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Prenatal diesel exhaust exposure disrupts the DNA
methylation profile in the brain of mouse offspring
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Technology. Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
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ABSTRACT — Prenatal diesel exhaust (DE) exposure is associated with detrimental health effects in
offspring. Although previous reports suggest that DE exposure affects the brain of offspring in the devel-
opmental period, the molecular events associated with the health effects have largely remained unclear.
We hypothesized that the DNA methylation state would be disrupted by prenatal DE exposure. In the
present study, the authors examined the genome-wide DNA methylation state of the gene promoter and
bioinformatically analyzed the obtained data to identify the molecular events related to disrupted DNA
methylation. Pregnant C57BL/6] mice were exposed to DE (DEP; 0.1 mg/m?) in an inhalation chamber
on gestational days 0-16. Brains were collected from 1-day-old and 21-day-old offspring. The genome-
wide DNA methylation state of the brain genome was analyzed by methylation-specific DNA immuno-
precipitation and subsequent promoter tiling array analysis. The genes in which the DNA methylation lev-
el was affected by prenatal DE exposure were bioinformatically categorized using Gene Ontology (GO).
Differentially methylated DNA regions were detected in all chromosomes in brains collected from both
l-day-old and 21-day-old offspring. Altered DNA methylation was observed independently of the pres-
ence of CpG island. Bioinformatic interpretation using GO terms showed that differentially methylated
genes with CpG islands in their promoter were commonly enriched in neuronal differentiation and neuro-
genesis. The results suggest that prenatal DE exposure causes genome-wide disruption of DNA methyla-
tion in the brain. Disrupted DNA methylation would disturb neuronal development in the developmental
period and may be associated with health and disease in later life.

Key words: Brain, DNA methylation, Diesel exhaust, Prenatal exposure

INTRODUCTION 2000), and human volunteers exposed to DE have shown
altered electrical signals in the frontal cortex (Criits ef a/.,
2008). Previously, we reported that prenatal DE exposure

affects the brain of offspring with regard to neurotrans-

Epidemiological and experimental studies have shown
that exposure to fine ambient particulate matter (PM) is

related to respiratory and cardiovascular disorders (Pope
et al., 2004; Liu er al., 2008; Ostro et al., 2006). Die-
sel exhaust (DE) is one of the main types of air pollu-
tion and is a major source of fine ambient PM in urban
environments (Donaldson ez a/., 2003). For this reason,
DE exposure models have been used to investigate the
health effects of ambient PM. Several studies have indi-
cated that DE exposure may affect the central nerv-
ous system. For instance, railroad workers exposed to
DE have shown neurobehavioral impairment (Kilburn,

mitter levels and spontaneous locomotor activity (Suzuki
et al., 2010). Other studies have shown that prenatal DE
exposure induces neuroinflammation and affects behav-
ior in mouse offspring (Bolton er al., 2012; Thirtamara
Rajamani ef al., 2013). Peters ef al. (2013) indicated that
prenatal DE exposure increases the risk of childhood brain
tumors. Although these reports suggest that DE exposure
affects the brain of offspring in the developmental period,
the molecular event involved in these health effects has
largely remained unclear.

Correspondence: Ken Tachibana (E-mail: tachibana@nichiyaku.ac.jp)
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DNA methylation is a critical mechanism of epigenet-
ic gene regulation (Deaton and Bird, 2011). In mammals,
methylation almost exclusively occurs on the cytosine res-
idue of CpG dinucleotide. CpG islands are GC-rich DNA
regions that possess relatively high densities of CpG dinu-
cleotide. They are found in many genes, positioned main-
ly at the 57 ends. Their methylation state is closely asso-
ciated with gene transcription activity. DNA methylation
results in transcriptional silencing, either by interfering
with a transcription factor binding or by inducing hete-
rochromatin structure. DNA methyltransferases, DNMTI,
DNMT3a and DNMT3b, are responsible for the meth-
ylation of cytosine residue in CpG sites (Bergman and
Cedar, 2013). DNMT3a and DNMT3b play crucial roles
in de novo cytosine methylation, while DNMT1 works by
maintaining the DNA methylation pattern in the newly
synthesized DNA during cell division. Knockout studies
of DNA methyltransferases have shown that DNA meth-
ylation is essential for complete embryonic development
(Liet al., 1992; Okano et al., 1999).

