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chromosome. Furthermore, altered DNA methylation
was observed in both 1d and 21d offspring. To under-
stand the molecular events influenced by DE exposure,
differentially methylated genes were bioinformatical-
ly categorized using GO terms. This bioinformatic inter-
pretation indicated that differentially DNA methylated
genes were enriched in the GO terms related to neuron-
al differentiation and neurogenesis. These results sug-
gest that aberrant DNA methylation induced by prena-
tal DE exposure affects neuronal development. The fetal
and neonatal period is critical for the development and
organization of the neuronal network (Sporns ef al., 2004;
Smyser et al., 2010). We previously reported that prenatal
DE exposure affects spontaneous locomotor activity and
monoaminergic system in mice (Suzuki ef al., 2010). The
genes which aberrant DNA methylation was observed
in this study would be associated with development and
organization of the monoaminergic system in mice. The
detailed analysis about this point is required to clarify
the association between aberrant DNA methylation and
functional changes in mice.

The regulation of gene expression during fetal and
neonatal period is associated with morphological and
functional development of the brain (Muotri and Gage,
2006). Given that the established DNA methylation pattern
is generally maintained through cell division (Bergman
and Cedar, 2013), it is predicted that altered DNA meth-
ylation would be partially maintained after development.
Several reports suggest a relationship between aberrant
DNA methylation and neurodegenerative diseases such
as Alzheimer’s, Huntington’s, and Parkinson’s disease
(Jakovcevski and Akbarian, 2012). In addition, cortical
neuron degeneration has also been observed in canines
that inhaled air pollutants containing PM (Calderdn-
Garciduefias ef al., 2002). When the information from
these reports is considered, it would seem that altered
DNA methylation induced by prenatal DE exposure
would also be associated with the later pathogenesis
of neurodegenerative disorder. In the present study,
we observed that the genes which showed altered
DNA methylation were different between 1d and 21d
offspring. These results suggested that the aberrant DNA
methylation pattern induced by prenatal DE exposure was
partially recovered during growth. Further examinations
about DNA methylation in young adult mice are required
to clarify the DNA region which shows persistent aberrant
DNA methylation.

The authors detected the altered DNA methylation of
the genes independently of the presence of CpG islands.
Several reports indicate a relationship between reac-
tive oxygen species (ROS) and DNA methylation. Oxi-
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dative DNA damage is known to disturb the binding of
methyltransferase to the DNA (Valinluck ef al., 2004),
thus resulting in hypomethylation of cytosine residue.
Weitzman ef al. (1994), showed that DNA methylation
can be influenced by free radical adducts on adjacent
guanine residues. Taken together, it seems possible that
ROS associated with DE inhalation (Li et al., 2010) could
disrupt the DNA methylation state in the developing
tissues. Since DNA hypomethylation induces genomic
instability (Chen e7 al., 1998), a decrease in genome-wide
DNA methylation may lead to an increase in the muta-
tion rate that is induced by prenatal DEP exposure (Ritz
etal.,2011).

We previously reported a bioinformatic meth-
od for locating candidate brain regions of interest for
the effects of nanoparticle exposure using MeSH terms
(Umezawa ef al., 2012). We applied the method to sur-
vey the brain regions that are preferentially affected by
prenatal DE exposure. Although several MeSH terms
related to brain region were enriched in each experimen-
tal group, no common regions were found in the compar-
isons. With regard to the effects of DE exposure, it there-
fore seems less likely that any brain region is a specific
target for DNA methylation disruption.

In the present study, we interpreted the biological
effects caused by differential gene methylation using a
bioinformatic method. Further “wet experiments” are
required to clarify whether disrupted DNA methyla-
tion actually alters the gene expression, neural differ-
entiation, and the function of central nervous systems
especially monoaminergic systems which are affected by
prenatal DE exposure (Suzuki et al., 2010). Additionally,
the molecular mechanisms underlying the effect of prena-
tal DE exposure on the DNA methylation pattern remain
unknown. As indicated above, the disturbance of DNA
methyltransferase binding (Valinluck et al., 2004) is
potentially involved in the dysregulation of DNA meth-
ylation. In addition, the biological systems that deter-
mine the DNA regions that are methylated are another
possible target of DE exposure. Previous reports indicat-
ed some factors essential for the establishment and main-
tenance of the methylation imprint, including Zfp57 and
PGC7/Stella (Li et al., 2008; Nakamura et al., 2007).
Shen et al. (2013), showed that a dynamic methylation-
demethylation cycle occurs at a large number of genom-
ic loci. These molecules and pathways would also be
candidate targets of prenatal DE exposure. Recently, a
portion of the piRNA, small RNA exclusively expressed
in the germ line, was linked to de novo DNA methylation
(Olovnikov et al., 2012). Wick ef al. (2010) showed that
particles up to a diameter of 240 nm were taken up by



Prenatal diesel exhaust exposure disrupts the DNA methylation profile

the placenta and, further, were able to cross the placental
barrier. The findings in this report suggest that a part of
DEP, especially nano-sized particles (diameter < 100 nm),
might be transferred to fetus. On the other hand, Weaver
et al. (2005) showed maternal stress alters the epigenotype
in rodent offspring. The analysis about whether DEP or
maternal stress disrupts the molecules/pathways which
indicated above would help to solve the problem.

Our results showed that altered DNA methylation pat-
tern was different between male and female offspring.
Previous reports suggest that steroid hormone and endo-
crine disruptor change DNA methylation (Jost and
Saluz, 1993; Anway et al., 2005; Skinner ez al., 2010).
Watanabe and Kurita (2001) showed the possibility that
prenatal DE exposure alters fetal testosterone levels.
Brain sex differences organized by a transient hormone
surge may be maintained through epigenetic modification
(McCarthy ef al., 2009). Our results, combined with these
reports, showed the possibility that prenatal DE exposure
affects the brain sex difference through alteration of DNA
methylation in the developmental stage.

