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In this work, we focus on two fundamental problems of toxicogenomics using the data provided by the Japanese
toxicogenomics project. First, we analyze to what extent animal studies can be replaced by in in vitro assays. We show
that the probeset-level representation achieves poor agreement between in vivo and in vitro data. We present a data
collapsing approach to resolve poor data agreement between in vivo and in vitro data, as measured by GSEA analysis
~and AUC scores. Second, we address the difficult problem of predicting DILI using available microarray data. Using a
binary classification framework, our results suggest that rat in vivo data are more informative than human in vitro data

- to predict DILL

Introduction

In the field of toxicology, animal studies and in vitro experiments
are frequently used as surrogates for human studies even though
they have shown poor agreement so far. It is still unclear how
the results obtained from one animal species, such as rats, can
help important biomedical research areas for humans, such as the
prediction of drug-induced liver injury (DILI). This work is an
attempt to address both issues, using the toxicogenomics data set
provided by the Japanese toxicogenomics project.!

First, we analyzed to what extent animal studies can be
replaced by in in vitro assays. We compared lists of differentially
expressed probesets between rat in vivo and rat in vitro data, and
found poor agreement between the two. This confirmed previ-
ous studies suggesting that probeset-level analysis has major
limitations, and motivated us to consider higher levels of data
abstractions. Thus, we present a data collapsing approach which
improves the agreement between in vivo and in vitro data. We
collapsed probesets and evaluated the in vivo—in vitro agreement
using Gene Set Enrichment Analysis (GSEA). We also collapsed
time points and evaluated the in vivo—in vitro agreement using
the binary classification framework.

Second, we addressed the problem of predicting DILI using
available microarray data. DILI is the primary cause for the failure
of drug candidates during clinical trials, and for the withdrawal
of drugs from the market. Because of the potentially dangerous
adverse effects of DILI, and because of its cost for the healthcare

system and the pharmaceutical industry, the study of DILI has
become an important research area in drug development.?® In
particular, the ability to accurately predict the DILI level of a can-
didate drug early in its development would be highly desirable.
To this end, it is necessary to pre-process and analyze the results
of toxicity assessments for various drugs and various conditions.

Intuitively, we would expect that unprocessed in vitro data
are too noisy for DILI prediction and would need to be collapsed
in order to achieve a better signal-to-noise ratio. In contrast, we
would also expect unprocessed in vivo data to contain informa-
tion that is important for predicting DILI. This information
could be lost during data collapsing, resulting in a lower predic-
tion performance. Our prediction results tend to confirm these
assumptions, and suggest to use unprocessed in vivo data simul-
taneously with collapsed in vitro data to improve the prediction
performance of DILL

Results

Comparison between in vivo and in vitro data. Probeset-level
differential expression analysis. We studied the similarity between
in vivo and in vitro data at the probeset-level using differential
expression analysis. Using empirical Bayes statistics, we tested
for agreement between in vivo and in vitro probesets at corre-
sponding time points. In our experiments, we obtained AUC =
0.56 for #,,,=3hand 7,,, =2 h, AUC = 0.56 at #,,,,, = 9 h and

vV
yr=8hand AUC = 0.60 att,,,=24hand #,,,=24h (Fig. 1).
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Gene set enrichment analysis procedure. Data overlap between
IVT and IVV, In our initial GSEA analyses, we assessed whether
expression patterns between the two data sets were significantly
similar by comparing in vivo and in vitro data at two time points

for each of the 131 drugs in both directions. For each
drug, there were four possible outcomes: all four
analyses were significantly enriched (p < 0.05), mean-
ing there was full agreement with expression patterns
between in vivo and in vitro data; three analyses were
significantly enriched, meaning there was full agree-
ment with expression patterns at one time point but
not the other; two analyses were significantly enriched,
meaning either there was full agreement at only one
time point or there was only agreement in one direc-
tion at each time point; and one analysis was signifi-
cantly enriched, meaning the expression pattern did
not agree except at one time point in a particular
direction. Of the 131 drugs analyzed, 55% were sig-
nificantly enriched in all four tests, 34% were enriched
in three tests, 10% were enriched in two tests and 2%
were enriched for 1 test.

To check that the lists were not simply correlated,
Spearman’s rank correlation was calculated between
cach pair of in vivo and in vitro lists. The correlation
coefficients were all under 0.25, indicating that there
is little correlation between the lists of fold changes
between in vivo and in vitro data.

Data overlap between IVT and liver function, and
IVV and liver function. For the GSEA analyses against
liver gene ontologies, in vivo and in vitro data were
compared with predefined lists of liver gene ontologies

at two time points for each of the 131 drugs. To assess whether
enrichment analyses against gene ontologies were similar between
in vivo and in vitro data, results were compared between in vivo
data at 2 h and in vitro data at 3 h, and in vivo and in vitro

data at 24 h. For each drug, there were two pos-

WVime=3hrvs VT time=2hr

sible outcomes: enrichment significance was the
same between in vivo and in vitro at the two time

15 T

¥ ¥

IVT log2 ratios

points; enrichment significance was the same
at only one of the two time points; and enrich-
ment significant was different across the two time
points. Of the 131 drugs analyzed, 50% had the
same enrichment results between in vivo and in
vitro at the two time points, 42% had the same
enrichment results at one of the time points and
8% did not share the same enrichment resules
at the two time points. This suggests that liver
related genes are highly overexpressed or under
expressed in response to 50% of the drugs in both
in vivo and in vitro conditions.

Comparison between in vivo fold changes and
in vitro fold changes. We analyzed the relation-
ships between in vivo fold changes and in vitro
fold changes. We plotted the in vitro fold change
(averaged over all drugs and all doses) as a func-

4.0 M«v’,:,u:»( s e e AR R RS SR b
4 ¢ log2 ratio e
= w abs(log2 ratio)
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3 tion of the in vivo fold change, at #,,, = 3 h and

tyr=2h (Fig. 2), and at #,,, = 24 hand ¢, =

| Figure 2. Invivofold changesat t=3 h v

tro fold changesat t-

24 h (Fig. 3).
Collapsing strategies for probesets and time
points. In order to improve the signal-to-noise

Systems Biomedicine

Volume 1 Issue 3



ratio of the data, we considered a data collaps- t = 24 hours
. . 1.5 T T 7
ing approach. Table 1 shows the various col- : :
lapsing strategics and their corresponding AUC
scores. The highest score AUC = 0.85 & 0.04 was 10 i:é 1 1 11
achieved when using gene-level representation, BH e gié z IR Sonend!
absolute fold changes, and average values over ] st 7"
time points. o 05}
In Figure 4, we show the ROC curves for three %
data collapsing strategies. All three approaches | &
use absolute values. The blue curve corresponds 2 oo} 06 ]
to the probeset level and time series integral strae- | g
egy (AUC = 0.79). The green curve corresponds ‘;‘5’
to the gene level and time series integral strategy | £ .05 :
(AUC = 0.84). The red curve corresponds to the
optimal strategy: gene level, time series average
(AUC = 0.85). -1.0F L
Correlation matrix analysis. We used the cor- ¢ fold change
relation matrix distances to assess the agreement . = abs(fold change)
between in vivo and in vitro gene expression data. 53 ) 3 0 i 2 3
Table 2 shows the top ten genes which show the In vivo fold change
most similar behaviors between in vivo and in
vitro conditions. . - o
Predicting drug-induced liver injury in | Figure 3. In vivo fold changes at t = 24 h vs, in vitro fold changes at t = 24 h.
humans. We considered the DILI prediction
problem as a binary classification of “Most DILI”
against “Less DILI or no DIL]L” We used two support vector  Table 1. Data collapsing strategies and their AUC scores
machine classifiers and evaluated their classification performance . Collapse Collapse Collapsing ~~ Absolute  Average
using a 10-fold cross validation. Tables 3 and 4 show the AUC  probesets  time points *  strategy values . AUC
scores of the linear SVM and the RBF kernel SVM, respectively. False False First False  0.51+0.04
. . False False Last False  0.51+0.04
Discussion False True Integral False 0.52+0.05
Comparison between in vivo and in vitro data. Probeset-level dif False True Average False  052+004
Jerential expression analysis. The results show that predicting dif- ~ True False First False 0.52+0.05
ferentially expressed probesets in vivo using in vitro experiments is - True False last ~ False  051+006
a difficult task. We have AUC = 0.56 for the first two pairs of time True True Integral False  0.52+0.06
Points (#,,=3hand t]VT=.2 h,and 7, =9hand tIV'T= 8h), WbiCh : True True Average . False 0,53;‘1 0.06
is close to random prediction (AUC = 0.5). There is only a slight False False i R
improvement at #,,,,,= 24 h and tr= 24 h, with AUC = 0.60. s — e R
Overall, the empirical Bayes statistics shows that the agree- Fake False e Tue 9412004
ment between in vivo and in vitro is poor, at the probeset-level, ~  False Tue  Integral True =~ 079+003
with respect to differential expression analysis. This can be _False  True  Average True 0812003
explained by the discrepancy between its expressions in the in True False First True 0.77 £ 0.03
vivo and in vitro conditions for each biological process. This True False last True 0744005
can also be caused by the l{mltat}ons of a probeset-level ana%ysm. True True Integral True 0.84 £ 0.04
Therefore, we need to consider higher levels of data abstractions, e e o T
True - True Average True. = 0.85%0.04

and compare the in vivo and in vitro data at the gene level.

