/ml propidium iodide and 1 mg/ml RNAse A
were added. The cell suspensions were then analyzed by using a FACSCali-
bur flow cytomerter and ModFit software (Becron Dickinson).

Cloning retrovival integration sites. Retroviral integration sites of individ-
ual mouse Ewing’s sarcoma were isolated by inverse PCR, sequenced, and
mapped as described previously (71).

Accession numbers. The microarray data sets are accessible through the
NCBI Gene Expression Omnibus (GEO) database (http://www.ncbinlm.
nih.gov/geo), with accession numbers GSE32615 and GSE32618.

Statistics. Continuous distriburions were compared wich 2-railed Stu-
dent’s ¢ test. Survival analysis was performed using the Kaplan-Meier life
table method, and survival between groups was compared with the log-
rank test. The 2-proportion z test was used to evaluate the significance of
differences in the matched probe sets between 2 tumor types. All P values
were 2 sided, and a P value of less than 0.05 was considered significant.
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Study approval. Animals were handled in accordance with the guidelines
of the animal care committee at the Japanese Foundation for Cancer

Research, which gave ethical approval for these studies.
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COMMENT

Integrative knowledge management
to enhance pharmaceutical R&D

The explosion in the accumulation of biomedical data
resulting from technological advances such as next-
generation sequencing, coupled with progress in infor-
mation technologies, offers new opportunities to use such
information for pharmaceutical R&D. In parallel, the
increasingly collaborative nature of many R&D projects
has highlighted the importance of effective information
sharing between project partners and, from a wider
perspective, with the overall biomedical community.

Initiatives such as the European Innovative Medicines
Initiative (IMI) are supporting the development of strat-
egies aimed at improving translational knowledge man-
agement in biomedical sciences, as well as overcoming
barriers in information sharing. In this article, we highlight
the key points emerging from a debate on “Translational
Knowledge Management in Pharmaceutical R&D), held
in Brussels in July 2013, that involved representatives
from a range of collaborative projects in the field, along
with other experts and stakeholders (see Supplementary
information S1 (box) for details). Challenges that were
discussed include the complexity and heterogeneity of
biomedical data, the need to establish relevant, widely
accepted and openly available data standards and the lack
of integration of knowledge from different disciplines and
stages of the R&D process.

Key issues and challenges

Data evaluation and integration. Given the complexity
of most biological questions, combining data from
multiple levels (molecular, cellular, tissue and others),
disciplines (molecular and systems biology, medicinal
chemistry, preclinical and clinical pharmacology, and
others) and sources may be needed to develop informa-
tion resources and computational models that are useful
for addressing pharmaceutical R&D questions effec-
tively. Indeed, the issue of managing data arising from
different sources is becoming increasingly important as

Maria Marti-Solano, Ewan Birney, Antoine Bril, Oscar Della Pasqua, Hiroaki Kitano,
Barend Mons, loannis Xenarios and Ferran Sanz

Information technologies already have a key role in pharmaceutical research and
development (R&D), but achieving substantial advances in their use and effectiveness will
depend on overcoming current challenges in sharing, integrating and jointly analysing the
range of data generated at different stages of the R&6D process.

changes in the R&D ecosystem mean that information
is not necessarily generated in-house by large pharma-
ceutical companies but is derived from external organi-
zations such as academic institutions, biotechnology
companies or contract research organizations.

The heterogeneity of biomedical data is a major
challenge. In many cases, a key determinant of data use-
fulness and reusability is the availability of additional
information to evaluate the relevance and quality of a
particular data set. Being able to track the data source
and to retrieve information on the context in which the
data were generated (for example, experimental condi-
tions and the model organisms used) is crucial to assess
whether the data are suitable to address a particular
research question and, moreover, whether data from dif-
ferent sources can be meaningtully combined. In addition,
to perform large-scale statistical analyses and generate
useful models from biomedical data, it is necessary to
have not only information on the positive results but also
on the negative or discarded ones.