In conclusion, the present study showed that prena-
tal DE exposure disrupts the genome-wide DNA methyl-
ation state in the brain of offspring mice. Bioinformatic
GO analysis showed that differentially DNA methylat-
ed genes were enriched in neuronal differentiation. These
results suggest that disrupted DNA methylation in the
infertile mouse brain is involved in neural dysfunctions
induced by prenatal DE exposure. Bioinformatic inter-
pretation of the altered DNA methylation data using GO
terms may provide clues that lead to the better under-
standing of the molecular events underlying the effects
of prenatal DE exposure in the developmental period. In
addition, a decrease in genome-wide DNA methylation
may lead to increased mutation rate, which is induced by
prenatal DEP exposure. Our results suggest that the early-
life social environments in which DE is present could be
critical for the construction of the DNA methylation pat-
tern and may be associated with a long-term impact on
health.
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Increasing exposure to nanoparticles (NPs) has raised concerns regarding their health and safety profiles
in humans and animals, especially in developing organisms, which may display increased sensitivity to
NP toxicity. The present study examined the effects of gestational exposure to carbon black NP (CB-NP) on
the development of the offspring immune system. Pregnant mice were exposed to CB-NP (95 jg/kg body
weight) by intranasal instillation on gestational days 9 and 15. The thymus and spleen were collected
from their offspring mice on postnatal day (PND) 1, 3 and 5. Thymocyte and splenocyte phenotypes were

ﬁzm fg)‘:féology examined by determining the expression of cell-surface molecules using flow cytometry. Gene
Mice expression in the thymus and spleen was examined using quantitative reverse transcription-polymerase

chain reaction (qRT-PCR). Prenatal exposure to CB-NP increased total thymocytes and their
immunophenotypes (CD4~CD8~ and CD4"CD8" cells). It also induced an increase in total lymphocytes,
and CD4~CD8", particularly CD3~B220~cells, at PND 5 in the spleen of newborn male offspring, reflecting
the stimulation of immature splenocytes. Furthermore, mRNA expression of genes related to the
induction of peripheral tolerance (i.e. thymic Traf6) was upregulated. These data suggest that respiratory
exposure to CB-NP during middle and late gestation may have allergic or inflammatory effects in male
offspring, and may provide initial information on the potential developmental immunotoxicity of
nanoparticles.

Carbon black
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© 2014 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

The rapid development of nanoscience has been associated with
concerns about the possible health impacts of nanoparticles (NPs).
The small size of NPs means that they have a larger relative surface
area per mass in comparison to bull-size particles of the same
material; this feature often makes NPs more toxic and inflammo-
genic (Duffin et al,, 2007). Their small size also enables certain NPs to
cross cell membranes and translocate from the environment into the

Abbreviations: CB, carbon black; CB-NP, carbon black nanoparticle; cDNA,
complementary DNA; GD, gestational days; nm, nanometer; NPs, nanoparticles;
PND, postnatal day; qRT-PCR, quantitative reverse transcription-polymerase chain
reaction; Th, T helper: TiO, titanium dioxide.
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organism (Stone et al.,, 2007). The lungs and airways are the most
important exposure sites for involuntary exposure to NPs. Respira-
tory exposure to NPs elicits local pulmonary effects (ie. an
inflammatory response) (Brown et al, 2000; Jacobsen et al,
2009; Wilson et al., 2002), and can also translocate from the lungs
into circulation and reach secondary target organs (heart, liver,
brain, and testicles) (Kreyling et al., 2002; Oberdorster et al., 2002)
and the developing fetus (Umezawa and Takeda, 2011). The
immunotoxic potential and ability of various NPs to alter immune
responses has been documented, including poorly soluble NPs of
low toxicity, such as nano-sized titanium dioxide (TiO,) and carbon
black (CB) (Di Gioacchino et al., 2011; Hussain et al., 2012; Tin Tin
Win et al,, 2006). NP-induced oxidative damage could be one of the
leading factors causing an immune imbalance because oxidative
stress plays an important role in the pathogenesis of allergies and
asthma (Hussain et al.,, 2009, 2010). Many types of NPs have been
shown to produce oxidative stress under in vivo (Cberdorster, 2004;
Park and Park, 2009; Trouilleretal., 2009) and invitro (Hussain et al.,
2009; Park and Park, 2009; Shvedova et al, 2003) conditions.
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Additionally, the immunotoxic effects of NPs include their ability to
affect T helper cell type 1 (Th1)/Th2 balance (adaptive immune
response) (van Zijverden et al., 2000) and to induce or modify the
maturation and differentiation of dendritic cells (Park et al., 2010;
Yoshida et al,, 2010).

Based on the data collected thus far on different chemicals,
drugs and pollutants, the developing immune system can be
considered to be significantly more sensitive to xenobiotic insults
than the adult immune system (Di Gioacchino et al, 2011).
Moreover, there is increasing concern that exposure to NPs during
sensitive stages of development (intrauterine life) may predispose
the developing organism to diseases later in life. Indeed,
experimental studies have revealed that exposure to particulate
matter in ambient air is associated with adverse pregnancy
outcomes (Hougaard et al, 2008), such as premature birth,
reduced birth weight and small size for gestational age (Shah et al.,
2011; Takeda et al., 2011), due to intrauterine growth restriction
(Xu et al., 2009). It is suggested that the fetus is affected either
directly by particles translocating through the placenta (Takeda
et al., 2009) and by altered placental function (Yamashita et al.,
2011); or indirectly by circulating cytokines or other secondary
messengers that are activated in response to inflammation and/or
oxidative stress in exposed mothers (Hougaard et al., 2011; Kannan
et al, 2006). Maternal exposure to nano-sized TiO,, CB or diesel
exhaust particles seems to promote offspring immune responses to
allergens (Fedulov et al., 2008). CB nanoparticles (CB-NP) are
attractive benchmark nanoparticles because their toxic effects
have been well characterized. In the present study, CB-NP was used
as a model nanoparticle to investigate the hypothesis that
maternal respiratory exposure to NPs during middle and late
pregnancy affects development of lymphoid organs, primarily the
offspring’s thymus and spleen.

