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Fig. 7 Visualization resuits on the Reuters test set, for 2 % of training data. £ach colored symbol represents
one of the 13 classes (color figure online)

Table 2 Average running times
(minutes)

Data set LDA ITML NCA PARCA  Log PARCA
Balance 0.01 0.20 13470 1.79 4.63
Breast cancer 0.01 0.19 2990 0.62 5.30
Ionosphere 0.01  0.07 359 026 5.49
Wine 0.01 0.1 426 0.03 0.77
20 Newsgroups  1.34 1994 18496 8.16 135.77
Reuters 098 9.39 3391 446 128.70
WebKB 070  1.85 496 045 10.21
Binary 0.02  0.99 13372 422 39.54
MNIST 063 3.8 8195 7.05 145.08
UMIST - - 20.77 5.80 6.68
USPS 0.02  0.68 104.90 6.36 99.32

text data sets, 100 % of the data were used for training. For 20 Newsgroups, Reuters, and
WebKB, 10 % of the data were used for training.

The result shows that LDA is the fastest method on all data sets except WebKB and
UMIST data sets. Whereas NCA, PARCA, and Logistic PARCA are gradient-based methods,
LDA involves an eigenvalue problem (see Sect. 2.1), which can be solved efficiently using
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Fig. 8 Ranking performance on four image data sets: Binary alphadigits, MNIST handwritten digits,
UMIST faces, and USPS handwritten digits

standard linear algebra libraries. Meanwhile, ITML is an iterative method that selects a
random constraint at each iteration of the algorithm (see [11]). However, we empirically
observe that ITML has a fast convergence rate. On three UCI data sets and three image data
sets, ITML achieves the second lowest running time. In summary, LDA and ITML show
the best running times on the four UCI data sets and three image data sets. However, their
performance could not be assessed in the UMIST data set that has the highest dimensionality
(D = 10,304). As we explained in Sect. 2.1 and 2.3, LDA and ITML involve the computation
of matrices of size (D x D) which is memory-demanding when D is large. Therefore, LDA
and ITML are difficult to use when the dimensionality of the given data set is large.

We also observe that PARCA is the fastest method on the WebKB data set, and the second
fastest on the 20 Newsgroups and Reuters data sets. Compared to Logistic PARCA, PARCA
is significantly faster on all the data sets. As we have explained in Sect. 3.3.2, there are two
basic differences between those two approaches: the use of the logistic function 4 to enforce
non-negativity and the addition of the entropy function T (2(B)) (Eq. 7). The running time
differences can be accounted for by neither the additional computational complexity induced
by the logistic function nor 7 (h(B)), because it is a simple summation over ¥ = 1... K
and d = 1...D. This suggests that the entropy function slows down the convergence of
Logistic PARCA with respect to the number of iterations of the gradient descent. NCA and
Logistic PARCA show the largest running times across all the data sets, which suggests that
the convergence rate of the gradient descent method is slow.
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Fig. 9 Visualization results on the USPS handwritten digits, for 10 % of training data. Each colored symbol
represents one of the ten classes (color figure online)

Now, we consider the memory complexity of PARCA and Logistic PARCA. As they are
dimensionality reduction methods, we assume that the dimensionality of the final feature
space is small compared to that of the initial feature space, that is, K < D. Our implemen-
tation is then dominated by the initial data matrix of size (N x D) and a distance matrix of
size (N x N). Therefore, the memory complexity is dominated by O(N D + N?) in both
methods, which is efficient when D is large.

In summary, LDA and ITML are generally fast methods when the dimensionality D is low.
However, they are difficult to use when D is large due to their memory complexities. PARCA
runs significantly faster than Logistic PARCA due to a faster convergence rate of the cost
function with respect to the number of iterations. As both the computational complexity and
the memory complexity are linear in D, PARCA is especially efficient for high-dimensional
data sets. Although the slower running time of Logistic PARCA is a limitation, we have to
recall that Logistic PARCA is primarily useful to uncover the latent structure of the data
(examples are given in Sect. 4.4). When interpretability is not needed, PARCA should be
chosen over Logistic PARCA.