Ontologies and standards. Developing, disseminating
and promoting the wide-scale adoption of appropriate
biomedical ontologies and data standards is also crucial
in allowing data integration. The definition and usage of
standards for the characterization of experimental assays,
for the collection of clinical information, for model
description and, in general, for the representation of dif-
ferent types of metadata, will facilitate true data inter-
operability — that is, a meaningful and accurate exchange,
integration and joint exploitation of biomedical data'.
In order to promote the broad adoption of such standards,
it is important that they are open and reasonably flexible,
and that key stakeholders and user communities are
engaged with their development. In some areas, these
aims may be best served by a bottom-up approach, whereas
others will require a coordinated top-down initiative.
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COMMENT

An example of a high-impact top-down initiative is
the recent commitment by the European Medicines
Agency (EMA), the Japanese Pharmaceutical & Medical
Devices Agency (PMDA) and the US Food and Drug
Administration (FDA) to require data standards developed
by the Clinical Data Interchange Standards Consortium
(CDISC).

Data and information sharing. Another of the major
challenges for the effective integration of data relevant to
pharmaceutical R&D is that data, associated information
and knowledge often remain siloed’. Moreover, there are
communication barriers between researchers from dif-
ferent disciplines. So, not only the data but also relevant
details about it need to be shared. This requires assess-
ment of the relevance of data, taking into account the
underlying clinical or biomedical research question and
adapting the information to suit its use across different
areas of expertise. This could be achieved by identifying
the crucial information and tailoring the key messages
that are required for decision-making at different stages
of drug discovery and development, while promoting the
traceability of data. This is helped by training and involv-
ing specific professionals (knowledge engineers and data
scientists) who are capable of bridging information silos
and facilitating communication and collaboration’.
Active involvement of the community is the basis for
successful integrative knowledge management in R&D.
This may require the creation of regulations to generate
confidence about data sharing and the promotion of infor-
mation formats that facilitate it. It is possible to harness the
know-how of the research community by throwing down
scientific challenges, involving the community in knowl-
edge extraction, annotation and filtering'. Furthermore,
the availability of novel communication channels (such as
social networks) and the increasing availability of individual
genetic information owing to the decrease in sequencing
costs will affect current research models and could make
patient participation in the R&D process more active.

Data sustainability. Ensuring sustainability of data reposi-
tories in the long term — including their maintenance as
well as their updating and evolution in a changing envi-
ronment — should be a key component of collaborative
projects. Making data accessible to a wider community
and enabling their reuse beyond the project that gener-
ates them will be crucial to optimize the use of resources
by minimizing replication. We therefore believe that
data sharing should become a requirement when public
funding is involved. However, to empower the scientific
community to effectively reuse data, it has to be enriched
with relevant metadata, and published data should be con-
verted into appropriate formats for integrative knowledge
management®. Similarly, computational models that are
developed to enable data representation must be main-
tained and updated, as well as systematically characterized
by appropriate metadata that allow further appraisal of
their predictive performance and possible biases.

Recommendations
To maximize the effectiveness of efforts to integrate data
in pharmaceutical R&D, it is vital to develop strategies
and processes to ensure that:

¢ Protocol design and data collection focus on questions
that are relevant for decision-making at the different
stages of pharmaceutical R&D
Relevant standards for the characterization of data,
methods and models are identified (or developed if
unavailable) and their use is promoted and facilitated
by dissemination and training
¢ Data and models are annotated with enough detail

regarding their provenance and quality to allow a
critical assessment of their suitability for reuse

Data sharing is understood as a responsibility (espe-
cially when data are derived from public funding),
and the community participates in the promotion and
recognition of data sharing, as well as in knowledge

extraction and management
Sustainability of data collections is considered a key
component in the life cycle of collaborative projects

