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Fig. 5. mRNA expression of neurotrophins in dendrimer-treated mice (A—F). Each bar represents the mean + SE (n=5 from each group). Abbreviations: Brain-derived neu-
rotrophic factor, Bdnf: nerve growth factor, Ngf. (A) and (B) show the expressions in the olfactory bulb; (C) and (D) show the expressions in the hippocampus; and (E) and (F)

show the markers in the cerebral cortex.

by rats for 6h in a whole-body exposure chamber led to a sig-
nificant and persistent increase in the accumulation of 13C NPs
in the olfactory bulb on day 1 and that the NP concentration
continued to increase up until day 7 (Oberd&rster et al,, 2004).
The same study also showed that the concentrations of 13C NPs
were significantly increased in the cerebrum and cerebellum, but
that the increase was inconsistent; that is, a significant difference
was only observed on one additional day of the post-exposure
period (day 1). Regarding the present study, we have no evidence
that dendrimers translocate to the systemic circulation. However,
Nemnar et al, {2002) reported that inhaled ultrafine technetium
(99mTc)-labeled carbon particles translocate into the systemic cir-
culation within 5 min by diffusion. The transport of nanoparticles
across the blood-brain barrier (BBB)is reportedly possible by either
passive diffusion or by carrier-mediated endocytosis (Hoet et al.,
2004). A recent study using a BBB in vitro model showed that G4
PAMAM dendrimers were able to cross the BBB and induced CD11b
and CCR2 overexpression in primary murine microglia (Bertero
et al, 2014). In the present study, we observed fluorescent signals
thought to represent dendrimers in the hippocampus. Thus, the
intranasally instilled 4-nm PAMAM used in the present study might
translocate to the brain via an olfactory nerve or the systemic circu-
lation. The potential translocation routes for intranasally instilled

dendrimers in the mouse brain are shown in Fig. &. Although we
could not identify the exact mechanism for the translocation of
the dendrimers from the nose to the brain, drugs or molecules can
reportedly be transported by two possible routes: a transporter-
mediated route and paracellular transport (Frey, 2002; Thorneetal,
2004 Dhanda et al,, 2005, Pardridge, 2005). Recently, an intranasal
route via an epithelial permeabilizer has been shown to be capable
of delivering drugs to the CNS (Krishan et al, 2014).

We have measured the size of PAMAM dendrimers in the
original commercial solution [100% methanol (3.4+0.9nm)],
in the ultrapure water (mean size is 5.7+ 1.4nm in first peak;
9764391 nm in second peak) after removing methanol and after
24 h in the ultrapure water (5.6 +2.3 nm) to remove second peak
of aggregation. Our results indicated that no much change of size
and not much aggregation were observed before administration
to animals.

Neurotrophins have been identified as targets for neurotox-
icants and are known to play a role in bidirectional signaling
between the cells of the immune and nervous systems. Bdnf is
a primary neurotrophin in the hippocampus (Karaculanis and
Angelopoulos, 2010) and plays a key role in neuro-immune
responses (Aloe et al., 1884). Moreover, multiple neurotransmit-
ter systems, such as dopamine, glutamate, acetylcholine, and
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serotonin, also take part in proper neuronal functions. On the other
hand, according to requirements, body homeostasis signals induce
neurotrophin production in the brain. The balance between toxic
substances and trophic substances secreted from microglia may
influence neurotoxicity and neuroprotection. Finally, our present
study indicates that dendrimers induce minor toxicity in the brain
but that BDNF production compensates for this toxicity.

Based on our present findings, we suggest that PAMAM den-
drimers appeared to be not toxic in general; however, the
expressions of some neurological-related genes were induced by
high-dose treatment. Although we observed the effects of den-
drimers at one time point in the present study, time points that
are relevant to the PAMAM pharmacokinetics should also be exam-
ined. The cytotoxicity and cell permeability of PAMAM dendrimers
depend upon the concentration and generation of the dendrimers
(Jjevprasesphant et al, 2003). Furthermore, cytotoxicity may be
related to the radius of gyration, the molecular shape and the
dimensions of a particular dendrimer (Metullio et al, 2004). A
recent report indicated that dendrimer toxicity was mainly due to
its outer surface layer and that the toxicity could be manipulated
by modifying the surface layer (Chauhan et al, 2010). We sug-
gest that the route of administration (e.g., mtranasal, intravenous,
intratracheal, or intraperitoneal), dosage (low or high dose), and
duration of treatment (acute, subchronic, chronic, or intermittent)
may also influence the toxicological and pharmacological effects of
dendrimers in vivo. Further studies are needed to explore the time
course effects of dendrimers on biodistribution and the effects of
various exposure routes and durations on dendrimer toxicity.
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Abstract