4.3.5 Summary
In this section, we compared the ranking performance of PARCA and Logistic PARCA

with four other distance metric learning and dimensionality reduction methods, using
the Euclidean distance in the initial feature space as the baseline. The comparison was
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performed using 11 data sets, showing different numbers of examples, features, classes,
sparsity levels, and data types. As expected, the performance of PCA and the Euclidean dis-
tance does not depend much on the training ratio. On six out of eleven data sets (Balance, 20
Newsgroups, Reuters, WebKB, UMIST, and USPS), PCA performs noticeably worse than the
Euclidean distance. On the five remaining data sets (Breast cancer, Ionosphere, Wine, Binary,
and MNIST), their performances are equivalent. PCA is a lossy, unsupervised dimension-
ality reduction approach. There is no guarantee that the principal components will contain
information relevant for data ranking. Therefore, PCA is not a good choice for the ranking
task.

The performance of LDA, NCA, and PARCA depends on the value of the training ratio.
LDA is especially sensitive to the amount of training data. On seven out of ten data sets
(Breast cancer, 20 Newsgroups, Reuters, WebKB, Binary, MNIST, and USPS; UMIST is
excluded), LDA performs worse than the Euclidean distance for low values of the training
ratio. However, LDA performs well when sufficient training data are available. On five out
of seven data sets (Balance, Breast cancer, Ionosphere, Wine, and USPS; UMIST and the
three text data sets are excluded), LDA and PARCA are the best two methods for high
values of the training ratio. In summary, LDA can achieve good ranking performance when
sufficient training data are available. However, it suffers from two severe drawbacks. First,
the computational cost of LDA is high when the number of dimensions is high. Therefore,
it cannot be used for large-scale data sets. Second, it is prone to overfitting, leading to poor
performance when only a few training data are available.

The performance of ITML does not depend much on the training ratio, which suggests
that ITML needs only a few training data to achieve optimal performance. Except for the
Binary alphadigits data set where it outperforms the other methods, ITML shows intermediate
results. Its performance on the UMIST data set could not be assessed due to the high number
of dimensions D. As we previously explained, the Mahalanobis matrix considered in ITML is
of size (D x D), which makes it difficult to use with high-dimensional data sets. In addition,
because ITML does not consider a projection matrix, it cannot be used for visualization
purpose.

NCA shows good performance for the ranking task when a few training data are available.
On nine out of eleven data sets (Balance, Ionosphere, 20 Newsgroups, Reuters, WebKB,
Binary, MNIST, UMIST, and USPS), the ranking accuracy of NCA is close to the best
results for low values of the training ratio. However, on two out of ten data sets (Balance
and Ionosphere), the ranking performance steadily degrades as more training data become
available. Although we may expect the opposite, recall that NCA learns a distance function
for the classification setting rather than the ranking setting. We suspect that for some data
sets, the optimization of a classification error is driving NCA away from a good distance
function for ranking.

For high training ratios, PARCA shows the best ranking performance on seven out of eleven
data sets (Ionosphere, 20 Newsgroups, Reuters, WebKB, MNIST, UMIST, and USPS). For
low training ratios, PARCA shows the best ranking performance on eight out of eleven data
sets (Balance, Breast cancer, Ionosphere, 20 Newsgroups, Reuters, WebKB, MNIST, and
USPS). In addition, PARCA only needs a few training data to achieve good ranking error.
For nine data sets out of eleven (Breast cancer, Ionosphere, Wine, 20 Newsgroups, Reuters,
WebKB, Binary, MNIST, and USPS), PARCA performs better than Logistic PARCA. On the
Balance and UMIST data sets, their prediction performance is identical.

In summary, the experiments show that PARCA offers three desirable properties. First,
it is the only method that achieves good ranking performance for all values of the training
ratios. Second, PARCA only needs a few training data to learn a good distance function for the
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Table 3 Categories in the 20 Newsgroups data set

alt.atheism comp.windows.x rec.sport.hockey soc.religion.christian
comp.graphics misc.forsale sci.erypt talk.politics.guns
comp.os.ms-windows.misc rec.autos sci.electronics talk.politics.mideast
comp.sys.ibm.pc.hardware rec.motorcycles sci.med talk.politics.misc
comp.sys.mac.hardware rec.sport.baseball sci.space talk.religion.misc

ranking task. Third, unlike LDA and ITML, PARCA is memory-efficient and can be applied
to high-dimensional data sets. In addition, PARCA usually performs better than Logistic
PARCA. This was expected, as Logistic PARCA is a constrained version of PARCA (using
non-negativity constraints). Nonetheless, PARCA and Logistic PARCA achieve similar per-
formance on two data sets. We will show the usefulness of such non-negativity constraints
in the next section.

