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Fig. 7. Effects of allopregnanolone sulfate (APAS) on in-
activation curves in oocytes expressing Na 1.2 (A) (n = 6),
Na, 1.6 (B) (n =7), Na,1.7 (C) (n = 5), or Na,<1.8 (D) (n = 6) a
subunits with B, subunits. Currents were elicited by a 50-
ms test pulse to -20 mV for Na 1.2 and Na,1.6, -10 mV
for Na,1.7, and +10 mV for Na,1.8 after 200ms (500 ms for
only Na,1.8) prepulses ranging from -140 mV to 0 mV in
10-mV increments from a V__ holding potential. Represen-
tative I, traces in both the absence and presence of APAS
are shown in A-1, B-1, C-1, and D-1. Effects of APAS on
inactivation curves (closed circles, control; open circles,
neurosteroids; cross, washout) are shown in A-2, B-2, C-2,
and D-2. Steady-state inactivation curves were fitted to the
Boltzmann equation, and the V, , values are shown in table
2. Data are expressed as means + SEM. Na, = voltage-gated
sodium channel; Wash = washout.
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sodium currents in the hyperpolarizing range of the inactiva-
tion curve, indicating that resting channel block is an impor-
tant mechanism of APAS inhibition for only Na 1.2. Both
compounds demonstrated use-dependency for inhibition of
Na 1.2, Na 1.6, and Na 1.7, suggesting the ability to slow
the recovery time from inactivation.?> Many investigators
have shown that sodium channel blockers, including local
anesthetics, tricyclic antidepressants, and volatile anesthetics,
enhance steady-state inactivation with no effect on activa-
tion and exhibit use-dependent block.**3¢ We demonstrated
that APAS enhances inactivation and shows use-dependent
block similar to other sodium channel blockers, yet it also
has diverse effects on activation according to differences
in a subunits. These actions suggest that APAS may have
different binding sites or allosteric conformational mecha-
nisms to change sodium channel function, although further
investigation with site-directed mutagenesis is needed to rule
out nonspecific membrane effects. PAS may have common
binding sites with APAS, because it shows similar effects,
although these changes were small.

The o subunit consists of four homologous domains (I
to IV) containing six transmembrane segments (S1 to S6),
and one reentrant P-region connecting S5 to S6 (S§1/8S2).
Tetrodotoxin-sensitive o subunits, Na 1.2, Navl.6, and
Na 1.7, are phylogenetically related and show 70 to 80%
amino acid sequence identity. In contrast, tetrodotoxin-
resistant 0. subunits, Na 1.8, are phylogenetically distant and
show only 55 to 56% sequence identity to the other three a
subunits. In addition, the lengths of amino acid sequences
of four a subunits differed within the range of 1957 to 2005
residues. Therefore, these differences would result in the
diversity in neurosteroid action, especially in the effects on
channel activation. Indeed, the longest extracellular regions
in the a subunit (IS5 to SS1) are 93, 77, 73, and 66 amino
acid residues in Na 1.2, Na 1.6, Na 1.7, and Na 1.8, respec-
tively. The diversity in sequence and differences in the effects
on activation according to @ subunit may be important for
clarifying binding sites and the mechanism of Na 1.2 inhibi-
tion by APAS in further investigations.

Y-Aminobutyric acid type A receptors have been con-
sidered to be important for the analgesic effects of allopreg-
nanolone because it has high potency as a positive GABA,
modulator compared with other neurosteroids. Pregnano-
lone also affects GABA, receptors in a manner similar to
that of allopregnanolone; nevertheless, its analgesic effect is
weak. In fact, pregnanolone was shown to reduce mechani-
cal allodynia without reduction of thermal heat hyperalge-
sia in a neuropathic pain model in contrast to attenuation
of both by allopregnanolone.?® The investigators suggested
that the partial analgesic effects of pregnanolone are caused
by suppression of glycine receptors by demonstrating
that pregnanolone had a significant analgesic effect only
in animals displaying a strychnine-induced allodynia in
two types of allodynia models induced by bicuculline and
strychnine.?® Moreover, a recent report demonstrated that
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Na, = voltage-gated sodium channel.

allopregnanolone shows analgesic effects in rats through sup-
pression of T-type Ca®* currents and potentiation of GABA,
currents.'® These previous reports indicate several mecha-
nisms underlying the analgesic effect of allopregnanolone
likely exist, as well as potentiation of GABA, receptors.
Sodium channel a subunits expressed in the dorsal root
ganglion (Na 1.7, Na 1.8, and Na_1.9) are thought to be
involved in the pathogenesis of inflammatory and neuro-
pathic pain. A recent study reported that Na 1.2 also plays
an important role in pain signaling. It was reported that
Na 1.2 and Na 1.3 predominantly compose functional
sodium channel currents within lamina I/II (dorsal horn)
neurons, which mediate acute and chronic nociceptive sig-
nals from peripheral nociceptors to pain-processing regions
in the brain.?” Another recent report showed that mutations

Anesthesiology 2014; 121:620-31

in Na 1.2 are associated with seizures and pain characterized
by headaches and back pain.®® A disubstituted succinamide,
a potent sodium channel blocker, was reported to attenuate
nociceptive behavior in a rat model of tonic pain and was
demonstrated to potently block Na 1.2, as well asNa, 1.7 and
Na 1.8, with a potency two orders of magnitude higher than
anticonvulsant and antiarrhythmic sodium channel block-
ers currently used to treat neuropathic pain.?? Other inves-
tigators demonstrated that four sodium channel blockers,
including lidocaine, mexiletine, benzocaine, and ambroxol,
which are used clinically to treat pain, suppressed recombi-
nant Na 1.2 currents as well as tetrodotoxin-resistant Na*
channel currents in rat sensory neurons, which comprised
mostly Na 1.8 currents. The authors suggested that these
sodium channel blockers would induce analgesia according

629 Horishita et al.
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to the amount of sodium channel blocking, including Na 1.2
and Na_1.8.%° These recent reports support that suppression
of Na 1.2 function by APAS might be a mechanism underly-
ing the analgesic effects of allopregnanolone.

In conclusion, APAS and PAS have diverse effects on
Na 1.2, Na 1.6, Na 1.7, and Na 1.8 a subunits expressed
in Xenopus oocytes, with differences in the effects on sodium
channel gating. In particular, only APAS inhibited sodium
currents of Na 1.2 at pharmacologically relevant concentra-
tions. These results raise the possibility that suppression of
Na_ 1.2 by APAS may be important for pain relief by allo-
pregnanolone and provide a better understanding of the
mechanisms underlying the analgesic effects of allopreg-
nanolone. However, further studies are needed to clarify the
relevance of sodium channel inhibition by APAS.
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