Fistulifera sp. strain JPCC DAOSSO is a newly sequenced pennate diatom that i is capable of simultaneously growmg and

~accumulating lipids. This is a unique trait, not found in other related macroalgae so far. It is able to accumulate between 40 -

to 60% of its cell weight in lipids, making it a strong candidate for the production of biofuel. To investigate this
characteristic, we used RNA-Seq data gathered at four different times while Fistulifera sp. strain JPCC DAO580 was grown in

~oil accumulating and non-oil accumulating’ conditions. We then adapted gene set enrichment analysis (GSEA) to investigate

the relationship between the difference in'gene expression of 7,822 genes and metabolic functions in our data, We utilized

information in the KEGG pathway database to create the gene sets and changed GSEA to use re-sampling so that data from
‘the different time points could be included in the analysns Our GSEA method identified photosynthesis, lipid synthesis and-
amino acid synthesis related pathways as processes that play a significant role in oil production and growth in Fistulifera sp.
strain JPCC DA0580. In addition to GSEA, we visualized the results by creating a network of compounds and reactions, and -

plotted the expression data on top of the network. This made existing graph algorithms available to us which we then used

to calculate a path that metabolizes glucose into trlacylglycerol (TAG) in the smallest number of steps. By visualizing the
data this way, we observed a separate up-regulation of genes at different times instead of a concerted response. We also -

identified two metabolic paths that used less reactions than the one shown in KEGG and showed that the reactions were
up-regulated during the experiment. The combination of analysis and visualization methods successfully analyzed time-
course data, ldentn“ ed lmportant metabollc pathways and prowded new hypotheses for further research.
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Introduction

The search for sustainable and environmentally-friendly fuel is a
burgeoning field in biology because organic waste products and
organisms are abundant and renewable sources of biofuel
compounds. There is strong focus on producing biofuel from food
crops, such as corn and soy, as well as oleaginous algae, such as
Chlamydomonas reinhardtii and Nannochloropsis oceanica. One of
the big advantages of algae over terrestrial crops is that they
require less land to grow on while producing more biomass [1].
This characteristic is important in large-scale production to
minimize competition with the production of food or with the
preservation of neighboring habitats. Algae can be farmed in open
tanks or closed columns and does not deplete soil for agricultural
use. Most oleaginous algae accumulate biofuel compounds in low
nitrogen conditions at the expense of cell growth [2] [3] [4]. For
that reason, we have focused our analysis on a newly sequenced
strain of microalgae, Fistulifera sp. strain JPCC DA0580, which is
able to accumulate lipids while undergoing logarithmic growth [5].
Fistulifera sp. strain JPCC DAO0580 is a pennate diatom that is
possibly an allodiploid, sharing many of its genes with the diatoms,
Phacodactylum tricornutum and Thalassiosira pseudonana. It

PLOS ONE | www.plosone.org

demonstrates a high growth rate concurrently with achieving
high lipid content (40-60% w/w) [6]. There have been 20,618
genes sequenced from the nuclear, chloroplast and mitochondrion
genomes. Although the Fistulifera sp. strain JPCC DA0580
genome contains some genes that are homologous to the ones
mvolved in lipid metabolism, the cellular mechanisms for its ability
to simultaneously grow and accumulate lipids is unknown.