Gene set envichment analysis procedure. Although the original
GSEA concept used signed fold change values, we decided to
perform GSEA on absolute fold changes due to the observations
in Figures 2 and 3. Our GSEA results show that most highly
expressed or under expressed probe expression in vitro respond
to drugs similarly in an equivalent in vivo experiment and vice
versa. Even though we didn’t find universal agreement among
all time points or direction of enrichment, more than half of the
drugs caused the same probes to show extremes of expression

www.landesbioscience.com
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values. This may be due to the different number of samples
between the in vivo and in vitro data sets, leading to some tests
being enriched in one direction but not the other. If the analyses
only involved interest in highly over or under expressed genes, in
vitro data can be an adequate model for in vivo data for rats. We
also showed that in gene ontology enrichment analyses, in vitro
data only gives the same results as in vivo half the time but that
the confidence of the results may be dependent on the time point.
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True positive rate

probeset vs gene, integral (time series) vs average identical signs, while the second group contained
¥ T

genes with correlation coefficients of opposite
signs. Then, we compared the gene ontologies for
these two groups of genes. However, we did not
find any distinguishable trend between the two
sets of genes using gene ontology. Our observa-
tions may be due to experimental variance or fur-
ther biological variance which we could not detect.

Collapsing strategies for probesets and time points.
In order to improve the signal-to-noise ratio of
the data, we also considered various data collaps-
ing strategies. Table 1 shows the details of these
strategies. “Collapse probesets” is set to “True”
when probesets values are averaged to their cor-

mas5 integral(t) gene, AUC =0.84 + 0.04

mas5 integral(t) probeset, AUC = 0.79 + 0.03

responding genes values, “False” otherwise.
“Collapse time points” is set to “True” when each
time series is collapsed to a single value. In that
case, “Collapsing strategy” specifies different time

~ mash average(t) gene, AUC=0.85 = 0.04

0.2 04 0.6 08

10 collapsing strategies. With “Integral,” we com-
pute the signed integral of the time series. With

“Average,” we compute the average value of the
time series. “Collapse time points” is set to “False”

when each time series is reduced to a single time

False positive rate
F|g ure 4‘ R curOéys‘fbyif th ree data psmg ‘,’s‘t'fatégi‘e"'s:‘ probes: tlevel + i n : : ’
integral (blue), gene level + time series integral (green) and gene level + tim

_average (red).

point (i.c., all other time points are discarded). In

Table 2. Genes which behave similarly in vivo and in vitro, and their
corresponding distance measures

Comparison between in vivo fold changes and in vitro fold
changes. Figures 2 and 3 show the in vitro fold change (averaged
over all drugs and all doses) as a function of the in vivo fold
change. These plots show that while there is no obvious sign cor-
relation between in vivo and in vitro data, there is a correlation
between their absolute values. In other words, even if a gene has
a highly positive fold change in vivo, we cannot always expect a
highly positive fold change in vitro. However, a gene with a high
in vivo absolute fold change tends to have a high in vitro absolute
fold change as well.

To discern a biological reason behind our observations, we
divided genes into two groups: genes that are congruent at signed
values and genes that congruent at absolute values. More spe-
cifically, for each gene, we computed two correlation coefficients.
The first one measured the correlation between the gene’s fold
changes in vivo and in vitro, while the second one measured
the correlation between their absolute values. After filtering sig-
nificant correlations (p < 0.05), we created two groups of genes.
The first group contained genes with correlation coefficients of

that case, “Collapsing strategy” specifies which
time point of the time series is considered: the first
or the last time point. “Absolute values” is set to “True” when we
consider absolute fold change values, “False” when we consider
the signed values.

For all strategies using signed fold change values, the corre-
sponding AUC scores fall between 0.51 and 0.53. This confirms
what we observed in Figures 2 and 3: the sign of a gene’s fold
change in vitro cannot be used to predict its sign in vivo. Thus,
our following strategies use the absolute fold changes only. When
we collapse probesets into genes (from 0.72 to 0.77) and time
series into single values (from 0.72 to 0.79), the AUC scores
improve. This is expected, as averaging helps removing the mea-
surement noise and leads to better signal to noise ratios.

As we explained earlier, probeset-level fold changes were col-
lapsed into gene-level fold changes by taking the average value.
Another possible strategy consists in considering the maximum
value instead, as noise in gene expression measurements tend
to occur in probesets with low expression values. However, our
experiments show no improvements with respect to AUC scores.
For example, we considered the best two strategies in Table 1,
which achieve AUC scores of 0.84 and 0.85 when considering
the average fold change values. When considering the maximum
values instead, the same strategies achieve 0.83 and 0.84, respec-
tively. Therefore, when collapsing probesets into genes, we chose
to focus on average values.

Surprisingly, we also observe that when collapsing a time series
into a single value, computing a simple average value is slighty
better than computing the integrals (AUC = 0.81 and 0.85 for
the average, AUC = 0.79 and 0.84 for the integral). This result
suggests that the time information is also useless, and that we
can assume time independence when comparing in vivo and in

4 Systems Biomedicine Volume 1 Issue 3



Table 3. Average AUC scores of the linear SVM for the DILI prediction problem

Collapse probesets Collapse time points Absolute values

Human in vitro

Ratinvitro Ratin vivo repeated dose Rat in vivo single dose

False False False 0.52 +0.17 0.52+0.14 0.66 + 0.14 0.61+0.12
False True False 0.52+0.13 0.54+ 0,15 0.56 £ 0.1 0.58 +0.17
True False False 0.50 +0.21 0.47 £0.18 0.64+0.13 0.56 +0.20
True True False 0.49 £ 0.14 0.54£0.13 0.58 +£0.12 0.50 £0.16
False False True 0.59+0.08 0.58 +0.08 0.61£0.17 0.67 + 0.15
False True True 0.5840.12 0.55 +0.20 0.52+0.19 0.55+0.10
True False True 0.56 + 0.07 0.50 + 0.16 0.55+0.18 0.62 +0.18
True True True 0.59+0.10 0.49+0.12 0.59+0.15 0.63 +£0.17
Table 4. Average AUC scores of the Gaussian SVM for the DILI prediction problem
Collapsek probesets  Collapse time points  Absolute values - Human in vitro. Ratinvitro Ratin vivo repeated dose  Rat in vivo single dbsé
False False False 0.49 £ 0.19 0.51+0.21 0.65 + 0.11 0.61 +£0.14
 False True False 049%010  0.58:x0.12 0.58 £0.10 10.63+0.23
True False False 0.46 £ 0.14 0.45+0.11 0.65£0.14 0.58 £0.13
True - TrQe False 0.50:+0.23 0.55+0.19 0.61+£0.13 - 0.52+0.77
Falsé False True 0.59 + 0.17 0.50 £ 0.09 0.63 +0.15 0.66 + 0.11
Iéalse True True 0.60+0.20 0.55+£0.18 0.56 £ 0.21 0.51 + 0,1’3
True False True 0.61+0.21 0.47 £0.15 0.59+0.16 0.64 £ 0.14
True True True 0.60 £0.18 0.49 £ 0.14 - 0.62+£013 0.59 +0.13

vitro data. Overall, the best strategy uses gene-level representa-
tion, absolute fold changes, and average values over time points.
The corresponding AUC score is 0.85 + 0.04.