2. Materials and methods
2.1. Carbon-black nanoparticles

PRINTEX 90%, purchased from Degussa Ltd. (Frankfurt,
Germany), was used as a CB-NP. CB PRINTEX 90 is a well-
characterized carbonaceous core nanoparticle that consists of
carbon with less than 1% organic and inorganic impurities (Brown
et al., 2000; Jacobsen et al,, 2007; Wilson et al., 2002). The primary
particle size and surface area of CB-NP are 14nm and 300 m?/g,
respectively. The particles were suspended at a concentration of
5mg/ml in distilled water and sonicated for 30 min, followed by
filtration through a 450-nm filter (5-2504, Kurabo Co., Ltd. Osaka,
Japan) to remove bulk agglomeration. The peak size distribution
and concentration of CB-NP in the filtrated suspension were
84.2nm and 95 pg/ml, respectively (Onoda et al,, 2014).

2.2. Animals and treatments

Pregnant ICR mice were purchased from SLC Inc. (Shizuoka,
Japan). The mice were housed in a room at a controlled
temperature (23+1°C) and humidity (55+5%), with a 12-h
dark/light cycle and ad libitum access to food and water. The

Table 1
Number and sex ratio of offspring.

pregnant mice were put into an anesthesia box filled with
halothane and removed from the box when they began to sleep.
The mice were immediately laid on their backs and treated with
1 ml/kg body weight of CB-NP suspension (95 p.g/ml, for the CB-NP
group, n=11) or distilled water (for the control group, n=8) by
intranasal instillation into both nostrils. The treatment was
performed on gestational days (GDs) 9 and 15, which correspond
to the presence of proper embryonic thymus and spleen
development (Blackburn and Manley, 2004; Dietert and Holsapple,
2007; Hollander et al., 2006). After treatment of the pregnant mice
and the birth of the litters, the thymus and spleen were collected
from their offspring on postnatal day (PND) 1, 3 and 5 under
sodium pentobarbital anesthesia. The experimental protocol used
in this study is summarized in Supplementary Fig. S1. The animal
experiments were performed in accordance with the institutional
and national guidelines for the care and use of laboratory animals.
All efforts were made to minimize the number of mice used and
their suffering.

2.3. Flow cytometry

Fluorescein isothiocyanate-labeled anti-CD3 and anti-
CD4 antibodies and phycoerythrin-labeled anti-CD8 and
anti-B220 antibodies were provided by Abe Laboratory (Division
of Immunobiology, Research Institute for Biological Sciences,
Tokyo University of Science, Japan). Single-cell suspensions of
thymus and spleen in RPMI-1640 (1 x 10° cells/ml) were prepared
using frosted glass slides. The suspensions were washed in FACS
medium (phosphate-buffered saline containing 1% fetal bovine
serum and 0.1% sodium azide) and treated with anti-FcR (2.4G2),
followed by staining with fluorescently labeled antibodies. The
cells were then washed, resuspended in the FACS medium and
subjected to analysis. Dead cells were excluded by forward light
scatter gating and propidium iodide staining. The fluorescent data
of 10,000 lymphocyte events per sample were acquired on a BD
FACS Canto™ II (BD Biosciences, San Jose, CA, USA) and analyzed by
Flow]o 7.2.2. software (Tomy Digital Biology Co., Ltd Tokyo, Japan).

2.4. Quantitative reverse transcription-polymerase chain reaction
(qRT-PCR)

Total RNA was extracted from thymus and spleen tissues with
Isogen (Nippon Gene Co., Ltd. Tokyo, Japan). Total RNA (1 g) was
used as a template to make the first strand of complementary DNA
(cDNA) using M-MLV Reverse Transcriptase (Invitrogen Co.,
Carlsbad, CA, USA) according to the manufacturer’s instructions.
Quantitative RT-PCR was performed with SYBR Green Real-Time
PCR Master Mix (Toyobo Co. Ltd. Osaka, Japan) and primers
(Fasmac Co., Ltd. Kanagawa, Japan) for the indicated genes
(Table S1). The values of target genes were normalized to the
expression level of the housekeeping gene, Gapdh.

2.5. Statistical analysis

All data are expressed as the mean + standard deviation (SD),
and the levels of significance are cited. SPSS statistical package

Group Number of dams Number of offspring/dam? Total offspring Sex ratio (%)
(Male/(males + females) x 100)
Male Female Total
Control 8 5.75+2.92 5.38 £3.66 11.00+5.18 89 51.69
CB-NP I8! 627 +2.57 7.09+2.34 13.36£3.70 147 46.94

¢ Dams were altowed to deliver their pups on gestational day 19, equal to postnatal day {(PND) 0. Individual pups were recorded on PND 1, and pups were counted and their
sex determined. Values are expressed as mean =+ SD. Abbreviation: CB-NP, carbon black nanoparticle.
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Table 2
Effects of maternal exposure to CB-NP on the body weight of offspring at PND 1, 3 and 5.
Group PND 1 PND 3 PND 5
Male Female Male Female Male Female
Controt 211 +041 2.25+019 3.50+0.60 3.60+0.36
2.01+0.37 2.23+026
CB-NP 2.03+0.21 254050 438+0.74° 3.98+0.35
197 +0.16 2.35+0.15

Three-way ANOVA.