The dissemination and adoption of these principles
among stakeholders — and in particular across the
scientific community, clinical researchers and policy
makers — is essential to establish knowledge manage-
ment strategies in pharmaceutical R&D that efficiently
exploit the increasing availability of novel biomedical
data and learn from previous experience, thus enabling
a more efficient search for innovative, effective and safe
medicines.
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Abstract Specialized languages used for describing computational models in the field of systems biology and
physiology, such as Systems Biology Markup Language (SBML), CellML, and Physiological Hierarchy Markup
Language (PHML), have been devised to enhance effective model reuse and sharing among researchers for
developing large, multilevel models. Each language has its own specialty. By combining two of these languages,
i. e. SBML for illustrating subcellular phenomena and PHML for expressing supracellular dynamics, a novel
technology has been developed to describe models of multilevel biophysiological systems. For practical use of the
aforementioned languages, consolidated software applications providing intuitive graphical user interfaces are
necessary. Starting from 2011, a versatile platform called PhysioDesigner has been developed for multilevel
modeling of physiological systems based on PHML. In this article, we focus on the newly developed distinguishing
features of PhysioDesigner and PHML for the development of multilevel biophysiological models using SBML-

PHML hybridization.
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1. Introduction

In order to integrate the massive amounts of data
generated by clinical and laboratory studies with simula-
tion results, computable mathematical models are them-
selves increasing in size and complexity [1]. For this
reason, it is essential that pieces of models are able to be
shared and re-used, in the same manner of building blocks.
To promote effective collaboration for building large-
scale models, fundamental tools that support these
activities should be consolidated.

To enhance model sharing, several pioneering efforts
have been undertaken. For example, XML-based descrip-
tive language formats used to describe the dynamics of
biological and physiological systems, such as SBML[2],
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CellML[3], NeuroML{4], and PHML, have been proposed.
The main objective in developing these languages was to
establish a common communication foundation for en-
hancing exchange of models among collaborators.

To use these languages effectively for multilevel
modeling of physiological systems, application supports
are essential. Many applications have been developed and
published and listed on websites, such as software
applications for SBML [5], NeuroML [6]and CelIML [7].
For example, CellDesigner[8]is a versatile modeling tool
of biochemical networks based on SBML. Although many
applications employ single languages, some tools support
more than one. For example, VCell, an environment for
virtual cell modeling and simulation [9], and ]Sim, a
simulation framework that natively uses a modeling
language called Mathematical Modeling Language
(MML) [10], can import SBML and CellML models.
However, in general, these applications convert the
imported models into their own native languages. Or,
while they support multiple languages, each of the models
parsed by such applications must be written in single
language, which can be either SBML or others.

PHML, which is a successor to insilicoML[11], was
developed relatively recently compared with the lan-
guages mentioned above. It was developed in parallel
with PhysioDesigner [12] (Fig. 1), a platform on which
users can build mathematical models of multilevel
physiological systems with a graphical user interface.
Models built with PhysioDesigner are written in PHML,
which is effective at explicitly describing the hierarchical
structure of physiological systems. The main elements in
a PHML model are called modules. Modules form a tree
structure to express the hierarchical structure of phys-
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Fig.1 Snapshots of PhysioDesigner and Flint.

iological systems, and they form a network to imitate the
functional relationship among physiological components.
Each module is quantitatively characterized by the
defining physical quantities inside.

PHML itself was originally designed to present
hierarchical structures of physiological systems, includ-
ing even subcellular phenomena. However, because
SBML is a language dedicated to describing subcellular
phenomena such as signal transduction and protein-
protein interactions, it is better to use SBML to describe
subcellular phenomena. We can then benefit from existing
SBML resources such as the BioModels database[13]. To
edit the SBML part, we can also use CellDesigner or other
applications that are dedicated to manipulating SBML,
which is a considerably better method than re-
implementing a function to edit SBML on PhysioDesigner.