Predicting drug-induced liver injury in humans. Table 3
shows the classification performance of the linear SVM for dif-
ferent data collapsing strategies and different data sets. Overall,
AUC scores tend to be low, which shows that predicting DILI
using expression data are a difficult problem. We notice that the
rat in vivo repeated dose and rat in vivo single dose data reach
high AUC scores when no data collapsing is applied (0.61 < AUC
< 0.67). However, collapsing either the probesets or the time
points tend to decrease the AUC scores. This suggests that in
vivo data might contain important information related to DILI
prediction that is partially lost during data collapsing.

In contrast, the human in vitro data achieves its lowest AUC
scote when no pre-processing is applied (AUC = 0.52). Collapsing
either the probesets or the time points tends to increase the AUC
scores, although not as high as with the rat in vivo data. This sug-
gests that even though the goal is to predict human DILL, using
in vivo data from rats is more informative than using in vitro
data from humans. In contrast, the rat in vitro data achieves the
lowest AUC scores. This is not surprising as it combines the two
limitations of the three other data sources: it is not human, and
it is not in vivo.

Table 4 shows the AUC scores of the RBF kernel SVM. We
observe that the highest AUC scores are achieved with the in
vivo data, which confirms our similar observation with the lin-
ear SVM. But overall, the classification performance is not bet-
ter than that of the linear SVM. The highest score of the kernel
SVM is AUC = 0.66, compared with 0.67 for the linecar SVM.

www.landesbioscience.com

This is caused by an overfitting problem: when dealing with high
dimensional problems (on our case, few hundreds samples vs.
tens of thousands of features), additional model complexity is not
desirable.® These results suggest that improvements in prediction
performance can be achieved by using appropriate gene filtering
strategies,” and by combining unprocessed rat in vivo data with
processed (collapsed) human in vitro data.

Materials and Methods

Data set description. We used the data set provided by the
Japanese toxicogenomics project.! Using Affymetrix arrays, the
effects of 131 drugs on the liver have been measured both in
vivo (using rats) and in vitro (using human and rat hepatocytes).
Among them, 101 drugs were assigned into one of the following
categories, according to their FDA-approved drug labels: Most
DILI concern, less DILI concern, or no DILI concern. Each
drug has been tested in various conditions (time points and drug
dosages), and the whole data set contains approximately 20,000
arrays. The raw CEL files have been processed using MAS5.%
1% For the comparison between in vivo and in vitro data, three
drugs (adapin, carbon tetrachloride, and chlorpromazine) were
ignored because of missing values.

Statistical testing analysis. We applied empirical Bayes sta-
tistics (hetp://bioinfwehi.edu.au/limma/) to test for agreement
between in vivo and in vitro probesets at corresponding time
points. In the in vivo data set, we identified which probesets were
differentially expressed. In the in vitro data set, we computed the
p values obtained from statistical testing. If the in vitro experi-
ments were representative of the in vivo measurements, then these
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in vitro p values would be low when the corresponding probesets
are differentially expressed in vivo, and high otherwise.'*'? This
is a binary classification problem, and therefore, the agreement
between in vivo and in vitro data can be measured by the AUC
score. If AUC = 1, then the in vitro data can be used to predict
which probesets are differentially expressed in vivo. IFAUC = 0.5,
then in vitro experiments are useless to predict them.

Gene set enrichment analysis procedure. Data overlap
between IVT and IVV. As part of our data exploration, GSEA
was used to compare the overlap between in vitro and in vivo
expression data, and confirm that unsigned expression patterns
between them are significantly similar. GSEA was initially used
to enrich sets of expression data with biological functions” by
comparing a ranked list from the expression data with a pre-
defined list associated with the function of interest. During the
analysis, GSEA compares the location of the elements in the pre-
defined list with those in the ranked list, calculating the statisti-
cal significance of the total representation of the predefined list
within the ranked list. The test statistic calculated determines
whether the predefined list is enriched within the ranked list or
not. The GSEA script used here was downloaded from the Broad
Institute (www.broadinstitute.org/gsea). Related genesetlevel
based approaches include.”*

The analyses compared in vitro and in vivo using absolute
ranked lists of probe fold change values (i.e., log, ratio). To keep
the run time of the analyses reasonably low, only the top 1% of
the lists were used as predefined lists. As a result the predefined
lists are approximately 200~300 probes in length. The predefined
lists were then enriched against the full list of the opposite experi-
mental condition. As the goal of this data exploration was to see
similarities between expression patterns, expression data was used
regardless if they were significantly differentiated or not. Thus,
an example enrichment analysis consisted of a predefined list of
the top 1% absolute fold change in vitro data at time 2 h between
control and acarbose, and a ranked list of all absolute fold change
in vivo data at time 3 h between control and acarbose. GSEA was
performed at two time points, 2 h for in vitro and the equivalent
3 h for in vivo, and 24 h for both in vitro and in vivo; and in both
directions, in vitro data as the predefined list and in vivo data as
the ranked list and vice versa. In total, four GSEA analyses were
performed for each of the 131 drugs.

The expression data was normalized using MASS in the limma
package’® in R 2.15.1.7 Due to the low number of replicates, fold
change was calculated by combining control and low dosage into
condition one, and medium and high dosage into condition two.
The lists detailed above were created from the MAS5 output as
described and used in the GSEA script. The output is an enrich-
ment score and the associated p value. A p value less than 0.05
indicates that the top 1% fold change probes are expressed simi-
larly, as a set, between in vivo and in vitro data.

Data overlap between IVT and liver function, and IVV and
liver function. Following the original usage of GSEA, we also
enriched the expression data against a biological function; fol-
lowing the main theme of the study, several liver functions were
selected using gene ontology. Our goal was to see if enrichment
analyses against gene ontologies would yield the same results in
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in vivo and in vitro data. AmiGO" was used to select 32 gene
ontologies associated with liver which was represented by at least
one probe in the data set. The 180 probes were ranked by the
total number of child nodes their gene ontology had. The result-
ing list started with the probes of gene ontologies that had no
child nodes and ended with the probes of gene ontologies with
the most child nodes. These predefined gene ontology lists were
then enriched against the full ranked lists in place of the top 1%
lists used previously. As per the previous analyses, four GSEA
analyses were performed for each of the 131 drugs.

Fold change analysis. From the raw CEL files, we extracted
the MAS35 probeset-level values using LIMMA. Then, we aver-
aged those values over biological replicates. We computed the
fold changes for each condition (drug, dose and time point), i.e.,
the log, ratios between the sample values and the corresponding
control values.

Data collapsing strategies. We collapsed probesets into genes,
by computing the average intensity of the probesets in each gene.
We also collapsed each time series by computing their average
absolute fold change. To evaluate our darta collapsing strategy,
we considered a binary classification problem where the top 1%
genes with the highest in vivo average fold change were defined as
true positives, and the remaining genes were defined as the true
negatives. The corresponding average in vitro fold changes were
used as prediction scores. When the collapsing strategy involved
absolute values, we considered the average absolute fold changes
instead of the signed values. The classification performance,
which reflects the agreement between in vivo and in vitro data,
was measured by the AUC. If AUC = 1, then the in vitro experi-
ments can be used to predict high in vivo fold changes. If AUC
= 0.5, then the in vitro experiments are useless to predict them.

Correlation matrix analysis. For a given gene, one way to
assess the agreement between its in vivo and in vitro expression
levels is to define a distance function between the two sets of
measurements. We used the correlation matrix distance.”?' For
each gene, we defined two correlation matrices characterizing the
gene’s responses to drugs in vivo and in vitro. If the Frobenius
norm of the difference between these two correlation matrices is
small, then the corresponding gene behaves similarly in vivo and
in vitro. When running downstream analysis of in vitro data, this
approach can be used to filter out inconsistent genes, and keep the
genes that show high correlation between in vivo and in vitro data.