CB-NP main effect Sex main effect Age imain effect CB-NP x Sex interaction CB-NP x Age interaction Age x Sex interaction CB-NP x Age x Sex

p-value <0.001 0.12 <0.001 0.16

interaction

<0.01 0.95 042

Values are expressed as the mean + SD. Significantly different from the respective control group within the same PND and offspring sex: p < 0.05. Abbreviations: CB-NP,

carbon black nanoparticle; PND, postnatal day.

version 17.0 for Windows (IBM, Armonk, NY, USA) was used for all
data analyses. Three-way analysis of variance (ANOVA) was used to
determine the effects of CB-NP exposure, sex, and age on body
weight. Two-way ANOVA was used to assess the effects of CB-NP
exposure and age on the flow cytometry data, and the effects of
CB-NP exposure and sex on mRNA expression data. The ANOVA
analyses were combined with a post hoc least significant difference
(LSD) test when appropriated. An independent-sample t-test was
performed to assess significant differences between the treated
and the respective control groups for the number of pups/dam
analysis. Significance was determined to be p < 0.05.

3. Results
3.1. Number, sex ratio and body weight of offspring

No deaths or changes related to CB-NP intranasal instillations in
pregnant ICR mice were observed during the exposure period.
There were no significant differences in the number of offspring
per dam or the sex ratio of live pups at birth between the control
and the CB-NP groups (Table 1). Three-way ANOVA showed the
significant main effects for CB-NP exposure [F (1, 119)=11.92;
p <0.001] and offspring age [F (2, 119)=178.56; p <0.001] with
CB-NP/offspring age interaction [F (2, 119)=5.74; p < 0.01] on the
body weight of neonates. A post hoc LSD test showed that the body
weight of male neonates was significantly increased (p < 0.05) at
PND 3 and 5 (Table 2).
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3.2. Total count and immunophenotypes of lymphocytes in the thymus
and spleen

To investigate the postnatal immunotoxic effects of CB-NP
exposure, we examined the total lymphocyte count and the
immunophenotyping of lymphocytes within the thymus and
spleen of male offspring. A significant main effect of CB-NP
exposure was detected on the total number of splenocytes with
CB-NP exposurefage interaction, where the total number of
splenocytes was significantly increased (p<0.05) at PND 5
(Fig. 1, Table S2). Additionally, CB-NP exposure significantly
increased the CD3* (T lymphocytes), B220" (B lymphocytes),
CD37B2207, CD4* (helper T cells) and CD4~CD8~ phenotypes, with
significant CB-NP exposure/age interaction on the CD37B220~ and
CD4~CD8~ phenotypes that were significantly increased (p < 0.05)
at PND 5 in the spleen of neonates whose dams were exposed to
CB-NP (Fig. 2, Table §2). Maternal exposure to CB-NP, however, did
not affect splenic CD8" population. Moreover, CB-NP exposure
significantly increased (p < 0.05) the total lymphocyte count, their
immunophenotypes of CD4°CD8~ and CD4°CD8" cells in the
thymus of offspring whose dams were exposed to CB-NP (Figs. 1
and 3, Table S2). ‘

3.3. Quantitative analysis of thymic and splenic mRNA expression

To clarify the observed changes in the number of T cells, gene
expression profiles in the thymus (PND 1) and spleen (PND 3) were

=& = Control

Spleen
—&— CB-NP

15 -

10 4

Lymphocyte count (x 105)

W
%

PND1 PND3 PNDS

Fig. 1. Effect of prenatal exposure to CB-NP on the total lymphocyte count in the thymus and spleen of male offspring at PND 1, 3 and 5. Values are expressed as mean £ SD.
Two-way ANOVA showed a significant main effect of CB-NP exposure on the total lymphocyte count in the thymus [F (1, 29)=4.39; *p < 0.05] without CB-NP exposure/age
interaction; and in the spleen [F(1,27)=11.52; **p < 0.01] with CB-NP exposure/age interaction [F (2, 27)=5.30; p < 0.05]. Post hoc LSD test showed that the total lymphocyte
count in the spleeniwas significantly increased (¥p <0.05) at PND 5. Abbreviations: CB-NP, carbon black nanoparticle; PND, postnatal day.
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Fig. 2. Effects of prenatal CB-NP exposure on the number of CD3, B220, CD4 and CD8 cells in the spleen of male offspring at PND 1,3 and 5, as determined by flow cytometry.
Values are expressed as mean = SD. Two-way ANOVA showed significant main effects for CB-NP exposure on (A) CD3" [F (1, 27)=8.44; **p < 0.01}, (B) B220" [F (1, 27)=6.10;
*p<0.05],(C) CD37B220™ [F(1,27)=7.36; *p < 0.05], (D) CD4" [F(1,27)=8.84; *’p < 0.01}, and (F) CD4~CD8" [F (1, 27)=11.16; **p < 0.01] cell number, with significant CB-NP
exposure/age interaction on CD3"B220" [F(2,27)=5.12; p < 0.05], and CD4~CD8 " [F (2, 27)=5.20; p < 0.05] cell numbers. Post hoc LSD test showed that the CD37B220" and
CD4~CD8~ cells were significantly increased (*p < 0.05) in PND 5 offspring, Abbreviations: CB-NP, carbon black nanoparticle; PND, postnatal day.

examined by qRT-PCR in male and female offspring, Two-way
ANOVA showed significant main effects for CB-NP exposure on
offspring thymic mRNAs encoding Traf6, and for offspring sex on
thymic mRNAs encoding IL-7 and Themis genes, without CB-NP
exposure/sex interaction. Two-way ANOVA did not show any
significant main effects for CB-NP exposure or offspring sex on the
mRNA expression levels of thymic IL-7, Ccl19, Ccr7, Themis,
Runx3 and Aire genes (Fig. 4, Table $3), and of splenic IL-7, IL-15,
Ccl19, T-bet, Stat4, Stat6, Gata3, Socs5 and Runx3 genes (Fig. 5,
Table S3).