For describing computable models of multilevel
physiological systems including subcellular and su-
pracellular phenomena, a novel technology that incorpo-
rates SBML and PHML has been developed to leverage
the advantages from both languages. In the PHML
framework, it is possible to integrate an SBML model into
a functional network of modules of a PHML model by
embedding the SBML model into one of the modules.
Then, the module containing SBML represents a model of
subcellular phenomena as modeled by the SBML model.
This process is not merely simple embedment of SBML
models into a PHML model at the model description level,
but is also a computable hybridization accompanied by
numerical simulation with Flint, a simulator developed
concomitantly with PhysioDesigner.

In this article, we introduce a new technique
developed on PhysioDesigner for SBML-PHML hybrid
modeling and simulation.

2. PhysioDesigner Overview

PhysioDesigner is a versatile platform that supports
modeling and simulation of physiological systems with
multiple spatiotemporal levels. The current version as of
October 2013 is 1.0 beta6, and it is available at http://
physiodesigner.org. Development of PhysioDesigner be-

module in-port module

out-port

ﬂ:pﬁwr-i+§ .
a7\ 377
p=03

Fig.2 Scheme of a PHML model. Modules are fundamental
elements for constructing a model in PHML. Each
module (shown as a rounded rectangle) is quantita-
tively characterized by physical quantities (shown as
encircled letters). Relationships among modules are
explicitly represented by edges (solid line: functional
edge, dashed line: structural edge). A module can have
offspring modules forming a tree-like structure repre-
senting the hierarchical structure seen in physiologi-
cal systems. The value of a physical quantity can be
exported from a module through an out-port (small
triangle on the right edge of the module) to another
module, which enters the module through an in-port
(small triangle on the left edge of the module). The
equation and parameter at the bottom left corner are
examples of the definitions of physical quantities in the
module on the left.

gan in 2011, with the inheritance of all features from
insilicolDE [14-16], and the tool is posted at http://
www.physiome.jp[17].

The main components in a PHML model are called
modules, which represent biological and physiological
elements (Fig.2). Multiple modules can be defined as a
single module at one level above. For example, many cells
form a tissue. These modules at the lower level represent
physiological entities that are more precise in spatial scale
and more detailed in logical scale. By this nested
representation of modules forming the module tree
structure, hierarchical structures of physiological sys-
tems are explicitly expressed in a model.

Each module is quantitatively characterized by
several physical quantities such as states defining system
dynamics, and variable and static parameters. The
dynamics such as ordinary/partial differential equations,
and functions of physical quantities are defined by
mathematical equations using physical quantities. To
define physical quantities in a module, it is often
necessary to refer to values of physical quantities defined
in other modules. The value of a physical quantity can bhe
exported from a module through an out-port. Then, the
numerical information is carried from the out-port to an
in-port of a destination module which is pointed by a
functional edge linking them. The value arriving at the in-
port can be used to define a value of a physical quantity in
the destination module. In this sense, modules form a large
functional network in a model.

The concept of capsulation, or making a package of a
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physiological function, was introduced to PHML to
enhance sharing and reuse of models or their components.
Capsulation is an operation that involves the encapsula-
tion of an arbitrary number of modules acting together as
a certain physiological function by a capsule module. All
edge connections to (from) encapsulated modules from
(to) the outside of the capsule must pass through the
capsule module once in order to secure the independence
of the encapsulated modules. Namely, the capsule module
acts as an interface or gateway for all modules in the
capsule. With this isolation of modules, it becomes easier
to reuse the encapsulated modules in another part of the
model or in other models.

Simulations of PHML models are conducted by the
simulator Flint[12, 16], which is being developed concur-
rently with PhysioDesigner. Flint was rebranded from
insilico Sim [18, 19], and is also available at http://
physiodesigner.org. One of the features of Flint is that it
can execute simulation of SBML models as well as PHML
models, using the SBML ODE Solver Library (SOSIib) to
parse SBML.

3. SBML and PHML Hybrid Modeling

3.1 Concept and Basic Usage

Because PHML is designed to represent the hierarchical
structure of physiological phenomena, it is possible to
describe a model that includes integration of subcellular
and supracellular phenomena. However, instead of
modeling subcellular phenomena with PHML, a novel
modeling method of hybridizing SBML and PHML has
been developed.