In our analysis, we utilized RINA-Sequencing (RNA-Seq) data
gathered from Fistulifera sp. strain JPCC DAO0580 while it was
grown in oil accumulating and non-accumulating conditions at
four time points, from 0 to 60 hours. RNA-Seq is a high-
throughput sequencing method that produces a large amount of
data per experiment and can be used to investigate differences in
gene expression between several conditions. The method produces
count data of RNA sequences which can be normalized using
Reads Per Kilobase Per Million (RPKM). The normalization
corrects for the varying coverage a sequence may get due to its
length. Most analyses that involve comparisons in gene expression
focus on identifying differentially expressed genes, especially
methods that use linear modeling which take advantage of
preexisting microarray analyses [7] [8]. Another type of method
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that is less stringent is gene set enrichment analysis (GSIA), which
1s more focused on relating the results with previous knowledge.
GSEA approaches the data analysis by looking for associations
between predefined groups of genes, a gene set, and a phenotype
of interest. This type of method is better at detecting small but
coordinated differences in gene expression than linear modeling
and is less interested in differentially expressed genes and more
focused on a group of genes being expressed differently from the
background expression. GSEA generally has simple requirements
for the data to be analyzed. The important elements are sets of
genes that can be compared to the data and data values that can
be distilled into one value per gene, usually gene expression or fold
change. This makes GSEA more suitable for analysing our data.

There are a variety of GSEA tools available for analyzing high-
throughput sequencing data from experiments investigating two
conditions with a robust number of replicates on a model organism
[9]. For example, online services such as DAVID [10] [11],
FuncAssociate [12] and GOEAST [13], statistical packages for R
such as SPIA [14] and standalone scripts such as PAGE [15].
Unfortunately, our data was not suitable for these methods. When
investigating multiple time points with a new organism, it is
sometimes not feasible to have enough replicates, even with the
decreasing cost of RNA-Seq experiments. There are some
methods that can accommodate these data but they still depend
on variance estimation which is inadequate for our data.
Therefore, we proposed a new approach to analyse data from a
new organism that takes into account the change in gene
expression through time in order to avoid reducing our data as
done by some existing tools.

We demonstrate a modified approach to GSEA that is able to
analyse one sampled data with multiple time points, and custom
annotations in an investigation on the difference in gene
expression between two conditions through four time points. We
then use the results to identify a sequence of reactions starting with
a compound such as glucose, and ending with a compound of
interest such as triacylglycerol. To create gene sets for a genome
with custom annotations, we associate our genes with known
KEGG pathways and make each metabolic pathway a gene set. In
order to fully utilize the time-course data, each time point is
treated as a variable so that GSEA is performed in multiple
dimensions, and gene expression variation across time can be
conserved. We use re-sampling to address the low replicate
number issue and create an empirical camulative distribution that
is then used to calculate the enrichment p-value on multidimen-
sional data without the need to assume multivariate normality.
Finally, we visualize and interpret the results using graphs that join
the enriched gene sets. The graphs also let us calculate a
hypothesized pathway of reactions from one compound to
another. In the interest of learning about oil accumulation, we
chose to focus our demonstration on the reactions involved in
turning glucose into the target biofuel lipid, triacylglycerol (TAG).

Results and Discussion

Gene Set Enrichment Analysis

Using the modified GSEA method on our data, we identified 9
significantly enriched pathways (Table 1). These pathways contain
genes whose difference in gene expression was significantly
different, as a group, to the general background level of gene
expression of the whole data set.

The photosynthesis and photosynthesis antenna protein path-
ways were two related pathways that were significantly enriched
with p-values <0.0001. The gene expression in the photosynthesis
pathway showed a positive relationship between log fold change
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and time, indicating that there was increased energy synthesis via
photosynthesis during oil accumulation. Although a similar
relationship was present in the photosynthesis antenna proteins
pathway, the log fold change values at 60 hours was higher than in
the photosynthesis pathway. Further investigation reveals that the
values came from the expression of light-harvesting complex 1
chlorophyll a/b binding proteins; LHCAL, LHCAZ2 and LHCAA4.
Additionally, the general difference in expression of proteins in
light-harvesting complex II is lower than in light-harvesting
complex I. The preference of light-harvesting complex I may be
due to the highly efficient nature of photosystem I [16] even
though Fistulifera sp. strain JPCC DA0580 is using both systems
simultancously in this case.