4. Discussion

Developmental immunotoxicity has gained increasing recogni-
tion as a significant factor for influencing the risk of disease in later
life (Dietert and Holsapple, 2007). Immunosuppression, which is
associated with an elevated risk of infectious diseases and cancer,
is not only the concern. The immunotoxic changes that increase the
risk of autoimmune, inflammatory or allergic responses have also
been considered (DeWitt et al., 2012; Dietert, 2011; Dietert and
Holsapple, 2007). It has been reported that CB-NP administered
intratracheally can partially pass the air-blood barrier (Shimada
et al., 2006), cause pulmonary inflammation and translocate to the
mediastinal lymph nodes (Tin Tin Win et al., 2005). The intranasal
co-administration of particles with an antigen is reported to be a
more effective way to stimulate an immune response in mice than
separate particle and antigen dosing (de Haar et al, 2005; van
Zijverden et al, 2001). The present study was motivated by
concerns related to the adverse effects of CB-NP on the developing
immune system of infant mice that may result from exposure
during the prenatal period. The thymus is a primary lymphoid

organ in which bone marrow-derived T cell precursors undergo
differentiation, leading to the migration of CD4" and CD8" selected
thymocytes to the T cell-dependent areas of peripheral lymphoid
organs as the naive T cells (Savino, 2006; Zlotoff and Bhandoola,
2011). Additionally, evaluating the expression of regulatory genes
during intrathymic T cell development is critical for understanding
the cellular and molecular interactions that constitute the immune
response (Anderson and Jenkinson, 2000). The spleen is one of the
most important lymphoid organs involved in the initiation of the
immune response (Mebius and Kraal, 2005). It has a central
function in the immune system and is highly sensitive to damage
by xenobiotics (de Visser et al.,, 2006; Son et al., 2010). Lymphocyte
proliferation is an important phase in the immune response
(Lee et al,, 2013).

In newborns, migrated thymic cells account for a major
portion of the total lymphocyte populations in the lymph nodes
and spleen (Weissman, 1967). Therefore, the increased thymo-
cytes and their immunophenotypes of CD4~CD8~ and CD4"CD8"*
T cells seem to be responsible for the overall high numbers of
increased populations of splenic cells, particularly at PND 5, in the
spleen of offspring that were prenatally exposed to CB-NP;
reflecting stimulated immature splenocytes. The increased
population of CD37B220~ splenic cells and total number of
splenocytes is generally known to be associated with allergic and/
or inflammatory response (von Freeden-Jeffry et al,, 1998; Walker
etal, 2013; Wolterink et al., 2012). CD37B220" splenic cells “non-
T/non-B lymphocytes” include the cell population representing
group 2 innate lymphoid cells (ILC2s, also known as natural
helper cells, noucytes or innate helper cells), which promptly
produce large amounts of the Th2 cytokines in response to IL-7,
IL-25 or IL-33 stimulation (Koyasu and Moro, 2011; Licona-Limon
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Fig. 3. Effects of prenatal CB-NP exposure on the number of CD4 and CD8 cells in the thymus of male offspring at PND 1, 3 and 5, as determined by flow cytometry. Values are
expressed as mean =+ SD. Two-way ANOVA showed significant main effects for CB-NP exposure on (A) CD4~CD8~ [F(1,29)=4.34; *p < 0.05] and (D) CD4*CD8" {F(1,29)=4.20;
*p < 0.05], without significant effects on (B) CD4" or (C) CD8" cell numbers. Non-significant main effects for CB-NP exposure/age interaction were observed on CD4-CD8",
CD4°CD8*, CD4* and CD8" cell numbers. Abbreviations: CB-NP, carbon black nanoparticle; PND, postnatal day.
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Fig. 4. mRNA expression levels of IL-7, Ccl19, Ccr7, Themis, Runx3, Aire and Traf6 in the thymus of postnatal day 1 offspring as examined by qRT-PCR. Values are expressed as
mean =+ SD. Two-way ANOVA showed significant main effects for CB-NP exposure on Traf6 [F (1,17)=5.17; *p < 0.05], and for offspring sex on IL-7 [F (1,17)=8.03; *p < 0.05]
and Themis [F {1, 17)=6.58; *p < 0.05] genes. Abbreviation: CB-NP, carbon black nanoparticle.
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Fig. 5. mRNA expression levels of IL-7, IL-15, Ccl19, T-bet, Stat4, Stat6, Gata3, Socs5 and Runx3 in the spleen of postnatal day 3 offspring as examined by gRT-PCR. Values are

expressed as the mean + SD. Abbreviation: CB-NP, carbon black nanoparticle.

et al,, 2013; Walker et al., 2013). ILC2s are responsible for the
immunopathology that develops in association with allergic
inflammatory diseases and asthma (Licona-Limon et al., 2013;
Walker et al, 2013). CD47CD8™ cell subsets originate in the
thymus by escaping negative selection followed by migration in
the periphery (Priatel et al, 2001), and are present in the
peripheral lymphoid organs of mice at PND 3 (Duncan et al,,
2010). They belong to the Tcell compartment and carry the ability
to inhibit inadequate immune response and promote peripheral
immune tolerance in various autoimmune settings (Hillhouse and
Lesage, 2013).