In the developmental period, the DNA methylation
pattern derived from germ cells disappears when the fer-
tilized egg develops into a blastocyst. The de novo meth-
ylation pattern is then reestablished at around the stage of
implantation (Kafti e al., 1992). The global DNA meth-
ylation level also changes in the early postnatal stages
(Tawa et al., 1990). This dynamic regulation of the DNA
methylation state during the developmental period would
provide a mechanism for the removal of errors in gene
methylation patterns derived from germ lines; thus allow-
ing normal development. These DNA methylation proc-
esses during development are associated with long-lasting
phenotypic changes, including genomic imprinting, cell
differentiation, and X-chromosome inactivation (Roth
et al., 2009). Previous studies indicated that dysregula-
tion of DNA methylation contributes to neuronal disor-
ders such as Rett syndrome, fragile X mental retardation
and immunodeficiency, centromeric region instability,
and facial anomalies syndrome (ICF) (Amir et al., 1999;
Sutcliffe er al., 1992; Tucker, 2001). These phenome-
na led the authors to suspect that prenatal DE exposure
disrupts the DNA methylation pattern and subsequently
induces neuronal defects in the brain of offspring.

In the present study, we analyzed the effect of pre-
natal DE exposure on the DNA methylation state in the
brain of offspring mice. The methylation state of the
promoter DNA region throughout the entire genome
was analyzed with a combination of methylated DNA
immunoprecipitation (MeDIP) and promoter tilling array
analysis. The differentially methylated genes were then
categorized bioinformatically using Gene Ontology (GO)
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to identify the molecular events associated with altered
DNA methylation induced by prenatal DE exposure.
Furthermore, Medical Subject Headings (MeSH) anal-
ysis was used to identify the brain regions preferentially
affected by DE exposure.

MATERIALS AND METHODS

Animals and exposure

C57BL/6J mice were purchased from SLC (Shizuoka,
Japan) and housed under controlled conditions (tempera-
ture: 22 = 1°C, humidity: 50 = 5%) with a 12 hr light/12 hr
dark cycle and ad libitum access to food and water. Preg-
nant mice were exposed to DE in an inhalation chamber
for 8 hr per day (10:00-18:00) from gestational day 0-16
(DE exposed-group). Pregnant mice of the control group
were housed in a clean air chamber. After delivery, off-
spring were housed in clean air. All experiments were
handled in accordance with the institutional and national
guidelines for the care and use of laboratory animals.

Diesel exhaust

A four-cylinder 2,179 cc diesel engine (Isuzu Motors,
Tokyo, Japan) was operated at a speed of 1,500 rpm and
80% load with diesel fuel. The exhaust was introduced
into a stainless steel dilution tunnel (216.3 mm diam-
eter x 5250 mm) where the exhaust was mixed with
clean air. The mass and number concentrations of DEP
were measured by a Piezobalance Dust Monitor (model
3521, Kanomax Japan, Osaka, Japan) and a condensation
particle counter (model 3007, TSI Inc., Shoreview, MN,
USA), respectively. Concentrations of gas components,
(nitric oxide [NO,], SO,, and CO) in the chambers were
measured by a NO-NO,-NOy, analyzer (model 42i; Ther-
mo Fisher Scientific, Franklin, MA, USA), an Enhanced
Trace Level SO, Analyzer (model 43i-TLE; Thermo
Fisher Scientific), and a CO Analyzer (model 48i; Thermo
Fisher Scientific), respectively.

DNA extraction

Brain tissues were removed from 1d and 21d offspring
of each dam (1d: 6 dams/group, 21d: 5 dams/group).
The whole brain tissues obtained were homogenized
in extraction buffer (10 mM Tris-HCI [pHS8.0], 0.1 M
EDTA, 0.5% SDS, 0.3 mg/mL Proteinase K) and incubat-
ed at 55°C overnight. After RNase A treatment, genom-
ic DNA was extracted by phenol/chloroform extraction,
followed by ethanol precipitation. Extracted DNA of
1 male and 1 female from each dam was pooled for use in
DNA methylation analysis. PCR amplification of genom-
ic sequence of sex determining region (Sry) gene, which
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is located on the Y chromosome, was performed to dis-
criminate the sex of offspring.