The other prominent pathways are related to cellular energy
metabolism; glycolysis, the pentose phosphate pathway and
oxidative phosphorylation were significantly enriched in our
analysis. The glycolysis and pentose phosphate pathways are
fundamental to the conversion of glucose to fatty acids while
oxidative phosphorylation is essential for providing the energy
needed to power metabolic reactions. Some of the proteins in the
oxidative phosphorylation pathway form the membrane protein
V-type ATPase. It is a proton pump responsible for ATP turnover
in mitochondria and was up-regulated in our data. There is some
evidence of a relationship between imcreased C16-C18 length fatty
acids, which are used in TAG production, and increased
hydrolytic activity of V-ATPase [17]. Along with a gradual
down-regulation of NADH dehydrogenase, it would seem that
Fistulifera sp. strain JPCC DAO0580 focuses on recycling ATP
instead of reducing NADP+ for its energy requirements during oil
accumulation. Predictably, most glycolysis genes were up-regulat-
ed during the experiment, although there were notable exceptions;
phosphoglucomutase (PGM), phosphoglycerate kinase (PGK) and
glyceraldehyde 3-phosphate dehydrogenase (GAPDH). PGM
transfers a phosphate group to and from the 1” position to the 6
position in o-D-glucose so its down-regulation suggests that
Fistulifera sp. strain JPCC DA0580 is getting its source of o-D-
glucose 6-phosphate elsewhere. PGK and GAPDH are used in two
reversible reactions to make glycerate 3-phosphate which is a key
molecule for TAG production [18]. However, this reaction can be
done in one irreversible step by glyceraldehyde-3-phosphate
dehydrogenase (NADP) which was up-regulated in our data.
The substrate for that reaction, glyceraldehyde 3-phosphate, is
used in the pentose phosphate shunt to make nucleic and amino
acids like deoxyribose, 2-Deoxy-D-ribose l-phosphate and D-
ribulose 5-phosphate. The genes involved in those reactions were
found to be up- regulated in our data; they were ribokinase (rbsk),
phosphopentomutase (PGM2), 6-phosphogluconate dehydroge-
nase (PGD) and 3-hexulose-6-phosphate synthase (hxlA). So it
seems that Fistulifera sp. strain JPCC DA0580 relies on glucose to
produce TAG, and nucleic and amino acids to achieve accumu-
lation and growth at the same time while using a proton pump to
power the reactions under low nitrogen conditions.

The other significant pathways are related to synthesizing the
materials for TAG and growth; they are fatty acid biosynthesis and
amino sugar and nucleotide sugar metabolism. Expectedly, the
difference in gene expression in fatty acid biosynthesis shows a
general up-regulation of the genes in the pathway as Fistulifera sp.
strain JPCC DAO0580 accumulates TAG and continues cell
growth. Gene expression in the amino sugar and nucleotide sugar
metabolism pathway also had a positive trend through time. The
up-regulation of genes in this pathway suggests that sugars are
being metabolised for growth during oil accumulation. Two of the
up-regulated genes are glucokinase (glk) and glucose-6-phosphate
isomerase (GPI) which are involved in reversible reactions that
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Table 1. Results of GSEA Method.

Gene Set Enrichment Analysis on Time-Course Data

P-value

Pathway Name

Photosynthesis - antenna proteins

< phosphte pathway

Carbon fixation in photosynthetic organisms

Oxidative phosphorylation

*P-value <0.0001.
doi:10.1371/journal.pone.0107629.t001

convert glucose into fructose and eventually lead to the production
of nucleotide sugars. As the reactions are reversible, we are unable
to discern whether the forward or backward reaction was
dominant without further data but their up-regulation means that
there was a considerable amount of converting occurring.

The next significantly enriched pathway, carbon fixation in
photosynthetic organisms, has several genes that are also present
in pyruvate metabolism, glycolysis and the pentose phosphate
pathway. The genes that exhibit varied differences in gene
expression are the ones associated with pyruvate metabolism.
During the experiment, malate dehydrogenase (decarboxylating)
up-regulated the reaction that turns malate into pyruvate. In
contrast malate dehydrogenase (oxaloacetate-decarboxylating) was
down-regulated. The preference for the decarboxylating reaction
could be due to the reactant, NADP, being used in other reactions,
such as photosynthesis. Notably, the pyruvate metabolism pathway
was not significantly enriched as a gene set however it only shares
seven reactions with the carbon fixation in photosynthetic
organisms pathway and is directly linked to 13 other pathways.
It is likely that the process of oil accumulation uses the reactions in
the carbon fixation pathway as a whole, instead of pyruvate
specifically.