Studying the gene expression profiles in the thymus and
spleen may provide insight into the mechanisms governing the
development, proliferation and migration of T cells (Anderson
and Su, 2011; Bosselut, 2004). The lack of severe change in the
thymic phenotypes, which are sensitive to maternal stress (Moore
et al,, 2009; Park et al., 2008), may mean that the prenatal CB-NP
exposure in the present study was not particularly stressful to the

fetus or offspring. Meanwhile, the qRT-PCR assay confirmed a
significant main effect for CB-NP on the mRNA expression of
thymic Traf6 gene in newborn mice. Traf6 is a member of the Traf
(TNF receptor-associated factor) family of proteins, which have
been characterized as adaptor molecules that mediate signals
induced by the TNFR superfamily (Arch et al., 1998; Chung et al.,
2002). Traf6 is required for the induction and maintenance of
peripheral T-cell self-tolerance (Akiyama et al., 2005). Interest-
ingly, the thymic Traf6 results confirm the finding of an increased
CD4-CD8~ splenocyte population. Taken together, these data
suggest that the expression level of Traf6 might be an important
factor for extrathymic CD4-CD8™ cluster development. Moreover,
the lack of changes in the Runx3 gene in the spleen is consistent
with the CD8* T cell-related results. Runx3 is expressed in mature
CD8* T cells (Egawa et al., 2007) but not in naive CD4" T cells;
however, its expression is upregulated during Th1 cell differenti-
ation (Djuretic et al., 2007). The sex difference in the develop-
mental toxicity of NPs is important for understanding their risk to
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human and animal health. Our data only showed significant main
effects for offspring sex on thymic IL-7 and Themis mRNA
expression in newborn offspring. No significant interaction
between maternal exposure and offspring sex was found. Jackson
et al. (2012) observed that mRNA expression of hepatic genes
related to inflammatory disease was altered in male offspring
prenatally exposed to CB-NP via maternal pulmonary exposure,
while altered genes were mainly associated with metabolic and
endocrine disorders in female offspring.

Taken together, our results suggest that maternal exposure to
CB-NP can induce dysregulation of lymphocyte populations and
that the spleen and thymus are target organs in offspring. In
addition, the changes in the lymphocyte population representa-
tive of immunostimulation may be mediated via allergic reactions
and inflammatory responses. In contrast, a previous study
showed that prenatal intranasal instillations of CB-NP suspension
on GD5 and 9 induced a phenotype similar to immunosuppres-
sion in newborn mice, which was characterized by the depletion
of splenic CD3", CD4" and CD8" T cells in newborn mice (Shimizu
et al., 2014). However, the neonates of mothers that were
intranasally exposed to a single dose of 250ug CB-NP on
GD14 developed a more pronounced asthmatic phenotype than
did the sham-exposed control offspring (Fedulov et al., 2008).
Thus, the dose level of maternal exposure to NP and the route of
exposure during later-stage gestation seemed to promote
offspring immune responses to allergen sensitization. Increased
reactivity of the immune system has also been reported in
response to other prenatal particulate exposure, including diesel
exhaust exposure during mid-gestation (Watanabe and Ohsawa,
2002), leachate of residual oil fly ash during later-stage gestation
(Hamada et al., 2007), and tobacco smoke (Penn et al., 2007;
Singh et al., 2003) and exhaled nitric oxide (Latzin et al., 2009)
throughout gestation, which were linked to asthma or allergies.
These reports support our suggestion that in utero CB-NP
exposure after thymic and splenic development induces
immune-activating effects in newborn offspring, such as allergic
or inflammatory responsiveness, as evidenced by alteration in
lymphocytic phenotyping and other effects, which were depen-
dent on the stage of gestation in which exposure occurred. NPs
may activate systemic immune responses through several possible
mechanisms, including the absorption of blood proteins (such as
complement) to induce phagocyte activation (Salvador-Morales
et al, 2006), an increase in cytokine expression (Dobrovolskaia
and McNeil, 2007) and the induction of exosomes (extracellularly
secreted membrane nanovesicles) (Zhu et al., 2012) as signaling
mediators in the induction of dendritic cell maturation and splenic
T cell immune activation.

In summary, maternal respiratory exposure to CB-NP during
critical periods of development induced alteration in lymphocytic
phenotyping and gene expression related to the induction of
peripheral tolerance that may be a predictive of allergic or
inflammatory responsiveness in the early life of newborn
offspring. The magnitude and nature of the neonatal host
immune response and the allergic/inflammatory response
elicited by NPs were based on the stage of gestation in which
they were exposed.
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Proposal of regulation and governance of nanomaterials from toxicology

for optimizing the precautionary principle
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Abstract.
field of nanotechnology, especially regarding knowledge of health issues

Over the last decade, rapid progress has been made in the

pertaining to toxicity of nanomaterials. This progress can be attributed
to the increase in concerns regarding the risks associated with
nanomaterials, increase in the research data available for discussion, and
implementation of regulations based on reported data. The toxicity
characteristics of nanoparticles are under investigation. However,
advances have been made in research on design of nanomaterials with
low toxicity, and limiting exposure to these materials to avoid health
risks. In addition to these developments, regulations for a “Nano
Labeling” and “Nano Product Registration” is also being established.