Methylated DNA immunoprecipitation (MeDIP)

MeDIP was performed as previously described (Weber
et al., 2003), with slight modifications. Before MeDIP
assay, genomic DNA was sonicated to produce a random
fragment, which mainly ranged from 500-1,000 bp. The
fragmented DNA was denatured for 10 min at 95°C and
subsequently incubated with anti-5-methyl cytosine anti-
body (Diagenode Inc., NJ, USA) in immunoprecipitation
(IP) buffer (20 mM Tris-HCI [pH 8.0], 150 mM NaCl,
2 mM EDTA, 1% Triton X-100) overnight at 4°C. Then,
the mixture was incubated with Dynabeads M-280 Sheep
anti-mouse [gG for 2 hr at 4°C. After washing with
[P buffer, the beads were incubated with elution buff-
er (25 mM Tris-HCI [pHS8.0], 10 mM EDTA, 0.5% SDS,
0.25 mM DTT) for 15 min at 65°C. Eluted DNA was
recovered by phenol-chloroform extraction followed by
ethanol precipitation.

In vitro transcription

T7 based amplification of methylated DNA obtained
by MeDIP assay was performed as previously described
(Liu et al., 2003), with slight modifications. DNA sam-
ples were treated with 5 units of Antarctic phosphatase
(New England BioLabs, Ipswich, MA, USA). Poly T tails
were generated using terminal transferase (New England
BioLabs) with 100 pM dTTP and 10 uM ddCTP. The reac-
tion was cleaned up with a MinElute Reaction Cleanup
kit (Qiagen, Valencia, CA, USA) according to manufactur-
er’s instructions. The tailing reaction product was mixed
with T7-polyA primer (5’- GCATTAGCGGCCGCGAA
ATTAATACGACTCACTATAGGGAG(A)C-3’) in the
reaction buffer (10 mM Tris-HCI [pH 7.9], 50 mM NacCl,
10 mM MgCl,, 1 mM DTT, 0.2 mM dNTP mix) and incu-
bated at 95°C for 2 min to denature. After incubation, the
reaction was held at 37°C for 2 min to anneal, ramped
down to 25°C and held while Klenow enzyme (New
England BioLabs) was added. The sample was then incu-
bated at 37°C for 90 min for extension. The reaction was
terminated by adding 0.5 M EDTA (pH 8.0), then cleaned
up with MinElute Reaction Cleanup kit (Qiagen). After
the samples were condensed with a centrifugal vacuum
evaporator, in vitro transcription was performed using a
Megascript T7 kit (Ambion, Foster, CA, USA) accord-
ing to manufacturer’s instructions, with the exception that
the incubation was increased to 16 hr. The resultant sam-
ples were purified with NucleoSpin RNA Clean-up kit
(Machery-Nagel, Diiren, Germany).

Biotin-labeled double-stranded cDNA synthesis
and promoter tiling array analysis

To obtain double-stranded cDNA, amplified RNA was
reverse transcribed, nick-translated and subsequently
biotin-labeled with GeneChip WT Double-Stranded DNA
Terminal Labeling Kit (Affymetrix, Santa Clara, CA,
USA) according to manufacturer’s instructions. Labeled
double-stranded ¢cDNA was used for promoter array anal-
ysis.

GeneChip mouse promoter 1.0R array (Affymetrix)
was hybridized with biotin-labeled double-stranded
cDNA using a GeneChip Hybridization, Wash and Stain
kit (Affymetrix). The array was then scanned by Affyme-
trix GeneChip Command Console software. Labe-
ling, hybridization and scanning were performed by
Bio Matrix Research, Inc. (Chiba, Japan) using the stand-
ard protocol. Tiling Analysis Software (TAS, Affymetrix),
was used to calculate signal intensities, normalize the sig-
nals, and generate p-values. The threshold setting for the
analysis was set at p <0.01. The detected DNA regions
were annotated to genes using the probe information pro-
vided by Affymetrix. To analyze whether these genes
have CpG islands, the genomic location of CpG islands
in the entire mouse genome was obtained from the UCSC
genome browser (Center for Biomolecular Science and
Engineering, Santa Cruz, CA, USA).