Predicting drug-induced liver injury in humans. We con-
sidered the DILI prediction problem as a binary classification of
“Most DILI” against “Less DILI or no DILL” For each available
data source, we considered all DILI-annotated drugs and doses
with no missing data. The resulting human in vitro, rat in vitro,
rat in vivo repeated dose, and rat in vivo single dose data con-
tained 223, 303, 303, and 301 samples, respectively. Each sample
corresponds to a (drug, dose) pair. The probeset space contained
54,675 probesets for humans and 31,099 probesets for rats. The
gene space contained 20,026 genes for humans and 13,878 genes
for rats. We used the linear SVM classifier and RBF kernel SVM
classifier,”” and evaluated their classification performance using a
10-fold cross validation. In the case of the RBF kernel, we trained
a hard-margin SVM? (i.e., C = +).
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Abstract

kTax1 -binding proteln 1 (T axlbp]) negatlvely regulates NF «B by edltmg the’ ublqwty!atlon of target molecules by its
~ catalytic partner A20. Genetically engineered TAX1BP7—dch1ent (KO) mice develop age-dependent inflammatory

~ constitutions in multiple organs manifested as valvulitis or. dermatitis and succumb to premature. death. Laser capture
dissection and gene expression microarray analysis on the mitral valves of TAX1BP1-KO mice (8 and 16 week old) revealed
588 gene transcription alterations from the wild type. SAA3 (serum amylo:d A3), CHI3L1, HP, IL1B and .SPP1/OPN were
induced 1,180-, 361-, 187-, 122 and 101-fold respectively: WIF1 (Wnt inhibitory factor 1) exhlbtted 11-fold reduction. Intense
Saa3 staining and signifi icant I-kBa reduction were reconfirmed and massive infiltration of inflammatory !ymphocytes and
edema formation were seen in the area. Antibiotics-induced ‘germ free’ status or the additional MyD88 deficiency
significantly ameliorated TAX1BP1-KO mice’s inflammatory lesions. These pathologlca! condmons, as we named ‘pseudo-
infective endocarditis’ were boosted by the commensal microbiota who are usually harmless by their nature. This
experimental outcome raises a novel mechanistic linkage between endothehal mﬂammatlon caused by the ub:qumn
remodelmg immune regulators and fatal cardlac dysfunctlon ‘ . ;
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Introduction downstream kinases, which eventually culminate at the I-xB
kinase (IKK). IKK activates NF-xB via phosphorylation of
inhibitory I-xB proteins (primarily I-xBe), which leads to its
ubiquitylation and degradation by the 26S proteasome complex
and allows NF-kB to enter the nucleus. I-xB is induced by NF-xB
to function in a negative feedback loop that terminates NF-kB
signaling. Aberrant activation of NF-kB has been linked to several
pathological features such as allergic responses, autoimmune
diseases, septic shock, and carcinogenesis in a variety of organs [4].

In addition to I-xB, deubiquitinase A20 (also referred to as
TNFo-induced protein 3 or TNFAIP3) targets important signaling
intermediates upstream of I-kB to terminate NF-xB activation
[5,6]. A20 cleaves Lys63 (K63)-linked polyubiquitin chains on

The transcription factor NF-xB is essential for the regulation of
the innate and adaptive immune responses. NF-xB is activated in
response to a wide variety of stimuli, such as inflammation, DNA
damage, or nociception [1,2], and is involved in embryogenesis
and multiple tissue development [3]. The NF-xB family comprises
five proteins including RelA (p65), RelB, c-Rel, NF-xB1, and NF-
kB2, and their transcriptional activities are tightly controlled to
ensure their transient signaling in response to specific stimuli. The
NF-kB signaling cascade is usually triggered by sensor molecules,
such as toll-like receptor (TLR) family proteins. These proteins can
identify the presence of a wide range of microorganisms and then
transmit that information through phosphorylation relays to
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overlapping substrates, such as B3 ubiquitin ligase TRAF6 and
adaptor molecule RIP1, with the help of the substrate-specific
adaptor Taxl-binding protein 1 (Taxlbpl [7,8]). Taxlbpl
intrinsically regulates NF-kB by recruiting A20 to the target
molecules to remove their polyubiquitin chains, which play
important roles in their assembly into the IKK complex [8,9].
Deficiencies in A20 or Taxlbpl lead to uncontolled and
spontaneous systemic inflammation in mice as a result of
unchecked NF-xB signaling [8,10].

Tax1bpl was originally identified as a host cell factor that binds
to the encoded protein of human T-lymphotropic virus type 1
(HTLV-1), known as Taxl [7]. Taxl is a potent activator of NF-
kB and a major pathogenic factor in HTLV-1 associated diseases
(HAD), sach as HTLV-1 associated myelopathy (HAM) or
HTLV-1 uveitis (HU [11]), and adult T-cell leukemia (ATL
[12]). Tax! interrupts the ability of TaxIbpl to connect to and
recruit A20 to target molecules and thus evokes persistent NF-kB
activation [13,14]. Tax! also activates NF-xB by binding to the
NF-xB essential modulator (NEMO), a regulatory subunit of IKK
[15]. The aberrant activation of NF-xB in HADs can therefore be
attributed to Taxl, which leads to Taxlbpl dysfunction, over-
activation of IKK, or both. Epidemiological studies provide
support for a close link between HTLV-1 infection and HAD or
other inflammatory diseases such as Sjogren’s syndrome [16],
vascular dementia [17], and atherosclerosis [18]. Moreover, recent
accumulating evidence strongly suggests that several mutations in
the 420 locus are primarily responsible for the development of
Crohn’s disease, rheumatoid arthritis, systemic lupus erythemato-
sus, psoriasis and type 1 diabetes [19].

For research purposes, we established TAX7BPI-deficient (-KO)
mice, which display exacerbation of inflammation (characterized
as valvulitis and dermatitis) in an age-dependent manner in
addition to functional inadequacies manifested in growth retarda-
tion and premature death [8]. To elucidate the molecular
mechanisms underlying the manifestation of inflammatory symp-
toms and their link to premature or possible cardiac abnormalities
induced by TAXIBPI-deficiency, we performed a series of
pathological evaluations using 7TAX/BPI-KO mice: (1) laser
capture microdissection (LCM)- and gene expression microarray-
based profiling of the mitral valves, which was reevaluated using
real-time polymerase chain reaction (RT-PCR); (2) multiplex
cytokine and chemokine quantitation in sera on systemic
inflammatory constitution; (3) histochemical and electron micro-
scopic analyses of multiple pathogenic foci; and (4) antibiotic
treatments and cross experimentation with MyD88-deficient mice
[20] to examine the role of commensal microbiota in the
pathogenesis of TAXIBPI-KO mice.

From our experimental data, we conclude that systemic
inflammation and cardiac structural abnormalities in TAX1BPI-
KO mice originated from commensal microbiota, which are
usually harmless in nature. Furthermore, these results indicate a
potential risk to asymptomatic HTLV-1 carriers, which should be
addressed by further clinical research.

Table 1. Primer sequences.

acagcctctctggcatcg atgctcggggaactatgat #26

aaactgtgtaatagtcacgageag  cactecasac
tgtcegtegtggctatgac cctgcttcaccaccttcttyg

cgaccatgaatcgaataataca

doi:10.1371/journal.pone.0073205.t001
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Table 2.

gctaccaaactgga ccaggtagctatgg
L6 tataatcagga tactccagaa #6
CXCL? agactccagecacacactccaa tgacagcgcagctcattg #83
GAPDH  tcgaccatgaatcgaataataca tgcagctctecttcagteg #89
doi:10.1371/journal.pone.0073205.t002

Materials and Methods

Animals

TAXIBPI-KO mice having replaced their exon 17 region with
CMV-driven NEO gene in reverse orientation [8] and their wild-
type (WT) littermates as controls were analyzed throughout the
experiment. These strains are maintained as F9 or advanced
generations of G57BL/6CrSle or the original 129/+ Ter/Sy]Jcl.
MyD88 deficient mice are kind gifts from professor Hitoshi
Nakashima from Fukuoka University [21]. Homozygous
TAX1BPI-KO mice were crossbred with homozygous ApDES-
KO background to generate MyD88/TAXIBPI-KO mutants.
Fach of the targeted loci was evaluated by PCR. These mice
were bred and maintained under specific pathogen-free (SPF)
conditions at the animal facility of Oita University Faculty of
Medicine. All the mice related manipulations were performed
with protocols approved by the animal ethics committee at the
Oita University (Justified numbers, daily care, treatment and
euthanasia procedures).

Laser capture microdissection

Three mitral valves from 8 or 16 week old (-wk) male TAX1BPI-
KO and their WT littermates were collected by Arcturus XT laser
capture microdissection system according to a manufacture’s
directions.