4.4 Interpretability

In this section, we show how Logistic PARCA is used to interpret the latent structure of the
data set. We give two examples, using text data and image data.

4.4.1 Text data

We used Logistic PARCA to identify the latent topics of the 20 Newsgroups data set. This
data set contains text messages posted on 20 Usenet newsgroups. The newsgroups titles
are shown in Table 3. We can see that the general thematics in this data set include sport,
religion, computers, etc. We removed non-alphanumerical words and common words. We
also removed duplicate documents and empty documents, where a document is a text message
posted on Usenet (see Sect. 4.1.2). We selected the 500 most informative words according
to information gain [44]. Then, we computed the tf-idf representation of the documents in
order to give high weights to important words [31]. Before we can use Logistic PARCA
with the processed data set, we had to set two user-defined parameters: the number of latent
topics K and the parameter 8 that enforces feature clustering. In order to summarize the
document collection, we needed to identify a small number of latent topics where each topic
is shared by several newsgroups. Therefore, K should be less than the number of newsgroups.
In our experiments, we tried K € {5, 10, 15}. As we explained in Sect. 3.3, B represents the
compromise between ranking the documents and clustering the words into latent topics.
Without prior knowledge, we gave equal importance to both tasks, that is, 8 = 1. In the
following, we show the results for K = 10. However, similar results were obtained for
K =5and K = 15.

In the resulting projection matrix A, each row vector Ay represents a latent topic and each
coefficient Ay, represents the membership strength of word d for topic k. Therefore, the topic
k is defined as the set of words with the highest membership coefficients Aygy. In Table 4, we
show five of these clusters. We can see that in each cluster identified by Logistic PARCA,
the words are strongly semantically related. The corresponding topics are mainly related
to religion, computer hardware, computer software, motorized vehicles, and sport. When
we compared them to the categories in Table 3, we found that each latent topic identified
by Logistic PARCA is common to several categories. Hence, Logistic PARCA is able to
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Table 4 Word clusters identified

by Logistic PARCA in the 20 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Newsgroups data set islam monitor program car stats
church card screen ford hit
god computer  xlib engine hockey
muslim upgrade window miles team
morality bios motif article year
clh pc xterm auto won
keith sale code cars burns
islamic bus widget engines batting
gods scsi sunos rear hes
bible hd issues digital baseball
christianity ~ sell clipper cup scoring
question key mit motorcycles  nhl
belief house part police play
sin forsale keys bmw fans
hell controller  appreciated dod game
christian port systems state pens
atheists mode algorithm bike bruins
biblical system cryptography  manual rangers

Each word cluster corresponds to gyl offer sun ca players

a latent topic discussed in several . .

newsgroups years buying client sky stanley

give a quick summary of this large document collection, thereby helping users visualize and
understand the structure of the collection.

4.4.2 Image data

We also used Logistic PARCA to decompose images into parts. We used the UMIST faces data
set, which contains face pictures of 20 people, taken under varying angles and light levels.
Each picture, represented by a (112 x 92) pixels image, is flattened into a vector of size
10304. We had to set the number of latent topics K and the parameter § that enforces feature
clustering. In order to discover interesting human face features, we needed to identify a small
number of latent features where each latent feature is shared by several people. Therefore,
K should be less than the number of people. In our experiments, we tried K € {5, 10, 15}.
Similarly to the text data experiments and without prior knowledge, we gave equal importance
to picture ranking and pixel clustering, that is, 8 = 1. In the following, we show results for
K = 15. However, similar results were obtained for K = 5 and K = 10.