The remaining significantly enriched pathway was unexpectedly
the methane pathway. Upon further investigation, it was
discovered that many genes expressed in the methane pathway
were also expressed in other pathways. For example, both
glycolaldehyde dehydrogenase (ALDA) and 6-phosphofructoki-
nase 1 (pfkA) are in the pentose phosphate pathway while (2R)-3-
sulfolactate dehydrogenase (comC) is also found in the cystein and
methionine metabolism pathway where it takes part in reactions
that make pyruvate. The overlap of genes between gene sets can
cause problems with detection, especially if some of the genes has a
particularly strong signal. In this case, the genes in the pentose
phosphate pathway have strongly defined differences in gene
expression that may be masking the difference in gene expression
of other genes. Although it is fairly reasonable for some genes to be
present in multiple pathways, it should be checked if the
overlapping genes are making biased contributions. The effect is
further amplified in our data as the number of annotated genes are
few.

Enriched Pathway Plots

To better visualize the results from GSEA, we plotted the
enriched pathways as graphs (Figure 1). The graph’s nodes were
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The enriched pathways identified using GSEA and their enriched p-values. There were 9 pathways enriched out of 39 pathways tested.

set up as compounds as we wanted to focus on compounds and
reactions instead of the usual approach using genes. As such, the
glycerolipid pathway was added so that the key compound, TAG,
was included. The graph consisted of 353 compounds and 661
reactions. Most compounds were unique to their pathway but
there were 18 compounds that were found in two pathways and 13
compounds that were found in three pathways. These included
pyruvate, oxaloacetate and ADP and were found in glycolysis,
pentose phosphate metabolism and other related processes.

Once the graph was constructed, the shortest path between
glucose and TAG was calculated. As the graph was created using
pathways that showed a significant relationship with oil accumu-
lation, it can be considered a hypothesized path of metabolic
reactions that metabolises glucose to produce TAG. We found two
shortest paths with a length of 11 compounds (Figures 2 and 3);
the conventional path found in KEGG contains 15 compounds.
Our two shortest paths were very similar to each other, mainly
differing between the use of glycerol or glycerone. Although it is
possible to produce TAG in a smaller number of steps, it is
unknown where the reactions take place in the cell. If the proteins
are located close to each other, the path that was identified could
be how Fistulifera sp. strain JPCC DA0580 produces TAG from
glucose. Future experiments on metabolite quantity could also
provide adequate evidence for the hypothesis.

In the final step, we showed that the genes along the
hypothesized paths were up-regulated by plotting the direction
of the difference in gene expression on the edges of the graph.
When viewed next to each other, the direction of the difference in
gene expression at each time point shows which reactions change
from up-regulation to down-regulation and vice versa (Figure 4).
We observed that genes along the identified shortest paths were
up-regulated during the 60 hours of the experiment. However, the
up-regulation occurs in sections along the path instead of being
concerted. This suggests that the gene expression of a phenotype
does not change for every gene along the reaction path at a single
time point. Instead, the change in gene expression occurs in
sections which eventually leads to the up-regulation of the full
path. This visual presentation also brings to attention the
possibility of time lag effects where there could be little difference
in expression in earlier time points and not others. As our method
does mnot address this issue directly, the testing may be
underpowered at detecting true signals. The testing could be
improved by applying a restriction on the difference in fold change
between time points or restricting time points to those where fold
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Figure 1. The graph of the significantly enriched pathways found using our GSEA method combined with the glycerolipid pathway.
The full network contains 307 compounds and 558 reactions but compounds without reaction data were not drawn to reduce clutter. The graph is
plotted with compounds drawn as nodes and reactions drawn as edges. The compounds are colored by their pathway membership; compounds
belonging to 2 or more pathways are a mixture of the pathway colors. There were 7 compounds belonging to three pathways, 15 compounds
belonging to two pathways and 117 compounds that were unique to their pathway. Many of the shared compounds are concentrated in the center
of the graph and are related to glycolysis and pentose phosphate metabolism.

doi:10.1371/journal.pone.0107629.g001

change differences exist. However, this would require more
knowledge about the organism than we currently have available.