RNA Isolation and gene expression microarray analysis

Total RNAs were purified from the mitral valves using RNeasy
mini kit (Qiagen). RNA quantity and purity were evaluated using a
NanoDrop 2000 (NanoDrop Technologies). All RNA samples
were labeled, linearly amplified by Low Input Quick Amp
Labeling Kit and RNA Spike-In Kit then analyzed with Whole
Mouse Genome Microarray Kit (Agilent). Signal intensities were
quantitated with laser confocal scanner and analyzed with Feature
Extraction software (Version 10.7.3.1, Agilent) and R statistical
package (Version 2.15.1). Probe set data were median-normalized
per chip. Empirical Bayesian method controlling for false
discovery rate (FDR: <3% and logFC >1.0 [22]) for comparison
of differentially expressed between TAXIBPI-KO mice and their
WT. Principal Component Analysis (PCA) for the systematic trend
examination, heatmaps by R Software and volcano plot analysis
were applied to identify the single mRNA differentially expressed
in TAX1BP1-KO mice (log2-fold expression change on the x-axis
and t test p values on the y-axis, negative log). Each dot represents
a single probe. The complete gene expression dataset can be
viewed in the Gene Expression Omnibus (GEO) repository
accession number GSE43932 (www.ncbinlm.nih.gov/geo/
query/acc.cgi*acc = GSE43932).

Quantitative real time-polymerase chain reaction
(RT-PCR)

Tagman quantitative RT-PCR was performed to validate a
subset of genes. Random hexamer-primed ¢cDNA templates were
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Figure 1. Elevated inflammatory profiles in the multiple organs of 7AX78P7-KO mice. Mitral valve tissues from either 8 or 16 week old (-
wk) TAX1BP1-KO mice or their wild-type littermates were collected by Arcturus XT LCM system and total RNAs were prepared by RNeasy mini kit
(Qiagen). Each cDNA pool was generated from the individual RNA sample and gene expression profiles were evaluated using Whole Mouse Genome
Microarray Kit (Agilent). A) Principal component analysis (PCA) by conditions was performed on R statistical package (Version 2.15.1) and represented
as a scatterplots of whole gene expression profiles of 8- or 16-wk TAX1BP1-KO mice (8WKO #1- #3 or 16wKO #1-#3, surrounded by red circles) and
their WT littermates (8WWT #1- #3 or 16WwWT #1-#3, blue circles). The PCA plot showed that samples clustered based on their genetic backgrounds.
Data represent n=12. Component % variance; PC1 =34.95%, PC2 = 19.48%. B) Heat map representation of differentially expressed genes in the mitral
valves from either 8- or 16-wk TAXTBP1-KO mice or their WT littermates. 588 genes were differentially expressed in TAX71BP1-KO vs. WT littermates
(P<0.03). Each column represents the expression profile of either the TAX7BP1-KO mice or WT littermates. Red and green colors indicate high and low
expression levels, respectively, relative to the mean (see color bar). €) Volcano plot analysis of microarray revealed that 588 probes were significantly
expressed more than 2-fold vs control. Red and green areas indicate significant increasing and decreasing changes in gene expression (p<0.03).
doi:10.1371/journal.pone.0073205.g001

synthesized from purified (RNAs ReverTra Ace®, TOYOBO). (Dako). DAB + Liquid (Dako) for positive staining and Mayer’s
The output of RT-PCR reactions were quantitated with Light- hematoxylin solution for counterstaing. Images were captured
Cycler® R 480 System (Roche). Primer sequences were listed in with BZ-9000 (KEYENCE). Mice whole eye sections were
Table 1. Each reaction was run in triplicate with endogenous examined with anti-T6BP antibody (ab22049, abcam). Anti-IgG
control GAPDH on the same reaction plate. (H+L), rabbit, goat-poly, DyLight 649 (KPL) was used as
secondary antibodies.
Multiple cytokine & chemokine quantitation
The 3-, 8-, 16- and 32-wk male TAXIBPI-KO and their WT Electron microscopy

littermates were anesthetized and an aliquot of serum (12.5 pl) For transmission electron microscopy (TEM), mitral valve,
from heart blood were collected (n = 5/groups). Quantitation of 23 atrioventricular node, sinoatrial node and papillary muscles of the
cytokines and chemokines was performed by a multiplex ELISA left ventricle of 8-, 16-, 60-wk male TAXIBPI-KO and their WT
system (Bio-Plex, BioRad) and analyzed by the Bio-Plex Manager littermates (n = 3/groups) were fixed with 2.5% glutaraldehyde/
Software 6.1 (Bio-Rad) with a five-parameter curve-fitting 2% paraformaldehyde in a 0.1 M cacodylate buffer (pH?7.4) for

algorithm for standard curve calculations. 3 hr or longer at 4°C. After a washing in the cacodylate buffer,
‘ specimens were postfixed in 2% osmium tetroxide in cacodylate

Immunohistochemistry buffer for 2 hr, washed with cacodylate buffer, dehydrated with
A standard avidin-biotin-peroxidase technique or hematoxylin ethanol and embedded in epoxy resin. Thin section specimens
and eosin (HE) staining were employed for Saa3 and I-xBa (80-90 nm) were then stained with uranyl acetate and lead cystate

staining or morphological observation of heart, liver and skin ~ and examined with TEM H-7650 (at 80 kV, HITACHI).

tissues of 8- or 16-wk male TAXIBPI-KO and their WT

littermates (n = 5/groups). Rabbit polyclonal anti-Saa3 antibody Western blotting

(ab59736, abcum), rabbit monoclonal anti-I-kBoa antibody Tissues from liver, heart, spleen, muscle, lung, skin, stomach
(ab32518, abcum) or control antibody for visualization of antigens and brain from WT BL6 were lysed with Co-IP buffer [23] and
with EnVision + System-HRP Labelled Polymer Anti-Rabbit equal amounts of protein solutions (20 pg/lane) were separated by
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Table 3. Gene symbol, gene description, fold change and p-value for all genes up-regulated by >>20-fold in TAX7BP7-KO mice.

Chemokine (C-X-C motif) ligand

oclizse “hemokin )
B ,13‘/{3‘lymphocyte‘chemo-attra’ctant

SLPI Secretory leukocyte
peptidase inhibitor

. C-type lectin domain

: famnly4 member d

TIMP1 Tissue mhtbxtor of
metaﬂoprotelnase 1

k ; Chemokme {C- C motrf) hgand

CLECAD/DECTIN2

Chemokine (C-C motif)
hgand 7

o "‘17/Thymus and ac atxon regulafed chemokme

SYMBOL DESCRIPTION Fold activation adj.P. Val
SAA3. Serum amyloid A 3 1179.5 : 0.006
CHI3LI Chitinase 3-like 1 361.0 0.006
Hp - : . Haptoglobin 187.2 0.007
IL1B Interleukin 1 beta 121.9 0.007
VSPP1/'OPN; - - Secreted phosphoprotem 100.7 B ! 0,006
o T/Osteopontm L : ’ ; .
CCL2/MCP1 Chemokine (C-C motsf) hgand 817 0.021
2/Monocyte chemotactic protein-1
domam famdy 81.0 0.005
. . 7. member a/Dectm~
SERPINA3G Senne (or cysteine) pept:dase 73.0 0.006
inhibitor, clade A member 3G
LN - . Lpocalin2 ' 653 0024
SAA1 Serum amylmd Al 0.024

001

. ,Lectnn, galactose bmd" g,
~ soluble ; 3/Ga|ectm~

LS3/GALECTING

SIRPB1A

adhesron molecule
wi {h homology to Lly

cCLs

S:gnal regulatory protem beta 1A

2 kr:e,!:ated?pyrotéih Alb

MEFV Mediterranean fever

ZMYND15

Zinc finger, MYND-type
containing 15

26.7

20.6 0.007

doi:10.1371/journal.pone.0073205.t003

SDS-PAGE and transferred to immobilion membranes (Millipore)
and incubated with primary antibodies, T6BP Antibody (sc-15274,
Santa Cruz) or anti-Tubulin antibody (ab6160, abcum) and
secondary antibodies, donkey anti-goat IgG-HRP (sc-2033, Santa
Cruz) or ZyMAX™ Goat anti-Rat IgG(H+L) HRP conjugate
(81-9520, invitrogen) and visualized with ECL Western Blotting
Detection System (GE Healthcare Lifesciences) and high-perfor-
mance chemiluminescence film.

Evaluation of physiological responses to LPS-stimulation

200 pg of Salmonella typhimurium lipopolysaccharide (LPS, Sigma)
i 100 pl sterile pyrogen-free saline were injected into the footpads
of TAXIBPI-KO or WT littermates (n = 4/groups). Tissue lysates
were prepared from eyeball and the expression of Taxlbpl, I-kBo

PLOS ONE | www.plosone.org

Statistical significance {p<<0.03) was calculated using the Empirical Bayesian method controlling for false discovery rate (FDR) <3% and logFC >1.0 on R statistical
package (Version 2.15.1). Fold change represents a comparison between mean normalized signal intensity for control (n=6) versus TAX1BP]-KO mice (n=6).

