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A
gene control poly I:C
Shh 1.00+0.03 0.94+0.08
Fgf8 1.00£0.03 1.03£0.11
Gata2 1.00£0.12 1.00£0.11
Pet-1 1.00£0.03 1.01£0.29
B control poly I:C sense

Shh

Fgf8

Fig. 2. Relative expression level of genes involved in serotonergic
development between the control and poly I:C groups. We intraper-
itoneally injected poly I:C or vehicle (control) on GD9 and evaluated
the relative expression levels of Shh, Fgf8, Gata2, and Pet-1 in whole
fetal brain at GDI12 (A). Cranial regions of GD12 embryos were
exactly cut just posterior to the fourth ventricle, and five heads of the
embryos were collected from four of each pregnant mothers in the two
groups. (B) The expression of Shh and Fgf8 mRNA in whole embryos
at GD12 were compared by whole-mount in situ hybridization. No
staining was observed when Shh or Fgf8 sense-strand probes were
used. Eight embryos from each group were analyzed. Scale bar
represents 500 pm.

To further investigate whether increased number of
serotonergic neurons in the rostral cluster in the poly
I:C group was caused by abnormal expression of genes
such as Shh, Fgf8, Gata2, and Pet-1, which are involved
in the differentiation and maturation of serotonergic
neurons [14,27,28], we used quantitative PCR to deter-
mine the levels of transcription in the control and poly
I.C groups at GDI12. No difference was observed in
the mRNA levels between the two groups (Fig. 2A).
Consistent with this, analysis of Sh/ and Fgf8 expression
using whole-mount in situ hybridization with digoxi-
genin-labeled cRNAs probe did not detect differences
between two groups upon microscopic observation
(Fig. 2B). No staining was observed when the Shh or
Fgf8 sense strands were used as probes.

4. Discussion

In the present study, we demonstrate that maternal
administration of poly I:C induces an increased number
of serotonergic neurons in rostral raphe by GD15 and
decreased 5-HT content in the hippocampus of offspring

by P50. Because poly I:C administration mimics viral
infection, these results suggest that maternal viral infec-
tion during pregnancy induces lasting perturbations in
the serotonergic system, which may subsequently cause
developmental disorders such as schizophrenia or ASD.

Effects of poly I:C on nutritional status during preg-
nancy or postnatal period could modify the brain devel-
opment. In order to solve this issue, we compared the
weight of hippocampus as well as striatum between con-
trol and poly I:C-injected groups. The weight of hippo-
campus and striatum did not differ between two groups,
which suggest that no nutritional effects were observed
by poly I:C injection.

Adult hippocampal 5-HT levels decreased following
prenatal poly [:C injection, which is consistent with
the data reported using mice [29]. However, our data
are novel and important because we found that poly
I:C injection on GD9 induced abnormal fetal serotoner-
gic development. The mechanisms responsible for these
effects remain to be determined. However, our analysis
on fetuses using flat whole-mount immunohistochemis-
try may provide a new understanding of the mechanisms
that determine the risk of maternal viral infection. Fur-
ther studies aside from flat whole-mount preparation
should be necessary to elucidate the effect of poly I:C
during embryonic period.

Decreased hippocampal 5-HT levels in the adult fol-
lowing the administration of poly I:C to fetuses further
suggests that GD10 viral infection may cause behavioral
and cognitive abnormalities in the adult because behav-
ioral and cognitive functions are closely influenced by
5-HT levels. This conclusion is supported by our previous
findings that chemicals that perturb early serotonergic
development induce ASD-like phenotypes, which repre-
sent behavioral and cognitive dysfunction. Therefore,
we hypothesize that viral infection during pregnancy as
well as chemicals that may perturb early serotonergic
development induce behavioral and cognitive abnormal-
ities such as ASD. Moreover, viral infection during preg-
nancy increases the risk of ASD in offspring [30-32].
Further investigation will be necessary to determine the
precise mechanisms by which maternal viral infection
causes behavioral and cognitive dysfunction.

We measured monoamines and their metabolites con-
tent only in the striatum and hippocampus. In our pre-
vious papers, we have found that embryonic effects on
serotonergic system are exclusively occurred in hippo-
campus [13,22]. From our reports, hippocampus might
be vulnerable by embryonic exposure such as chemical
(e.g. thalidomide). Along these lines, we focused on hip-
pocampus following poly I:C administration. The rea-
son why we also saw striatum is that dopamine is well
known to be rich especially in striatum.

Viral infection activates the immune system. We
found that poly I:C administration increased the expres-
sion of cytokine genes such as interferon-y (IFN-y),
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interleukine-1[ (IL-1p) IL-6, and tumor necrosis factor-o.
(TNF-o)(data not shown). Moreover, elevated cytokine
levels and activated microglia and astrocytes are present
in postmortem brains of autistic people aged 5-44 years
[33], and elevation of cytokine levels are observed in the
cerebral spinal fluid of autistic children [34], which sug-
gest that immune activation induced by poly 1:C may
cause ASD in offspring. Evidence indicating that expo-
sure to chemicals such as valproic acid or mercury is a
risk factor for ASD [35,36], and findings indicating that
exposure to chemicals such as valproic acid or mercury
induces immune activation [37,38] support our hypothe-
sis that some chemicals which are known to be risk
factors for ASD cause ASD in offspring through immune
activation during pregnancy. Interestingly, chronic mer-
cury exposure results in a male-specific increase in
TNF-a expression in the cerebellum and hippocampus,
which are two of the main areas that are affected in
ASD [38]. This may explain the male-oriented bias in
ASD. Further studies are required to resolve these issues.

5. Conclusion

Maternal immune activation induced by poly I:C
administration increases the number of serotonergic
neurons of offspring in the rostral raphe and decreases
the 5-HT level in adult rat hippocampus in offspring.
These results suggest that maternal viral infection
during pregnancy influences fetal development of the
serotonergic system. Perturbations in the early devel-
opment of serotonergic neurons may cause develop-
mental disorders after birth.
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