Taking a comprehensive view of the current situation, effective policies

for avoiding such risks in the future will be discussed.
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ABSTRACT — Maternal exposure to environmental factors is implicated as a major factor in the devel-
opment of the immune system in newborns. Newborns are more susceptible to microbial infection because
their immune system is immature. Development of lymphocytes reflects an innate program of lymphocyte
proliferation. The aim of this study was to investigate the effects of maternal exposure to carbon black
nanoparticle (CB-NP) during early gestation on the development of lymphoid tissues in infantile mice.
Pregnant ICR mice were treated with a suspension of CB-NP (95 pg kg! time™!) by intranasal instillation
on gestational day 5 and 9. Spleen tissues were collected from offspring mice at 1, 3, 5, and 14 days post-
partum. Splenocyte phenotypes were examined by investigating the pattern of surface molecules using
flow cytometry. Gene expression in the spleen was examined by quantitative RT-PCR. CD3+ (T), CD4*
and CD8~ cells were decreased in the spleen of 1-5-day-old offspring in the treated group. Expression lev-
el of /115 was significantly increased in the spleen of newborn male offspring, and Ccr7 and Cel19 were
increased in the spleen of female offspring in the CB-NP group. Splenic mRNA change profiles by CB-
NP were similar between male and female offspring. This article concluded that exposure of pregnant
mothers to CB-NP partially suppressed the development of the immune system of offspring mice. The
decrease in splenic T cells in the treated group recovered at 14 days after birth. This is the first report of
developmental effect of nanoparticle on the lymphatic phenotype.

Key words: Carbon black, Maternal exposure, Newborn, Spleen, T lymphocyte

INTRODUCTION

Newborns are more susceptible to microbial infec-
tion than adults because their immune system is imma-
ture (Levy, 2007). Lymphoid tissue develops dynamically
in the first few days post-partum (Fagoaga ef al., 2000),
reflecting an innate program of lymphocyte proliferation,
which is independent of pathogen stimulation (Forni es
al., 1988). Lymphocytes in secondary lymphoid organs
define host defense capabilities and thus immune activ-
ity status. Maternal exposure to environmental factors

has been implicated as a major factor influencing new-
born immune system. For example, maternal exposure to
dioxin induced atrophy of thymus and decrease of thymo-
cytes in the offspring (Camacho ef al., 2004; Mustafa et
al., 2009). Recently, maternal exposure to nanoparticles
(defined as substances measuring 1-100 nm in at least one
dimension) in nanotechnology (Kessler, 2011) or to those
suspended in the air (Fukuhara, ef a/., 2008), has become
a major focus in research on environmental effects on
human health.

Previous studies have suggested that exposure of preg-
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nant mice to nanomaterials affects various organs in their
offspring (Ema et al., 2010). Transfer of titanium diox-
ide (TiO,) nanoparticles administered subcutaneously
to pregnant mice (treated on gestational days 6-18; total
dose: 400-500 pg/mouse) to the body of their offspring
was demonstrated by elemental analysis with energy dis-
persive X-ray spectroscopy (EDX) (Takeda ef al., 2009).
Subsequent studies indicated that maternal exposure to
TiO, nanoparticle altered gene expression related to brain
development (Shimizu ef al., 2009) and mainly affected
the function of prefrontal region and dopaminergic neuron-
al systems (Takahashi er al., 2010; Umezawa et al., 2012).
Inhalation of TiO, nanoparticle to pregnant mouse (on ges-
tation days 8-18; 1 hr/day to 42 mg/m?acrosolized pow-
der) also affected moderately behavior of offspring mouse
(Hougaard ez al., 2010). Transmission electron micro-
scopy also showed that TiO, and silica nanoparticles
had passed from pregnant mice to the liver of their off-
spring (Yamashita es al., 2011). Maternal exposure to car-
bon or TiO, nanoparticles also altered genes expression in
the lung of pregnant mothers (Lamoureux ez al., 2010),
increased allergic susceptibility in airways (Fedulov
et al., 2008), altered the phenotype of perivascular cells
in the brain of offspring (Onoda ef al., 2014), and affect-
ed behavior and sexual development of female offspring
(Jackson et al., 2011) and male offspring (Takeda ef al.,
2009; Yoshida et al., 2010; Kubo-Irie et al., 2014). The
effects on renal Col8al expression (Umezawa et al.,
2011) and hepatic gene expression profile (Jackson er al.,
2012a, 2013) in their offspring were also reported. Fur-
thermore, in human placental perfusion model showed
that nano- and submicro-sized particles (< 240 nm, pol-
ystyrene beads) can cross the placental barrier (Wick et
al., 2010). Suppressive effects of a carbon nanomaterial,
fullerene, on an allergic hypersensitivity of adult mouse
was also shown (Yamashita e al., 2009). Although the
transport of nanoparticles to offspring after pulmonary
exposure may be low proportion (Sadauskas er al., 2007),
nanoparticles may also affect developing fetus indirect-
ly by circulating cytokines or other secondary messen-
gers that are activated in response to inflammation and/
or oxidative stress in the exposed mothers (Kannan ef al.,
2007; Jackson ef al., 2012a). We hypothesized that nan-
oparticles may influence systemic biological systems as
well as the immune system. Splenic phenotypes deter-
mined by flow cytometry and mRNA expression analyses
provide indices of the immunological status under infec-
tious (Tasker e al., 2008) and immunosuppression dis-
orders (Clouser et al., 2012). Here, we investigated the
effects of carbon black nanoparticle (CB-NP) adminis-
tered to pregnant mice, during early gestation (gestation-

Vol. 39 No. 4

al days 5-9), via the airway on the splenic phenotypes in
infantile mice.