In the resulting projection matrix A, each row vector Ay corresponds to a latent feature and
each coefficient Ay, represents the membership strength of pixel d for the latent feature k.
In order to visualize the latent feature, we rescaled each row vector so that the coefficients
are in [0, 256] and used them to reconstruct grayscale pictures. In Fig. 10, we show six latent
features identified by Logistic PARCA. These latent features seem to correspond to facial
features, for example, forehead, hair, nose, mouth, ears, and cheeks. Hence, Logistic PARCA
is able to decompose images into meaningful parts and can be used to isolate interesting visual
entities in large image collections.
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Fig. 10 Facial features identified by Logistic PARCA from the UMIST faces data set

5 Conclusion

In this work, we studied the distance metric learning problem in the ranking framework,
rather than in the conventional classification framework. First, we defined a ranking error
between vectors and considered a linear model, that is, a Mahalanobis distance. Then, we
proposed PARCA, our distance metric learning method, to optimize this ranking error. In
order to apply PARCA to large-scale data sets, we also proposed an efficient implementation
of our approach. Then, we evaluated the performance of PARCA on 11 heterogeneous data
sets. These data sets differ by the numbers of examples, dimensions, and classes, the sparsity
levels, and the data types.

We compared PARCA and Logistic PARCA with four other distance metric learning
and dimensionality reduction methods: principal component analysis, linear discriminant
analysis, neighborhood components analysis, and information-theoretic metric learning. We
also used the Euclidean distance in the initial feature space as the baseline. The results showed
that PARCA achieves the best ranking errors for most data sets and most values of the training
ratios. We also showed that unlike LDA, PARCA only needs a few training data to achieve
good ranking error. This property is important for applications where labeled examples are
costly and difficult to obtain. In addition, our approach is simple to implement and efficient
and can be used for better visualization and understanding of the data set.

Because we think interpretability is an important property of a distance metric learning
approach, we also presented an extension of PARCA, called Logistic PARCA. Using the
logistic function, we applied positivity constraints on the projection matrix. Then, we defined
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an entropy-based cost function that forces the model to cluster the original features into meta-
features. As a result, Logistic PARCA is able to uncover the latent structure of the data, while
having the same computational complexity as standard PARCA. We tested the interpretability
property of Logistic PARCA on two data sets and showed that it is able to identify the latent
topics discussed in the 20 Newsgroups data set and to decompose the UMIST faces into
meaningful parts. In the case of large data sets, Logistic PARCA can help people quickly
visualize, summarize, and better understand the data.

Although we obtained good experimental results, PARCA and Logistic PARCA suffer
from two limitations. First, they are essentially linear methods. Previous studies have sug-
gested learning non-linear distance functions using the kernel trick [18]. In our future work,
we wish to extend our approach to non-linear distance metric learning. The second limitation
is related to the cost function optimized by PARCA and Logistic PARCA. We defined a
ranking error that uniformly penalizes all the pairs incorrectly ordered for a given list. With
this ranking error, a wrong prediction of the highest ranked documents has the same cost as
a wrong prediction of the lowest ranked documents. However, in the information retrieval
setting, we are mainly interested in the results at the top of the list and the quality prediction
in the bottom of the list is of little importance. In our future work, we wish to extend our
approach to ranking errors that focus on the ranking accuracy of higher ranked documents
[6,39], while still providing interpretability properties.

References

1. Amini MR, Truong TV, Goutte C (2008) A boosting algorithm for learning bipartite ranking functions
with partially labeled data, In: Proceedings of the 31st annual international ACM SIGIR conference on
research and development in information retrieval. ACM, New York, NY, USA, pp 99-106

2. Baccini A, Dejean S, Lafage L et al (2011) How many performance measures to evaluate information
retrieval systems? Knowl Inform Syst 30(3):693-713

3. Baker LD, McCallum AK (1998) Distributional clustering of words for text classification, In: Proceedings
of the 21st annual international ACM SIGIR conference on research and development in information
retrieval. ACM, New York, NY, USA, pp 96-103

4. Bekkerman R, El-Yaniv R, Tishby N et al (2003) Distributional word clusters vs. words for text catego-
rization. J Mach Learn Res 3:1183-1208

5. Burges S, Shaked T, Renshaw E et al (2005) Learning to rank using gradient descent. In: Proceedings of
the 22nd international conference on machine learning. ACM, New York, NY, USA, pp 89-96