(anti-I-kBot rabbit mAb, #4812, Cell Signaling Technology) and
Tubulin were evaluated by western blotting. Total RNAs were
prepared from eyeballs of TAXIBPI-KO or WT littermates
(n=4/groups). Tagman quantitative RT-PCR was performed as
described above (See Table 2).

Sera from peripheral blood samples were collected 0, 6 and
12 hr after LPS injection and quantitated with Bio-Plex Pro™™
Mouse Cytokine 23-plex kit.

Enzyme-linked immunosorbant assay (ELISA)

The amounts of Saa3 and Cxcll3 Sera from 16-wk mice (n =5/
group) were measured with MOUSE SAA-3 ELISA KIT
(Millipore) and Mouse CXCL13/BLC/BCA-1 Quantikine ELISA
Kit (R&D Systems).
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Table 4. Gene symbol, gene description, fold change and p-value for all genes down-regulated by >5 fold in TAX71BP1-KO mice.

SYMBOL DESCRIPTION Fold suppression adj.P. Val

EFCAB2
FAM107A/DR

TSC22D3

MAP3K6/ASK2 Mitogen-activated protein 7.1 0.0212
kinase kinase kinase 6

TSC22D3

CNTFR Ciliary 53 0.0104
neurotrophic factor receptor

RXFP3 Relaxin family peptide receptor 3 5.2 0.0197

CYTL1 Cytokine-like 1 5.0 0.0099

Statistical significance {(p<<0.03) was calculated using the Empirical Bayesian method controlling for false discovery rate {(FDR) <3% and logFC >1.0 on R statistical
package (Version 2.15.1). Fold change represents a comparison between mean normalized signal intensity for control (n=6) versus TAX1BP1-KO mice (n=6).
doi:10.1371/journal.pone.0073205.t004

anti-Saa3 anti-l-kBa

120

Fold variation (W7: 1}

16wWWT 16wKQ

B EFCAB2

Fold varlation (WT: 1)

THwWwWT 16wKO

P<0.08,(Mann-Whitney Ustest, n=4/group)

Figure 2. Validation of genes and proteins identified their expression alteration in the mitral valves of TAX78P7-KO mice. RT-PCR
validation of genes identified their expression alteration in the mitral valves of TAX718P1-KO mice, A) SAA3 B) EFCAB2 respectively. Gray bar: TAX1BP1-
KO, black bar: WT. Mitral valve specimens were prepared from 16-wk TAX7BP1-KO mice or their WT littermates and stained by anti-Saa3 antibody (C
and D) or anti-l-kBa antibody respectively (E and F).

doi:10.1371/journal.pone.0073205.g002
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Kuptier cell hyperproliferation

Figure 3. Inflammatory properties in the multiple organs of
TAX1BP1-KO mice. The morphologic and functional alterations of the
environments of liver (A and B) and skin (C and D) were also examined
with HE-staining. Red and white triangles indicate accumulated
lymphocytes and Councilman bodies respectively.
doi:10.1371/journal.pone.0073205.9003

Endocarditis in TAX1BP1 Deficient Mice

Telemetric electrocardiogram (ECG)

Sixteen week old male TAXIBPI-KO or WT littermates with or
without antibiotic treatment (n = 5/group) were monitored with
telemetric electrocardiogram. Telemetric transmitter was implant-
ed into the back of mice under aseptic conditions and the muscle
layers and the skin were closed with resorbable sutures. Data were
acquired at least 72 hour after the implantation with a receiver
placed under the cage and a full-disclosure 72 hour recordings
were analyzed off-line and the P-Q) intervals were evaluated.

Antibiotic treatment

TAXIBPI-KO or WT littermate male mice were first raised
with the normal diets and water for 4 weeks, and then, antibiotic
group (n=5/groups) received ampicillin (1 g/L; Wako), vanco-
mycin hydrochloride {500 mg/L; Wako), neomycin trisulfate salt
hydrate (1 g/L; Sigma-Aldrich), and metronidazole (1 g/L; Wako)
in drinking water for 12 weeks [24]. The non-antibiotic controls
were equally raised and maintained except for antibiotics
treatment. Both groups of mice were maintained in flexible film
isolators under a strict 12-hour light cycle and fed an autoclaved
chow diet and tap water ad libitum. Germ free status was verified
regularly by ensuring negative cultures from mouse feces in three
media types: nutrient agar (Nissui), pourmedia sheep blood agar
M70 (Eiken), and Sabouraud agar (Nissui). Microbial colonies
were counted after incubation at 37°Ct for 48 hour (aerobes) or
72 hour (anaerobes). Both groups of mice were anesthetized and
sacrificed at the end of 16 wecks experimental period. Daily fluid
consumption, body weight, liver function (ALT, AST), renal

8-weeks of age

60-weeks of age

CL: Collagen layer  GD: Granule deposition
EC: Endothelial cell M®: Macrophage

ED: Edema NP: Neutrophil

FB: Fibrobfast PC: Plasma cell

FC: Fibrocyte TC: Teell

Figure 4. Massive infiltration of inflammatory cells causes severe tissue lesion in the mitral valves of TAX7BP7-KO mice. Electron
microscopy examinations on the mitral valves of 8-, 16- and 60-wk TAX7BP1-KO mice (A: 8wKO, and C: 60wKO) and their WT littermates (B: 8wWT
and D: 60wWT). See Figure S1 for details. Each panel was duplicated with colorized areas in specific cell types and abbreviated descriptions (Fig. 4A’
to 4D"). Abbreviations, CL: Collagen layer; EC: Endothelial cell; ED: Edema; FB: Fibroblast; FC: Fibrocyte; GD: Granule deposition; M®: Macrophage; NP:

Neutrophil; PC: Plasma cell; TC: T cell.
doi:10.1371/journal.pone.0073205.g004
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Figure 5. Enhanced expression of inflammatory genes after the LPS-stimulation to 74X78P7-KO mice. 200 ug of Salmonella typhimurium
lipopolysaccharide (LPS) in 100 pl sterile pyrogen-free saline were injected into a right footpads of TAX1BP1-KO or WT littermate mice. At the time 2,
6, 12, 24 and 48 hour post-injection (PT), each group of mouse were euthanized and tissues including serum, lymphocytes and eyes were collected.
A) LPS-triggered induction of Tax1bp1 in eye tissue was monitored. Ten ug of cell lysates from WT BL6 mice at 2, 6, 12, 24 and 48 hour PT of LPS were
probed with anti-Tax1bp1, -l-kBa and -Tubulin antibodies. B, C) Total RNAs of eye tissues from at 6, 12 and 48 hour PT of LPS to TAX7BP1-KO or WT
littermates and their untreated controls were prepared and the expressions of /L-6 and CXCLT were quantitated with RT-PCR. D, E) Sera from at 6, 12
and 48 hour PT of LPS to TAX1BP1-KO or WT littermates and their untreated controls were collected and the amount of 1I-6 and Cxcl1 were

quantitated with multiplex ELISA system (BioRad). Gray bar: TAX1BP1-KO, black bar: WT littermate.

doi:10.1371/journal.pone.0073205.9005

function (BUN), nutritional status (TG, GLU, TP) and spleen
weight (After 10% formalin fixation) were examined. Caecum
surface area was measured with Image J (NIH). In general, there
were no particular adverse effects on mice through antibiotic
treatment.

Statistical analysis

All numerical data are expressed as means &= SD. Statistical
significance was assessed by Student’s two-tailed t-test. In the case
of ELISA, Statistical analyses were performed by one-way analysis
of variance and Steel-Dwass test. Data were considered significant
when P<0.05.

Results

LCM- and gene expression microarray array-based
profiling of the mitral valves in TAX71BP1-KO mice and
reevaluation by RT-PCR and immunostaining

We have previously observed that the mRINA expression level
for several inflammatory cytokines, including IL-18 and TNFa,
increases in the cardiac and skin tissues of TAXIBPI-KO mice;
more importantly, these mice showed mitral valvulids and
premature death compared to their wild-type (WT) littermates.

PLOS ONE | www.plosone.org

However, the underlying mechanisms involved in these processes
remain unknown [8].