Bioinformatic analysis of methylated genes with
GO and MeSH

Differentially methylated genes were categorized with
GO and MeSH terms. All promoter DNA regions analyzed
by promoter tiling array were annotated with GO using
an annotation file (ftp://ftp.ncbi.nih.gov/gene/DATA/
gene2go.gz) provided by the NCBI. All of the genes
were annotated to MeSH terms using the Gene2MeSH
programmatic interface provided by National Center
for Integrative Biomedical Informatics (Ann Arbor, MI,
USA). The annotations were updated in October 2013.
The genes in which the DNA methylation level was
affected by prenatal DE exposure were categorized using
GO terms. Gene promoters with CpG islands were ana-
lyzed because the presence of a CpG island is crucial for
transcriptional regulation. The enrichment factor for each
category was defined as (nf/n)/(Nf'N), where nf is the
number of differentially methylated genes within the cate-
gory; Nfis the total number of genes within that same cat-
egory; n is the number of differentially methylated genes
within the entire tiling array; and N is the total number
of genes on the tiling array. Statistical analysis was per-
formed using Fisher’s exact test based on a hypergeomet-
ric distribution. Then the GO categories with enrichment
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factors > 2, nf> 5 and p < 0.05 were extracted.
RESULTS

Diesel exhaust characteristics

The average number and mass concentration of the die-
sel exhaust particles (DEP) were approximately 7.1 x 104
number/cm?® and 0.1 mg/m?, respectively. The aver-
age concentration of exhaust gases was maintained at
1.84 ppm for carbon monoxide (CO), 0.456 ppm for
nitrogen monoxide (NO), 0.247 ppm for nitrogen dioxide
(NO,), and 3.52 ppb for sulfur dioxide (SO,) (Table 1).

Genome-wide analysis of the promoter DNA
methylation state

Probes on the promoter tiling array were annotated
to 14,246 genes. The methylated promoter DNA regions
specific to the control group and the DE-exposed group
were defined as follows. The regions specific to the
control group were those in which DNA methylation lev-
el in the DE-exposed group was decreased in comparison
to the control group. The regions specific to the DE-ex-
posed group were those in which DNA methylation lev-
el in the DE-exposed group was increased in compar-
ison to the control group. These methylated promoter
DNA regions were detected in all chromosomes (Figs. 1,
2; Supplementary Tables 1-4). We detected 3197, 3010,
3340 and 2820 genes with differentially methylated DNA
regions in their promoter in 1-day-old (1d) male, Id
female, 21d male and 21d female offspring, respectively
(Figs. 1, 2). Among these genes, 1689, 1905, 1760 and
1522 genes, respectively, have CpG islands (Fig. 1).
These results showed that the differential methylation of
the gene promoters occurred independently of the pres-
ence of CpG islands. Furthermore, altered DNA methyla-
tion was detected in both the 1d and 21d offspring. These
results indicated that prenatal DE exposure disrupted the
genome-wide DNA methylation state in the brain of off-
spring mice throughout the 1-21-day postpartum period.

Categorization of differentially methylated genes

with GO and MeSH
Of the genes mapped to the promoters that were

Table 1. Characteristics of diesel exhaust exposure.

differentially methylated in the DE-exposed and control
groups, 57, 74, 98 and 52 GO categories were enriched in
1d male, 1d female, 21d male and 21d female offspring,
respectively (Supplementary Tables 5-8). To obtain infor-
mation about the biological function affected by altered
DNA methylation in each time point, GO terms that were
common between male and female offspring were extract-
ed (Tables 2, 3). The GO terms related to neuronal differ-
entiation (“positive regulation of neuron differentiation™)
and neurogenesis (“positive regulation of neurogenesis”
and “neurogenesis”) were found in both 1d and 21d off-
spring, respectively.

We also attempted to find the brain regions that were
susceptible to prenatal DE exposure from the MeSH
results. Although some MeSH terms indicate the brain
regions that were enriched in each experimental group,
we were not able to find MeSH terms common to each
experimental point (Supplementary Tables 9-12).