Conclusion

GSEA is a useful tool for exploring data when there is a
preconceived area of interest such as oil accumulation for our data.
The way it can be used to analyse data more broadly is a big
advantage when the data set is limited. As the cost of high-
throughput sequencing experiments is decreasing, investigations
with new organisms and time-course experiments can be utilized
more often. For our expression data, we wanted to include time as
a variable in our analysis so we modified GSEA to use it instead of
removing it by averaging them. Although the number of replicates
in our data caused issues with accurately isolating experimental
and biological effects, we were still able to extract meaningful
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information through our use of resampling and GSEA. Being able
to keep the time variable is an important step for future
investigations. Drawbacks observed during our analysis included
overlapping elements between gene sets, the reliance on pre-
existing knowledge of our organism and as a consequence, the
inability to assign meaning to unannotated data and improve our
method’s accuracy.

The results from GSEA were then graphed to produce a clear
visualization of the results that is easier to interpret and grants
access to other approaches for understanding the data. By plotting
the direction of the difference in gene expression on our graph, we
were able to observe the change in direction of the difference in
gene expression as they occurred during the experiment. Using
graphs in this way makes existing graph tools available, extending
the investigation beyond the initial GSEA. In this analysis we
looked at the shortest path of reactions between two compounds
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but betweenness indexes can also be investigated to identify
bottleneck compounds that are important in the network. These
methods can be used to help generate hypotheses as a basis for
further investigations.

Methods

Data preparation

The expression data was gathered from Fistulifera sp. strain
JPCC DA0580 grown in two substrates; the treatment substrate
was artificial sea water where oil accumulation took place, and the
control substrate was a 10 fold dilution of the treatment substrate
where oil was not accumulating [19]. The RINA-Seq data was
obtained at four time points (0, 24, 48 and 60 hours) when
Fistulifera sp. strain JPCC DAO0580 was grown in the two
substrates. Sequences with RPKM values of 0 for all time points
were discarded leaving a remainder of 22,550 sequences. We used
Ssearch with MIQS [20] to annotate the sequences so that 7,822
sequences were annotated with a KEGG Orthology identifier (K
ID). The unannotated sequences either did not have a match in
the KEGG database or the match did not have a KEGG
Orthology identifier. The gene expression of the annotated
sequences were then averaged if their matching K ID was shared
among several sequences, by using the following equation

;i

RPKM, = M

Part A.

= Glycerol

¢ 1-Acyl-sn-Glycerol 3P

Phosphatidate Oue,

o .
Triacylglycero

D-Xylulose 5P g™

F Glycerone

=0 1,2-Diacyl-sn-Glycerol

Gene Set Enrichment Analysis on Time-Course Data

where RPKM., is a vector of RPKM values at each time point for
K ID x, v; is the i th vector of RPKM values for K ID x and n is
the number of RPKM vectors with K ID x. For our data, this
resulted in 2,873 RPKM,’s where each vector had a length of four
that corresponded to the four time points, 0, 24, 48 and 60 hours.

As RNA-Seq data often have a disproportionate amount of
small RPKM values, they are usually not normally distributed,
even with the use of log transformation. The resulting fold changes
calculated from them can follow the same non-normality. We
corrected the RPKM values by implementing a threshold of 0.1 to
minimize the influence of small read numbers [21]. This was done
using the sSRAP R package which also performed a log transform
during the normalization process [22]. The normalized RPKM
vectors, SRAP,, were then used to calculate the log fold change for
each K ID x by the following equation

FC,.=sRAP

Xtreatment

SRAchonlral (2)

where FC, is the log fold change vector of K ID x, SRAP,
the vector of control RPKM values of K ID x and sSRAP
is the vector of treatment RPKM values of K ID x.

is
control

Xrreatment

Gene Set Enrichment Analysis

We first established the gene sets which would be used in the
analysis. Generally, gene sets are lists of gene identifiers that share
an attribute of interest. For our analysis, these were K IDs divided
into each metabolic pathway in the KEGG database. The