6. Burges CJC, Ragno R, Le QV (2007) Learning to rank with nonsmooth cost functions. In: Advances in
neural information processing systems, vol 19. MIT Press, pp 193-200

7. Chapelle O, Shivaswamy P, Vadrevu S et al (2010) Multi-task learning for boosting with application to
web search ranking. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, New York, NY, USA, pp 1189-1198

8. Chen Y, Rege M, Dong M et al (2008) Non-negative matrix factorization for semi-supervised data clus-
tering. Knowl Inform Syst 17(3):355-379

9. Cohen WW, Schapire RE, Singer Y (1999) Learning to order things. J Artif Intell Res 10(1):243-270

10. Cover TM, Thomas JA (1991) Elements of information theory. Wiley, London

11. Davis JV, Kulis B, Jain P et al (2007) Information-theoretic metric learning. In: Proceedings of the 24th
international conference on machine learning. ACM, New York, NY, USA, pp 209-216

12. Dela Rosa K, Metsis V, Athitsos V (2011) Boosted ranking models: a unifying framework for ranking
predictions. Knowl Inform Syst 30(3):543-568

13. Dhillon IS, Modha DS (2001) Concept decompositions for large sparse text data using clustering. Mach
Learn 42(1):143-175

14. Duda RO, Hart PE, Stork DG (2000) Pattern classification. Wiley, London

15. Forman G (2003) An extensive empirical study of feature selection metrics for text classification. J Mach
Learn Res 3:1289-1305

16. Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In: Proceedings of the 13th
international conference on machine learning. ACM, New York, NY, USA, pp 148-156

@ Springer



J.-F. Pessiot et al.

31.
32.

33.

34.

36.

37.

38.

39.

40.

41.

43.

44.

Freund Y, Iyer R, Schapire RE et al (2003) An efficient boosting algorithm for combining preferences.
J Mach Learn Res 4:933-969

. Globerson A, Roweis S (2006) Metric learning by collapsing classes. In: Advances in neural information

processing systems, vol 19. MIT Press, pp 451-458
Goldberger J, Roweis S, Hinton G et al (2004) Neighbourhood components analysis. In: Advances in
neural information processing systems, vol 17. MIT Press, pp 513~520

. Harpeled S, Roth D, Zimak D (2003) Constraint classification for multiclass classification and ranking.

In: Advances in neural information processing systems, vol 16. MIT Press, pp 785-792

. Huang K, Ying Y, Campbell C (2011) Generalized sparse metric learning with relative comparisons.

Knowl inform Syst 28(1):25-45

. Jain P, Kulis B, Dhillon IS et al (2008) Online metric learning and fast similarity search. In: Advances in

neural information processing systems, vol 21. MIT Press, pp 761768

. Jolliffe T (1986) Principal component analysis. Springer, New York
. Kulis B, Sustik M, Dhillon IS (2006) Learning low-rank kernel matrices. In: Proceedings of the 23rd

international conference on machine learning. ACM, New York, NY, USA, pp 505-512

. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature

401:788-791

. Lee DD, Seung HS (2001) Algorithms for Non-negative Matrix Factorization. In: Advances in neural

information processing systems. MIT Press, pp 556-562

. Liu TY (2009) Learning to rank for information retrieval. Found Trends Inform Retriev 3(3):225-331
. Manning CD, Raghavan P, Schiitze H (2008) Introduction to information retrieval. Cambridge University

Press, New York

. Martinez AM, Kak AC (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23(2):228-233
30. Pereira F, Tishby N, Lee L (1993) Distributional clustering of English words. In: Proceedings of the 31st

annual meeting on association for computational linguistics, ACL, Stroudsburg, PA, USA, pp 183-190
Salton G, McGill MJ (1986) Introduction to modern information retrieval. McGraw-Hill, Inc., New York
Schultz M, Joachims T (2004) Learning a distance metric from relative comparisons. In: Advances in
neural information processing systems, vol 16. MIT Press, pp 41-48

Shalev-Shwartz S, Singer Y, Ng AY (2004) Online and batch learning of pseudo-metrics. In: Proceedings
of the 21st international conference on machine learning. ACM, New York, NY, USA, pp 743-750
Shental N, Hertz T, Weinshall D et al (2002) Adjustment learning and relevant component analysis.
In: Proceedings of the 7th European conference on computer vision. Springer, London, UK, pp 776792