DISCUSSION

Human epidemiologic and animal studies indicate that
nutrition and environmental stimuli during prenatal and
postnatal mammalian development influence develop-
mental pathways and thereby induce permanent chang-
es in metabolism and chronic disease susceptibility
(McMillen and Robinson, 2003). Epigenetic mechanisms
are likely to play an important role in this “developmen-
tal origins of health and diseases (DOHaD)” hypothe-
sis (Waterland and Michels, 2007). DNA methylation is
one of the pivotal mechanisms for the epigenetic regu-
lation of gene transcription. The disruption of the DNA
methylation pattern by prenatal chemical exposure is sus-
pected to affect the development of offspring because the
correct construction of this pattern is crucial for normal
development. Several reports have suggested a relation-
ship between developmental defects and the disruption
of DNA methylation. Vinclozolin, an endocrine disrup-
tor, which has antiandrogenic activity, transgenerational-
ly alters the DNA methylation pattern in the male germ
line (Anway et al., 2005). It has been indicated that the
alteration of DNA methylation induced by maternal eth-
anol consumption is capable of inducing changes in gene

CO (ppm) SO, (ppb) NO (ppm) NO, (ppm) NO_ (ppm) DEP (ng/m*) DEP (number/em’)
Control air 0504 =0.159  1.22+0.83 0.003+0.003 0.019+0.008 0.022+0.010 5+4 4+£2
DE 1.84 £0.42 352120 0456=0.136 0.247+0.070 0.703=0.203 98 +29 70920 + 24247

Values are the average concentration of each component in diesel exhaust and control air expressed as mean + S.D.
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Fig. 1. Effects of prenatal diesel exhaust (DE) exposure on the DNA methylation state of gene promoters with CpG islands. The
number of DNA methylated genes specifically detected in control and DE groups in 1-day-old (1d) male (A), 1d female (B),
21d male (C) and 21d female (D) offspring. The x-axis shows chromosome numbers. Black bars indicate the genes specifi-
cally methylated in control (meaning that DNA methvlation was decreased by DE exposure). Gray bars indicate the genes
specifically methylated in DE (meaning that DNA methylation was increased by DE exposure).

expression (Kaminen-Ahola ef al., 2010). At the time of
writing, however, it remains unclear whether prenatal DE
exposure affects the genome-wide DNA methylation pat-
tern in the brain of offspring.

We produced a mass concentration of DEP at about

100 pg/m3, which is environmentally relevant. Previous
report suggested that the effects of suspended PM in air
pollutants are mainly derived from DEP (Donaldson ef
al., 2005). Numerous megacities in the world demonstrate
PM concentrations of 30-600 pg/m? in annual averag-
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Effects of prenatal diesel exhaust (DE) exposure on the DNA methylation state of gene promoters without CpG islands. The

number of genes DNA methylated which were specifically detected in control and DE groups in 1-day-old (1d) male (A),
1d female (B), 21d male (C) and 21d female (D) offspring. The x-axis shows chromosome numbers. Black bars indicate the
genes specifically methylated in control (meaning that DNA methylation was decreased by DE exposure). Gray bars indi-
cate the genes specifically methylated in DE (meaning that DNA methylation was increased by DE exposure).

es (Gurjar et al., 2008). For example, under the condition
in the Mexico City (201 pg/m?) and assuming a ventila-
tion rate of 6.4 L/min (9.2 m¥/day) for a healthy adult at
rest (Crosfill and Widdicombe, 1961), the total amount
of PM exposure would be approximately 1,800 pg/m?.
This would correspond to 6 pg/day of PM exposure for
a mouse with an average ventilation rate of 0.021 L/min
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(Crosfill and Widdicombe, 1961). The DE exposure
under the condition of present study was approximately
1 ng/day. In the present study, the DE exposure condi-
tion for DEP mass concentration and exposure time was
designed to be lower than recent studies on the effects of
DE exposure on the central nervous system (Levesque et
al., 2011a, 2011b; Win-Shwe et al., 2012; Yamagishi et
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Table 2. GO terms commonly enriched in male (M) and female (F) in 1-day-old offspring.

GO term Gender Enrichment factor p-value
. P . e M 2.01 0.007
Positive regulation of neuron differentiation £ 223 <0.00]
Ventricular septum morphogenesis M 4.20 < 0.001
PLu mOrpRogenest F 3.39 <0.001
Outflow tract hoa s M 2.80 0.001
utflow tract morphogenesi E 269 20,001
. BT T ek b M 2.17 0.025
RNA polymerase Tl core promoter proximal region sequence-specific DNA binding - >80 <0.001
Embryoni il skeleton morphogenesis M 2.56 0.015
mbryonic cranial skeleton morphogenesis F 592 0.002
. - M 2.10 0.008
Histone deacetylase binding F 201 0.004
. e i M 2.19 0.048
Cardiac muscle cell differentiation F 259 0.008
o M 2.47 0.032
tRNA binding r 249 0.016

The enrichment factor for each category was defined as described in MATERIALS AND METHODS. Statistical analysis was
performed using Fisher’s exact test with hypergeometric distribution and the level of statistical significance was set at p < 0.05

Table 3. GO terms commonly enriched in male (M) and female (F) in 21-day-old offspring.