SBML-PHML hybrid modeling is achieved by embed-
ding a whole SBML model into a PHML module (Fig.3).
The module then represents the biological system
expressed by SBML. The SBML model is integrated into a
tree structure expressing the hierarchical structure of
multilevel biophysiological systems, and also in a function-
al network composed of modules.

A limitation is that one module can include only one
SBML model. However, obviously one PHML model can
have multiple modules that contain an SBML model each.
Hence, this function can he utilized not only in subcellular-
supracelluar multilevel modeling, but also to create a
PHML-based network of multiple SBML models express-
ing phenomena in a single cell.

3.2 Value Exchange between SBML and PHML

To functionally integrate an SBML model into a PHML
network, numerical information must be exchanged
between them during a simulation. The main players in an
SBML model carrying numerical information (or repre-
senting biological entities) are called species, which are
used mainly to express, for example, the concentration of
ions and molecules that take part in one or more reactions.
To define a reaction, parameters such as velocity constant
as well as species are used. In a module containing an
SBML model, associations between physical quantities
and species or parameters have to be defined to form a
bridge between the SBML moiety and the PHML moiety.

module module

module

Fig.3 Schematic diagram of an SBML-PHML hybrid model.
A module of PHML may contain a whole SBML model
represented by an oval in a module. By making
associations between physical quantities in the module
(letters in circles) and species/parameters in the
SBML model (letters in hexagons), the SBML model is
functionally integrated into the network of modules.
There are two ways to accomplish this. One is a “get”
action, which is used to retrieve the values from the
SBML portion and carry them to the PHML portion.
The other is a “set” action used to override the values
or dynamics originally defined in the SBML portion by
those defined in the PHML portion. Dotted arrows
indicate the flow of values.

These are two-way actions. One is the “get” action, which
converts the value defined in a species or parameter in the
SBML model to a physical quantity. Then the other
physical quantities in the module can utilize the numeri-
cal information defined in the SBML model via the
physical quantities of the “get” action. This is similar to
associating a physical quantity with an in-port to receive a
value carried to it.

The other action is similar, but in the opposite
direction, i.e. “set” action. A physical quantity originating
in the PHML part with a “set” definition can affect the
SBML part by overriding the original definition of species
or parameters in the SBML model, without direct
modification of the SBML model itself. Even if the species
have dynamics originally defined in the SBML model, it is
completely overridden by that defined in the physical
quantity, replacing the value at every step during the
course of a simulation. By this interpretation rule of the
definition of the bridge between species/parameter and
physical quantity, the SBML model can be effectively
involved in the model.

The process of embedding an SBML model in a
module is assisted by a PhysioDesigner interface shown in
Fig. 4. PhysioDesigner employs a dialog box in which a
list of the species involved in the SBML model is shown, so
that users can define the interaction between SBML
species and PHML physical quantities. The direction of
the action (“get” or “set”) and the associated physical
quantity can be selected by combo-boxes.
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Fig.4 Dialog of PhysioDesigner to support embedment of an
SBML model into a module. It shows a list of species
included in the SBML model. The two right-most
columns provide an interactive interface to select the
action (get or set) and a physical quantity to be
associated.

3.3 Simulation of Hybrid Models

Flint is capable of parsing and simulating SBML models
as well as PHML models. In particular, it is possible to
take into account the SBML models embedded in a PHML
model. Flint uses the SBML ODE Solver Library (SOSlib)
[20] to extract formulas as abstract syntax trees (AST).
SOSIlib converts reaction rules or assignments in an
SBML model to ODEs and algebraic equations, and events
to conditional statements.