To date, information on variations in the levels of gene
expression in regions of the heart (more specifically, the mitral
valves) showing inflammation in 7TAXI/BPI-KO mice is still
lacking. This pathologic event is thought to be linked to premature
death, which might be brought on by cardiac failure. In the
current study, we employed LCM- and gene expression micro-
array-based techniques to obtain detailed information on the levels
of gene expression in organs showing pathological changes. Total
RNA was extracted from three independent tissue samples
obtained from the mitral valves of 8- or 16- week-old (-wk) male
(WT and TAXI1BP1-KO) mice by using LCM, which was
followed by total RNA extraction. Then, global mRINA expression
profiles were analyzed by an Agilent gene expression microarray.

Principle component analysis, using two principle components,
was conducted and the results were represented by a scatterplot
(Fig. 1A). The data showed that the results for all samples from
TAX1BPI-KO mice clearly deviated from those for control mice,
indicating detectable differences in the gene transcription patterns
of the two genetic backgrounds. A gene list was compiled on the
basis of normalization and statistical analysis (P<C0.03, logFC
>1.0). Using these criteria, alterations in 588 gene expression
profiles were identified. Unsupervised hierarchical clustering

September 2013 | Volume 8 | Issue 9 | e73205
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Figure 6. Amelioration of inflammatory valvulitis and conduction disturbance after the antibiotics treatment on TAX78P7-KO mice.
TAX1BP1-KO or WT littermate mice (male) were first raised with the normal diets and water for 4 weeks, and then, antibiotic treatment group (C, D, G
and H, n=5/group) provided ampicillin (1 g/L; Wako), vancomycin Hydrochloride (500 mg/L; Wako), neomycin trisulfate salt hydrate (1 g/L; Sigma-
Aldrich), and metronidazole (1 g/L; Wako) in drinking water for 12 weeks based on a protocal of the commensal depletion (Rakoff-Nahoum S., Cell
2004). The non-antibiotics controls (A, B, E and F, n=5/group) were equally raised and maintained except for antibiotics treatment. Each group of
mice were anesthetized and sacrificed at the end of 16 weeks experimental period and histochemical representatives of each group were displayed
with HE-staining (A to D) or anti-Saa3 immuno-staining (IS, E to H). I). Heart rhythms of 16-week-old TAX7BP1-KO treated with antibiotics over

12 weeks (male, n=5/group) were monitored with telemetric electrocardiogram (12-lead ECG). J) The average values of PQ-intervals were compared
with those of untreated TAX7BP1-KO mice and their WT littermates.

doi:10.1371/journal.pone.0073205.g006

analysis (Cluster 3.0; Stanford University) of the 588 genes resulted downregulated for a total of 24,000 genes (Fig. 1B). We then
in the separation of all TAX/BPI-KO from their paired WT applied volcano plot analysis to identify the differences in mitral
controls. In total, 428 probes were upregulated and 160 were valve mRNA expression in TAXIBPI-KO mice and the controls.
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Figure 7. Reduction of the Saa3 and Cxcl1 expression in the sera of TAX1BP1-KO mice after the antibiotics treatment. ELISA

quantitation of Saa3 (A) or Cxcl13 (B) of the sera on four groups were performed. Gray bar: TAX1BP1-KO mice, black bar: WT littermates (n = 5/group).
doi:10.1371/journal.pone.0073205.g007
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Figure 8. Splenic hypertrophy of 7AX78P1-KO mice and its cancellation by antibiotics treatment. Examinations on the spleen volume (A)
and the area of cecum (B) were performed. The average values of spleen volumes (C) and cecum areas (D) were displayed (n=5/group).

doi:10.1371/journal.pone.0073205.g008

The plot showed a log2-fold change in mRNA expression between
the two groups on the x-axis and the negative log of the t-test p-
values on the y-axis. Each gene was represented by a single dot.
Using the plot, we identified 588 probes that showed a more than

2-fold differential expression of mRINA when compared to the
controls (p<<0.03, Fig. 1C).

Tables 3 and 4 list the gene symbols, gene descriptions, fold
changes, and p-value for all genes upregulated by more than 20-
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Figure 9. Cancelation of valvulitis in the MyD88/TAX1BP1 double-KO mice. The HE-staining (A, B) and immunostaining of Saa3 (C, D) and I-
kBot (E, F) were compared between TAX1BP1-KO and MyD88/TAX1BP1-KO mice. ELISA quantification of Saa3 (I) and Cxcl13 on the sera of both genetic

background.
doi:10.1371/journal.pone.0073205.g009
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fold or downregulated by more than 5-fold. Most of the
upregulated genes were primarily involved in inflammation. The
gene showing the highest level of induction, S443, (i.e., 1,180 fold
induction) along with SA47 (i.e., 61 fold, 10th induction) are well-
known mflammatory markers in patients with autoimmune
disease, chronic infection and cancer [25]. SAA3 is also hyper-
induced at the site of injury [26], inflammation [27] in mice
experimental models. Additonally, genes related to immune
modulation, including pathogen recognition, inflammation, che-
motaxis [28-30}, or tissue adhesion, degeneration and rearrange-
ment [31,32] were induced in the mitral valves of TAXIBPI-KO
mice. The characteristics of the downregulated genes also
suggested the link between inflammation and tissue degeneration
(Table S1); for example, such as WIFI, a Wnt signaling
suppressor; UCMA, a gene associated with cartilage development
[33-35]. EFCAB2 is a functional partner of the voltage-gated Ca®*
channel [36]. 7SC22D3 (also known as GILZ a Glucocorticoid
Induced Leucine Zipper) is an IL-10-inducible immune suppressor
[37].

We further confirmed the microarray results for S443 and
EFCAB2 by using RT-PCR (Fig. 2AB and Figure S1) and for Saa3
(induction) or I-xBa (reduction) by using immunostaining for
mitral valve samples from 16-wk TAX/BPI-KO mice (Fig. 2C to
F). In addition to these microenvironmental changes, broad-
spectrum inflammatory effects, such as lymphocyte accumulation,
apoptotic Councilman body formation, and Kupffer cell hyper
proliferation in the hepatocyte (Fig. 3A), and thickening of the
inflamed skin (Fig. 3C), were observed in 16-wk TAX/BPI-KO
mice. Multiplex ELISA quantitation of the sera for homozygous or
heterozygous TAXIBPI-KO and their WT littermates showed
age-dependent development of systemic inflammation (Table S1).
The levels of 11-6 and Cxcll were elevated more than 10- fold in
the homozygous TAXIBPI-KO mice.

Massive infiltration of inflammatory lymphocytes in the
mitral valves of TAXTBP1-KO mice

To obtain more detailed images of critical sites of inflamma-
tion, tissues obtained from the mitral valves of TAXIBPI-KO
mice and their WT littermates at varying time points were
examined with electron microscopy (Fig. 4). Surprisingly, the
mitral valves TAXIBPI-KO mice showed extensive infiltration of
lymphocytes, macrophages and neutrophils and tissue degener-
ation at only 8 weeks of age (Fig. 4A and 4A’), whereas the
mitral valves of the WT littermates exhibited healthy collagen
layers (Fig. 4B and 4B’). Extensive disruption of collagen layers
and edema were observed at 60 weeks of age for TAX/BPI-KO
mice (Fig. 4C, 4D and 4C’, 4D’).

Enhanced inflammatory responses in TAX7BP1-KO mice
after the LPS-stimulation

In addidon to the chronic inflammation, the acute-phase
inflammatory response of TAX7/BPI-KO mice was also examined.
Salmonella typhimurium lipopolysaccharide (LPS) was injected into
the footpads of TAXIBPI-KO mice and their WT littermates.
Then, the mice were monitored, and the effects were recorded.
We examined the kinetics of mRNA expression in those same eye
tissues (Fig. 5A, B: tissue specific) and the translational products in
the sera (Fig. 5C, D: systemic) of IL-6 and CXCLI were monitored.
Both data clearly indicate that a deficiency in TAXIBPI causes
significantly enhanced inflammation in responses to LPS in
TAX1BPI-KO mice.