B-D-Fructose 6P

a-D-Glucose 6

@]
D-Glucose

Figure 2. The first shortest path found in our graph between glucose and triacylglycerol using breadth-first search. A. This is the
detailed view of the path showing the names of the compounds involved at each step. B. The shortest path is highlighted in green on the full graph
to show its location. In contrast, the path presented in KEGG is highlighted in orange. The shortest path contains 11 compounds while the KEGG path

contains 15 compounds.
doi:10.1371/journal.pone.0107629.g002
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Figure 3. The second shortest path found in our graph between glucose and triacylglycerol using breadth-first search. A. This is the
detailed view of the path showing the names of the compounds involved at each step. B. The shortest path is highlighted in green on the full graph
to show its location. In contrast, the path presented in KEGG is highlighted in orange. The shortest path contains 11 compounds while the KEGG path

contains 15 compounds.
doi:10.137 1/journal.pone.0107629.g003

pathways we chose to investigate were associated with carbohy-
drate (15 pathways), energy (8 pathways) and lipid metabolism (17
pathways). The Secondary Bile Acid Biosynthesis gene set was
removed as our data contained no data for it, thus our analysis
used a total of 39 gene sets [23] [24]. Importantly, these 39 gene
sets included the glycolysis and glycerolipid metabolic pathways
which contains the compounds central to oil accumulation,
glucose and TAG.

The following steps of the algorithm were carried out for each
gene set which produces a test statistic and p-value that describes
the significance of the gene expression of the gene set compared to
the overal gene expression.

Step 1: Create a matrix of fold change data of genes
present in gene set 5.

FCyy FCyns FC, FC,
FCMS——:( %0 24 x,48 x,60>

3)

where FCM is a n x 4 matrix, s denotes gene set s, 1 is the
number of genes in the set and 4 is the number of time points in
our data. Each row of FCM; corresponds to a fold change vector
FC, (Equation 2). This vector consists of F'C,, which is the fold
change of K ID x at time ¢. In our data, # takes a value from time
point 0, 24, 48 or 60 (hours).
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Step 2: Calculate the column mean of FCM,.

iFCio  EviFCina  EIyiFCigg ZViFCi,60>

- ( Iy,
FCI\’Lv B n n n n (4)

where FCMj is a column mean vector of matrix FCM; (Equation
3). This is used to represent the fold change of gene set s through
the 4 time points.

Step 3: Resample n rows from the whole fold change
data matrix to construct a new matrix, RSM;. The resulting
matrix, RSM;, is the ith matrix created from randomly resampling
fold change vectors without replacement [25]. It has the same
dimensions as FCM; (Equation 3) but the rows of RSM; do not
necessarily overlap with rows in FCMj.

Step 4: Calculate the column mean of RSM;. The
column mean RSM; is used to represent the background fold
change of n genes and is calculated in a similar manner as
equation 4.

Step 5: Repeat steps 3 and 4 6000 times. The RSM; from
iteration { are stored as rows in a 6000 x 4 matrix, ECD.

Step 6: Calculate the enrichment p-value of gene set s
by using an empirical cumulative distribution derived
from the 6000 x 4 matrix ECD. The empirical cumulative
distribution is defined by the following function
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A. Time 0 hours

C. Time 48 hours
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D. Time 60 hours

Figure 4. These graphs highlight the fold change direction of known genes in our data in response to oil accumulating conditions
at each time point. A gene involved in a reaction is represented by an edge while the compounds in a reaction are represented by the nodes.
Genes that were up-regulated during oil accumulation are drawn as green edges while red edges represent genes that were down-regulated. Genes
for which data was unknown were drawn as gray edges. The compounds colored in black are part of the first shortest path found between glucose
and triacylglycerol (Figure 2). The edges that connect those compounds shift from red to green during the 60 hour course of the experiment.

doi:10.1371/journal.pone.0107629.g004

Fs(u) =

Iy l(ECD;p <1y, ECD; 4 <uipg, ECD; 48 <1143, ECD; 60 <ugp) ()
n

where F; is the empirical cumulative distribution of gene set s, U is
a fold change vector with a length equal to the number of columns
of ECD (Step 5), u; is a value in u at time ¢ which takes the values
0, 24, 48 and 60 in our data, [ is the indicator matrix, ECD; , is the
fold change value of the ith row at time # in the ECD matrix and n
is the size of gene set 5.

The enrichment p-value of gene set s is calculated by
substituting u with FCMj (Equation 4).

The algorithm detailed above was implemented in R [22], and
the empirical cumulative distribution and enrichment p-value was
calculated using the mecdf package [26].
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