After extracting these ASTs, Flint detects species
and parameters from which values should be transferred
to physical quantities according to the bridge definition
with a “get” action, or detects species and parameters
which should be overridden by physical quantities
according to the definition with a “set” action. Interpreta-
tion of a “get” action is simple. The value defined by a
species or a parameter is transferred to a physical
quantity. The value does not need to be constant. In the
case of a “set” action, if the target is a parameter, the
interpretation is still rather simple. The value of the
parameter is replaced by that of the corresponding
physical quantity. If the target is a species, we need to be
careful not to introduce any inconsistency into the
reaction network described in the SBML model. In our
framework, the interpretation of the hybridization of
SBML and PHML is carried out after extracting equations
from the SBML side. At this stage, the dynamics of each
species is described by a single ODE derived by
interpreting the reaction formulae. The derivative of the
species is replaced by the definition of a physical quantity
without harming the consistency of the logic modeled in
the other part of the SBML model.

Once the ASTs are merged into other formulae
coming from the PHML part, they are sent together to the

next stage to generate the bytecode for the execution of a
simulation. Hence, Flint can handle elements defined in
SBML Level 2, which is supported by the latest SOSlib. In
other words, this is a limitation of Flint in supporting
SBML. Note that to solve equations, Flint does not call the
solver API of SOSlib. Instead, it creates a bytecode
including the numerical integration algorithm im-
plemented by Flint.

4. Examples of Hybrid Modeling

4.1 A Simple Example

A simple example of SBML-PHML hybrid modeling,
basically a caricature model of the disposition of
carboxydichlorofluroscein in hepatocyte, is illustrated in
this section[21]. Only two or three players are extracted
from the complicated signal transduction pathways
originally proposed for this model (Fig.5A). The model
contains carboxydichlorofluroscein diacetate (CDFDA)
in a hepatocyte, which is hydrolyzed to carboxydichlorof-
luroscein (CDF). The initial concentrations for CDFDA
and CDF are set at 10 and 0 M, respectively. By the
hydrolytic reaction, the concentration of CDFDA de-
creases and CDF increases (Fig.5B), which is simulated
by Flint.

Based on the above SBML model, we expand the
model on PhysioDesigner by adding a component
representing extracellular CDFDA that can diffuse
passively into the cell. Extracellular CDFDA is added as a
physical quantity and a module in PHML creating a
hybrid model (Fig.5C).

From the mathematical point of view, the original
dynamics of the intracellular CDFDA/CDF concentration
are described by the following ordinary differential
equations (ODEs).

%[CDFDAin] = —k;[CDFDA;,], (1)
%[CDFin] = ki[CDFDAj,1. 2)

where [CDFDA,,] and [CDF;,] represent the concentra-
tions of intracellular CDFDA and CDF, respectively.
[CDFDA.,] decreases monotonically and [CDF;] in-
creases. Adding extracellular CDFDA that diffuses into
the hepatocyte modifies the ODEs as follows:

d

7 [CDFDAex] = —k2[CDFDAgx], 3

d

7 [CDEDA ] = k1 [CDEDA;y ] + k2[CDEDAex], (4)
%[CDFin] = k;[CDFDA 1. )

where [CDFDAex] represents the concentration of ex-
tracellular CDFDA. After modification, [CDFDA] no
longer decreases monotonically, but shows a single peak
depending on the reaction velocity constants ki and ke
(Fig. 5D).

The first step of SBML-PHML hybrid modeling for
this example is to create two modules on PhysioDesigner.
One is a hepatocyte module consisting of the dynamics of
intracellular CDFDA/CDF, in which the SBML model is
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Fig.5 A simple example of SBML-PHML hybrid modeling.
A. Two-species model on CellDesigner. B. Simulation
result of the simple model containing two species. The
concentration of CDFDA decreases exponentially
(blue curve), whereas that of CDF increases asympto-
tically (red curve). C. Schematic representation of the
hybrid model of this simple example. D. Simulation
results of the hybrid model from Flint. The concentra-
tion of external CDFDA starts from 20x#M and
decreases (violet curve), and that of internal CDFDA
has a unimodal peak (blue curve).

imported. The other is to implement the extracellular
buffer, consisting of extracellular CDFDA. Once the
SBML model is imported into the hepatocyte module, a
variable-type physical quantity is created, and a bridge
with a “get” action between the physical quantity and a
species representing CDF in SBML are established to
monitor its dynamics. In addition, the dynamics of
intracellular CDFDA in the SBML model have to be
overridden. For this, a state type physical quantity is
created to implement an ODE shown in Eq. 4. The bridge
between the state type physical quantity and the species
with the “set” action should be defined.