MATERIALS AND METHODS

Carbon black nanoparticle

PRINTEX90, purchased from Degussa Ltd. (Frankfurt,
Germany), was used as CB-NP. The primary parti-
cle size and surface area of CB-NP are 14 nm and
300 m¥g, respectively. CB-NP was suspended at 5 mg/ml
in distilled water, sonicated for 30 min, and then filtrated
through a 450-nm filter (S-2504; Kurabo Co. Ltd., Osaka,
Japan) immediately before administration. It was charac-
terized by field emission-type scanning electron micros-
copy (FE-SEM; JSM-6500F, JEOL Ltd., Tokyo, Japan)
on a silicon wafer, The size distribution of filtrated CB-
NP in suspension was determined by dynamic light scat-
tering (DLS) measurement using a NANO-ZS (Sysmex
Co., Hyogo, Japan) and the Rayleigh-Debye equation.
The CB-NP concentration in the filtrated suspension was
calculated to be 95 pg/ml by peak area of carbon sig-
nal (2.77 keV) by energy dispersive X-ray spectroscopy
under the FE-SEM (JSM-6500F) (Onoda et al., 2014).

Animals and treatments

All animals were treated and handled in accordance
with the national guidelines for care and use of laborato-
ry animals and with the approval of the Tokyo Universi-
ty of Science Institutional Animal Care and Use Commit-
tee. Fifty-four pregnant ICR mice were purchased from
SLC Inc. (Shizuoka, Japan) and were randomly divided
into CB-NP-treated (n = 26) and control (n = 28) groups.
The mice were housed under controlled temperature
(23 £ 1°C) and humidity (55% =+ 5%), with a 12-hr dark/
light cycle and ad libitum access to food and water. Preg-
nant ICR mice were intranasally treated on gestational
days (GD) 5 and 9 with CB-NP (95 pg/kg body weight
each time), in order to examine the effect of maternal
exposure to CB-NP during early gestation. The day the
plug was detected was considered GD 0. The total dose
of CB-NP (190 pg/kg body weight) was lower than the
doses used in many earlier studies of nano-sized particle
effects. Control animals were treated with distilled water
(1 ml/kg body weight) each time. After parturition, spleen
tissues were removed from the offspring mice at I, 3,5
and 14 days after birth (postnatal days [PNDs] 1, 3, 5 and
14), for investigating the effect of CB-NP on the immune
system of infantile mice, under anesthesia by sodium
pentobarbital.
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Flow cytometry

Anti-CD3 (2C11) and anti-CD4 (GK1.5) antibod-
ies were prepared and purified from hybridoma cul-
ture supernatants and labeled with fluorescein isothi-
ocyanate (FITC) at the Division of Immunobiology,
Research Institute for Biomedical Sciences, Tokyo Uni-
versity of Science (Chiba, Japan) (Watanabe ef al., 2012).
Phycoerythrin (PE)-labeled anti-CD8 (53-6.7) and anti-
B220 (RA3-6B2) antibodies were purchased from BD
Bioscience Co. (San Jose, CA, USA).

Spleen cell suspensions from individual male offspring
mice (PND 1: CB-NP, n = 11; control, n = 10; PND 3:
CB-NP, n = 10; control, n = 9; PND 5: CB-NP, n = 11;
control, n = 12; PND 14: CB-NP, n = 8; control, n = 8)
were prepared in FACS medium (PBS containing 1% FBS
and 0.1% sodium azide), treated with anti-FcR (2.4G2) to
block nonspecific binding (Watanabe er a/., 2012), and
then stained with fluorescently labeled antibodies. The
cells were then washed, resuspended in wash buffer, and
subjected to analysis. Dead cells were excluded by for-
ward light scatter gating and propidium iodide staining.
Fluorescent data of 10,000 lymphocyte events per sample
were acquired on a FACS Canto Il (BD Biosciences) and
were analyzed using the FlowJo software (Tomy Digital
Biology Co., Ltd., Tokyo, Japan).

Quantitative reverse transcription polymerase
chain reaction

Total RNA was extracted from spleen tissues of
PNDS5 offspring mice (male: CB-NP, n = 6; control,
n = §; female: CB-NP, n = 8; control, n = 9) with Isogen
(Nippon Gene Co. Ltd., Tokyo, Japan). Total RNA
(1 ng) was treated with M-MIV reverse transcriptase
(Invitrogen Co., Carlsbad, CA, USA) to obtain first-strand
complementary DNA (cDNA). Quantitative PCR was
performed with SYBR Green Realtime PCR Master Mix
(Toyobo Co. Ltd., Osaka, Japan) and primers (Fasmac
Co. Ltd., Kanagawa, Japan) for the indicated genes. Val-
ues were normalized to those of the housekeeping gene,
Gapdh.

Statistical analysis

Values are given as mean = S.D. Data on the number
of offspring per dam were analyzed by Student’s ¢ test.
Body weight of offspring mouse and flow cytometry data
were analyzed using two-way, repeated-measures analy-
sis of variance (ANOVA), with exposure and age as fac-
tors, followed by post hoc Tukey-Kramer’s test. Data on
mRNA expression level were analyzed by unpaired 7 test
to compare the means of control and CB-NP groups for
each sex, and corrected with Bonferroni’s method. The

level of significance was set at 2 < 0.05.
RESULTS

CB-NP in filtrated suspension

FE-SEM showed secondary particles, approximate-
ly 50-500 nm in diameter, in the filtered CB-NP suspen-
sion (Fig. 1A). The mode value of the aerodynamic diam-
eter distribution of CB-NP in the suspension was 68 nm
(Fig. 1B).

Litter size and body weight of offspring

There was no significant effect of CB-NP exposure
on litter size (CB-NP: 13.7 = 1.9; control: 13.7 £ 2.1)
(P =0.91) or body weight of male offspring between
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Characterization of ultrafine carbon black in suspen-
sion. (A) An image of carbon black nanoparticle (CB-
NP) in a filtered suspension analyzed by scanning
electron microscopy. The scale bar represents 500 nm.
(B) Particle diameter distribution of filtrated CB-NP,
as determined by dynamic light scattering (DLS).
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