PLOS ONE | www.plosone.org
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Amelioration of the inflammatory symptoms and the
cardiac conduction defect of TAX1BP1-KO mice by
antibiotic treatment and simultaneous MyD88 deficiency
Microbial infections spontaneously cause severe endothelial
mflammatory diseases such as rheumatic fever and Kawasaki
disease [38]. At the subcellular level, modulation of the threshold
of immune cell activation, differentiation, and immune cell activity
in response to non-self or self antigens in TAXIBPI-KO mice
(Fig. 1 and Tables 3 and 4) might evoke autoimmune profiles and
heart dysfunction. To test this hypothesis, we examined the link
between the commensal microbiota and mitral valvulitis and
endocarditis in TAX/BPI-KO mice. When the mice were 4 weeks
old, antibiotics were orally administered to all subjects over a 12-
week period. The telemetric electrocardiogram profiles then
sacrificed for the pathologic examination. Inflammatory hyper-
tophy (Fig. 6A) and extensive Saa3 staining (Fig. 6I) of the mitral
valves in TAXIBPI-KO mice were abolished with antibiotic
treatments (Fig. 6C and G); no changes were observed in their WT'
littermates (Fig. 6B, D, F and H). Extended PQ-intervals observed
by telemetric electrocardiogram in TAX/BPI-KO mice (Fig. 61,
middle panel) were alleviated with the administration of antibiotics
(Fig. 61, bottom panel). The statistical significance of the
differences in the PQ-intervals was tested (Fig. 6]). The antibiotic
regimen also reduced the secretion of Saa3 and Cxcll3 in the sera
of TAXIBPI-KO mice (Fig. 7A, B), and splenic hypertrophy of
TAXIBPI-KO mice was almost nonexistent (Iig. 8A). Typical
cecumn thickening due to antibiotic treatment was also confirmed
(Fig. 8B), and fecal microbes were completely disappeared under
these conditions (data not shown). If the eradication of microbiota
is the main reason for the amelioration of the symptoms in
TAX1BPI-KO mice, we hypothesized that the disruption of the
innate immune cascade could bring about similar results. We
crossbred TAXIBPI-KO mice with MpD88-KO mice [20] and
examined the morphological features or immunostaining profiles
of marker proteins in the mitral valves of 16-week-old TAXIBPI-
KO and MpD88/TAX1BPI-KO mice. MyD88/TAX1BPI-double
knockout canceled hyperplasia (Fig. 9A, B), Saa3 induction
(Fig. 9C, D) and I-xBo degradation (Fig. 9L, F). Comparisons of
ELISA values for TAX1BPI-KO and AMyD88/TAX1BPI-KO mice
also indicated amelioration of the inflammatory response in
MyD88/TAX1BPI-KO mice (Fig. 9G, H).

Discussion

Chronic infection with a retrovirus can have a significant impact
on the host immune system. In the case of HTLV-1 infection, the
pathological features of the disease are influenced by multiple
factors. While HIV causes immune deficiency in the host, HTLV-
1 causes a wide range of inflammatory symptoms (HAM and HU)
and, in some cases, immunosuppressive ATL, a malignant growth
of regulatory T-lymphocytes [39,40]. Furthermore, HAD patients
frequently display impaired immune response such as an
ineffective interferon response in HAM patients [41] and frequent
development of dermatitis in ATL patients [42].

Multiple inflammatory symptoms, including cardiac valvulitis,
dermatitis, and a hypersensitive response to endotoxins and
inflammatory cytokines, were noted in our preclinical model
involving TAXIBPI-KO mice. More importantly, TAXIBPI-KO
mice died prematurely because of unknown mechanisms [8]. In
this study, we discovered the hyper-induction of multiple
inflammation-related genes including SA43, CHISLI, HP, ILIB,
SPP1/0PN, and the significant reduction of 7SC22D3/GILZ in the
mitral valves and microenvironment deterioration in a progressive
age-dependent manner for TAXIBPI-KO mice [43-47], the
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significant reduction of EFCABZ expression was highly implicated
in functional defects of the heart [36].

HTLV-1-transgenic mice develop autoimmune symptom close-
ly related to those observed for rheumatoid arthritis [48] or
Sjogren’s syndrome [49]. A rat model, infected with the HTLV-1
producing cell line, is known to develop HAM-like myelopathies in
seronegative carrier rats [50]. A Taxl-transgenic mouse model,
which specifically expresses Tax1 in T-lymphocytes, illustrates the
development of aggressive ATL-like lymphoma with continuous
invasion of lymphomatous cells into multiple organs such as the
skin, liver and spleen [51,52]. Subcutaneous inoculation of
HTLV-1 transformed cells into NOG mice also results in ATL-
like symptoms [53]. These transgenic/transplant models show
symptoms similar to those found in human clinical cases.
Furthermore, HTLV-1-driven inflammatory symptoms tend to
occur in patients with HAD under normal host immune response
conditions, while ATL-like symptoms develop under immunosup-
pressive conditions [54].

TAX1BPI-KO mice displayed invasive growth of lymphocytes
into multiple organs (Fig. 3) and splenic hypertrophy (Fig. 8). We
previously observed that transplantation of TAXIBPI-KO bone
marrow to Yy-irradiated normal mice resulted in the same
inflammatory responses [8]. These results imply that TAX/BPI-
KO model may be correlated with inflammatory HAD. The
novelty of this system is identification of possible risk factors
associated with vascular disease in HTLV-1 carriers [17,18].
Preliminary electrocardiogram experiments using 74X/BPI-KO
mice showed an abnormal prolongation of PQ) intervals and/or
atrioventricular conduction defects (Fig. 61, J), which might cause
fatal cardiac failure. Since the PQ interval and atrioventricular
conduction highly depend on the functioning of voltage-dependent
L-type Ca® channels, L-type Ca® channel function may
deteriorate in the heart of TAX1BPI-KO mice. Of note, EFCAB2,
a functional partner in the voltage-gated Ca®* channel, was
significantly downregulated in the cardiac tissue of TAXI1BPI-KO
mice (Table 4). Further studies are required to elucidate these
defects caused in TAX1BPI-KO mice.

Intensive antibiotic treatment {24] for TAXIBPI-KO mice
significantly ~ameliorated inflammatory symptoms (Fig. 6).
TAXIBPI-KO mice crossbred with ApD8ES-KO mice showed
similar results. Since the intrinsic role of Taxlbpl is to inhibit
unnecessarily activated innate immunity responses [8], a func-
tional deficiency of Taxlbpl through HTLV-1 infection can lead
to similar symptoms in humans; that is, commensal microbiota can
cause pseudo-Infective endocarditis symptoms [55]. The extent of
the deficiency, however, is much more moderate than that of
typical infective endocarditis (IE) [56].

A large population-based epidemiological study revealed that
the prevalence of heart valve disease in the entire population of the
United States is 2.5% [53]. IE is thought to result from the
following sequence of events: (1) the formation of nonbacterial
thrombotic endocarditis on the surface of a cardiac valve or
elsewhere that endothelial damage occurs; (2) bacteremia; and (3)
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the adherence of the bacteria in the bloodstream to nonbacterial
thrombotic endocarditis and proliferation of bacteria within a
vegetation [57]. Viridans group streptococci are a part of normal
skin, oral, respiratory, and gastrointestinal tract flora, and are
responsible for =50% of community-acquired native valve IE
cases [58]. Another review reported that 20% of IE cases
originated from culture-negative or Enterococci [59]. Each of
these epidemiological surveys clearly indicates the importance of
prevention and control measures with regard to microbial
infection and vegetation. However, it is still not known why IE
is developed in limited population and it is not clear whether there
are any differences in the frequencies of allelic polymorphisms in
the immune response genes for IE patients?

In summary, HTLV-1 induces diverse forms of inflammatory
disorders [60,61], which may originate from the functional
dysregulation of Taxlbpl. Single-nucleotide polymorphisms
(SNPs) in A20 or RNF11, catalytic partners of Tax1bpl, has have
linked to many inflammatory diseases [19,62,63]. However, in the
case of TAXIBPI SNPs, only one study has linked them to the
head and neck cancer [64]. The genetic variations in TAXIBPI
and its partners would provide novel insights on the pathogenic
machinery of HADs.
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Figure S1 Validation of genes identified their expres-
sion alteration in the mitral valves of TAXIBP1-KO
mice. RT-PCR validation of genes identified their expression
alteration in the mitral valves of TAX1BPI-KO mice, A) CCL2 B)
CHI3LI respectively. Gray bar: TAXIBPI-KO, black bar: WT.
Mitral valve specimens were prepared as described in Fig. 2A.
Primers and probes were as indicated.
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Table S1 Age-dependent induction of pro-inflammatory
proteins in the sera of TAX1BPI-KO mice. Sera from four
different weeks of age (3, 8, 16 and 32) of TAX/BPI homozygous
knockout (Homo-KO), heterozygous knockout (Hetero-KO) or
their WT littermates were collected and examined with multiplex
ELISA quantitation kit (Bio-Plex Pro™ 1 Mouse Cytokine 23-plex
Assay, BioRad). Each value is an average of four different samples.
(PDF)
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