Next, the buffer module has to be implemented with a
state type physical quantity defined by Eq. 3. Additional-
ly, a relationship between two modules has to be defined
by linking an edge between them to transport the value of
extracellular CDFDA, since the value is used in Eq. 4 in
the hepatocyte module (Fig.5C). Figure 5D presents the
simulation result of the extended model, showing a
monotonic decrease in extracellular CDFDA, a monotonic
increase in intracellular CDF, and a unimodal increase
followed by decrease in intracellular CDFDA.

4.2 Realistic Example

Let us observe another more realistic example involving
insulin secretion from pancreatic S-cells. It is known that
pancreatic S-cells exhibit complex and periodic spike-
burst activity in response to an elevated concentration of
extracellular glucose. There is a model that reproduces
membrane-potential-level dynamics, called the Chicago
model [22], which includes membrane potential, ATP/
ADP concentrations, and various ionic currents such as
sodium, potassium, and calcium. One of the components is

an ATP-sensitive K current, the channel of which is
inhibited by high ATP concentration, resulting in
membrane depolarization followed by an influx of Ca*’
and exocytosis of insulin granules. The model mainly
focuses on the electrical mechanism of burst generation,
in which oscillation of Ca®” concentration, in particular,
plays an important role. However, it does not pay much
attention to the biochemical mechanism of glucose
metabolism and ATP generation by the TCA cycle in
mitochondria, although ATP concentration plays an
important role in triggering insulin secretion. There is
another model written in SBML that represents the
glucose-stimulated insulin secretion network of pancreat-
ic p-cells[23], which includes many entities relating to
glycolysis, the TCA cycle, the respiratory chain, NADH
shuttles, and the pyruvate cycle. This model, however,
does not include membrane potential and ionic currents.

Using the above two models, we can create SBML-
PHML hybrid multilevel models. Because the dynamics of
ATP and ADP in the network model written in SBML
(Fig. 6A) are described more carefully than those in the
Chicago model (written in PIIML), it is worthwhile to
spool them up in the Chicago model. For this, the physical
quantities representing ATP and ADP in the Chicago
model are removed, and a module importing the network
model is introduced (Fig.6B). Then, two-variable para-
meter type physical quantities representing ATP and
ADP concentrations are created in the module, and
bridges from ATP and ADP species in the network model
to those new physical quantities are established to get the
values from the SBML portion to the PHML portion. By
using these two physical quantities instead of the original
in the Chicago model, the network model is effectively
integrated through ATP and ADP dynamics, and the
hybrid model using Flint exhibits a periodic burst of the
membrane potential (Fig. 6C).

5. Linkage with Other Software

PhysioDesigner cannot edit SBML models embedded in
modules. Because several kinds of software dedicated to
SBML, such as CellDesigner, are available, it is not
worthwhile to re-implement the same function in Phys-
ioDesigner. To communicate with other software, we
leverage the Garuda platform (http://www.garuda-
alliance.org/), which is a new software developed to
provide a means for systems biology tools to interoperate
seamlessly. PhysioDesigner and Flint comply with the
Garuda Alliance [24]. PhysioDesigner can extract an
embedded SBML model from the PHML model, and send
it to CellDesigner to browse or edit via the Garuda
platform. Of course, it is also possible to receive an SBML
model and import it into a module not only from
CellDesigner but also from other software that can send
out an SBML model via the Garuda platform.

6. Discussion

We have demonstrated a new function for creating SBML-
PHML hybrid models developed on the existing versatile
platform, PhysioDesigner. SBML is suitable for describing
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