GO categories Gender Enrichment factor p-value
Neurogenesis (positive regulation of neurogenesis) M 283 0.008
° © = F 2.54 0.025
. . M 2.85 0.013
Hindbrain development E 493 <0.001
M 2.06 0.012
mRNA transport F 2.77 <0.001
. M 2.08 0.033
Dorsal/ventral pattern formation £ 566 0.003
. M 220 0.009
Spermatid development F 233 0.006
Centriole M 231 0.001
F 2.28 0.007
Transcription cofactor activity M 2.69 0.006
pio > F 2.72 0.011
Epithelial to mesenchymal transition M 2.69 oot
P o mesenein F 2.66 0.020
. . . M 2.02 0.026
Odontogenesis of dentin-containing tooth P 210 0.034
. . M 2.26 0.028
Protein targeting E 294 0.045

The enrichment factor for each category was defined as described in MATERIALS AND METHODS. Statistical analysis was
performed using Fisher’s exact test with hypergeometric distribution and the level of statistical significance was set at p < 0.03.

al., 2012). genome-wide promoter DNA methylation state in the

In the present study, we used the combination of  brain of offspring mice. Our results revealed that pre-
MeDIP and subsequent promoter tilling array analysis  natal DE exposure disrupted the DNA methylation state
to examine the effects of prenatal DE exposure on the  of offspring in all chromosomes rather than a particular

Vol. 40 No. 1



K. Tachibana er al.

chromosome. Furthermore, altered DNA methylation
was observed in both 1d and 21d offspring. To under-
stand the molecular events influenced by DE exposure,
differentially methylated genes were bioinformatical-
ly categorized using GO terms. This bioinformatic inter-
pretation indicated that differentially DNA methylated
genes were enriched in the GO terms related to neuron-
al differentiation and neurogenesis. These results sug-
gest that aberrant DNA methylation induced by prena-
tal DE exposure affects neuronal development. The fetal
and neonatal period is critical for the development and
organization of the neuronal network (Sporns e /., 2004;
Smyser et al., 2010). We previously reported that prenatal
DE exposure affects spontaneous locomotor activity and
monoaminergic system in mice (Suzuki et «/., 2010). The
genes which aberrant DNA methylation was observed
in this study would be associated with development and
organization of the monoaminergic system in mice. The
detailed analysis about this point is required to clarify
the association between aberrant DNA methylation and
functional changes in mice.

The regulation of gene expression during fetal and
neonatal period is associated with morphological and
functional development of the brain (Muotri and Gage,
2006). Given that the established DNA methylation pattern
is generally maintained through cell division (Bergman
and Cedar, 2013), it is predicted that altered DNA meth-
ylation would be partially maintained after development.
Several reports suggest a relationship between aberrant
DNA methylation and neurodegenerative diseases such
as Alzheimer’s, Huntington’s, and Parkinson’s disease
(Jakovcevski and Akbarian, 2012). In addition, cortical
neuron degeneration has also been observed in canines
that inhaled air pollutants containing PM (Calderén-
Garciduefias ef al., 2002). When the information from
these reports is considered, it would seem that altered
DNA methylation induced by prenatal DE exposure
would also be associated with the later pathogenesis
of neurodegenerative disorder. In the present study,
we observed that the genes which showed altered
DNA methylation were different between 1d and 21d
offspring. These results suggested that the aberrant DNA
methylation pattern induced by prenatal DE exposure was
partially recovered during growth. Further examinations
about DNA methylation in young adult mice are required
to clarify the DNA region which shows persistent aberrant
DNA methylation.

The authors detected the altered DNA methylation of
the genes independently of the presence of CpG islands.
Several reports indicate a relationship between reac-
tive oxygen species (ROS) and DNA methylation. Oxi-
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dative DNA damage is known to disturb the binding of
methyltransferase to the DNA (Valinluck ef al., 2004),
thus resulting in hypomethylation of cytosine residue.
Weitzman er al. (1994), showed that DNA methylation
can be influenced by free radical adducts on adjacent
guanine residues. Taken together, it seems possible that
ROS associated with DE inhalation (Li ef a/., 2010) could
disrupt the DNA methylation state in the developing
tissues. Since DNA hypomethylation induces genomic
instability (Chen et al., 1998), a decrease in genome-wide
DNA methylation may lead to an increase in the muta-
tion rate that is induced by prenatal DEP exposure (Ritz
etal.,2011).

We previously reported a bioinformatic meth-
od for locating candidate brain regions of interest for
the effects of nanoparticle exposure using MeSH terms
(Umezawa er al., 2012). We applied the method to sur-
vey the brain regions that are preferentially affected by
prenatal DE exposure. Although several MeSH terms
related to brain region were enriched in each experimen-
tal group, no common regions were found in the compar-
isons. With regard to the effects of DE exposure, it there-
fore seems less likely that any brain region is a specific
target for DNA methylation disruption.

In the present study, we interpreted the biological
effects caused by differential gene methylation using a
bioinformatic method. Further “wet experiments” are
required to clarify whether disrupted DNA methyla-
tion actually alters the gene expression, neural differ-
entiation, and the function of central nervous systems
especially monoaminergic systems which are affected by
prenatal DE exposure (Suzuki ef al., 2010). Additionally,
the molecular mechanisms underlying the effect of prena-
tal DE exposure on the DNA methylation pattern remain
unknown. As indicated above, the disturbance of DNA
methyltransferase binding (Valinluck er al., 2004) is
potentially involved in the dysregulation of DNA meth-
ylation. In addition, the biological systems that deter-
mine the DNA regions that are methylated are another
possible target of DE exposure. Previous reports indicat-
ed some factors essential for the establishment and main-
tenance of the methylation imprint, including Zfp57 and
PGC7/Stella (Li ef al., 2008; Nakamura ef al., 2007).
Shen er al. (2013), showed that a dynamic methylation-
demethylation cycle occurs at a large number of genom-
ic loci. These molecules and pathways would also be
candidate targets of prenatal DE exposure. Recently, a
portion of the piRNA, small RNA exclusively expressed
in the germ line, was linked to de novo DNA methylation
(Olovnikov et al., 2012). Wick et al. (2010) showed that
particles up to a diameter of 240 nm were taken up by
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the placenta and, further, were able to cross the placental
barrier. The findings in this report suggest that a part of
DEP, especially nano-sized particles (diameter < 100 nm),
might be transferred to fetus. On the other hand, Weaver
et al. (2005) showed maternal stress alters the epigenotype
in rodent offspring. The analysis about whether DEP or
maternal stress disrupts the molecules/pathways which
indicated above would help to solve the problem.

Our results showed that altered DNA methylation pat-
tern was different between male and female offspring.
Previous reports suggest that steroid hormone and endo-
crine disruptor change DNA methylation (Jost and
Saluz, 1993; Anway ef al., 2005; Skinner ez al., 2010).
Watanabe and Kurita (2001) showed the possibility that
prenatal DE exposure alters fetal testosterone levels.
Brain sex differences organized by a transient hormone
surge may be maintained through epigenetic modification
(McCarthy et al., 2009). Our results, combined with these
reports, showed the possibility that prenatal DE exposure
affects the brain sex difference through alteration of DNA
methylation in the developmental stage.

In conclusion, the present study showed that prena-
tal DE exposure disrupts the genome-wide DNA methyl-
ation state in the brain of offspring mice. Bioinformatic
GO analysis showed that differentially DNA methylat-
ed genes were enriched in neuronal differentiation. These
results suggest that disrupted DNA methylation in the
infertile mouse brain is involved in neural dysfunctions
induced by prenatal DE exposure. Bioinformatic inter-
pretation of the altered DNA methylation data using GO
terms may provide clues that lead to the better under-
standing of the molecular events underlying the effects
of prenatal DE exposure in the developmental period. In
addition, a decrease in genome-wide DNA methylation
may lead to increased mutation rate, which is induced by
prenatal DEP exposure. Our results suggest that the early-
life social environments in which DE is present could be
critical for the construction of the DNA methylation pat-
tern and may be associated with a long-term impact on
health.
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