. Slonim N, Tishby N (2000) Document clustering using word clusters via the information bottleneck

method. In: Proceedings of the 23rd annual international ACM SIGIR conference on research and devel-
opment in information retrieval. ACM, New York, NY, USA, pp 208-215

Sugiyama M (2006) Local Fisher discriminant analysis for supervised dimensionality reduction.
In: Proceedings of the 23rd international conference on machine learning. ACM, New York, NY, USA,
pp 905-912

Thurau C, Kersting K, Wahabzada MC et al (2010) Convex non-negative matrix factorization for massive
datasets. Knowl Inform Syst 29(2):457-478

Usunier N, Amini MR, Gallinari P (2005) Generalisation error bounds for classifiers trained with interde-
pendent data. In: Advances in neural information processing systems, vol 18. MIT Press, pp 1369-1376
Usunier N, Buffoni D, Gallinari P (2009) Ranking with ordered weighted pairwise classification.
In: Proceedings of the 26th international conference on machine learning. ACM, New York, NY, USA,
pp 1057-1064

Wang D, Li T, Ding C (2010) Weighted feature subset non-negative matrix factorization and its applications
to document understanding. In: Proceedings of the 2010 IEEE international conference on data mining,
pp 541-550

Weinberger KQ, Blitzer J, Saul LK (2006) Distance metric learning for large margin nearest neighbor
classification. In: Advances in neural information processing systems, vol 18. MIT Press, pp 1473-1480

. Xing EP, Ng AY, Jordan MI et al (2002) Distance metric learning, with application to clustering with

side-information. In: Advances in neural information processing systems, vol 15. MIT Press, pp 505-512
Xu W, Liu X, Gong Y (2003) Document clustering based on non-negative matrix factorization.
In: Proceedings of the 26th annual international ACM SIGIR conference on research and development
in information retrieval. ACM, New York, NY, USA, pp 267-273

Yang Y, Pedersen JO (1997) A comparative study on feature selection in text categorization. In: Proceed-
ings of the fourteenth international conference on machine learning. Morgan Kaufmann Publishers, San
Francisco, USA, pp 412-420

@_ Springer



Pairwise ranking component analysis

Author Biographies

Jean-Francois Pessiot is a postdoctoral researcher at the National
Institute for Advanced Industrial Science and Technology in Tokyo,
Japan. He received his PhD in Computer Science from the Pierre-and-
Marie-Curie University in 2008. His research interests include data
mining, machine learning, and computational biology.

Hyeryung Kim is currently a research scientist at Dong-A Pharmaceu-
tical in Seoul, South-Korea. She received her PhD in Bioinformatics
from the Tokyo Medical and Dental University. Her research interests
include kernel canonical correlation analysis, analysis of comprehen-
sive gene expression profiles, and study of drug effects on human cells.

Wataru Fujibuchi received his PhD degree from the Department of
Biophysics, Kyoto University, in 1998. From 1999 to 2003, he worked
as a Visiting Fellow and Staff Scientist at the NCBI, USA. From 2003,
he worked as a Research Scientist of the National Institute of Advanced
Industrial Science, Japan, and in 2007, he became a Team Leader.
Now, he is a Professor at the Center for iPS Research and Applica-
tion, Kyoto University. His research interests include cell state-space
analysis, large-scale gene expression data mining, microarray stan-
dardization, speed-up of biocalculation by accelerator, and systems
biology.

@ Springer



International Journal on Advances in Life Sciences, vol 5 no 1 & 2, year 2013, http://www.iariajournals.org/life_sciences/

Inference of Gene Regulatory Networks to Detect Toxicity-Specific Effects in
Human Embryonic Stem Cells

Sachiyo Aburatani

Computational Biology Research Center
National Institute of AIST
Tokyo, Japan
s.aburatani@aist.go.jp

Reiko Nagano, Hideko Sone
Research Center for Environmental Risk
National Institute for Environmental Studies
Tsukuba, Japan
nagano.reiko@gmail.com

hsone@nies.go.jp

Abstract—Environmental chemicals are known to cause serious
developmental problems in embryos. To prevent injurious
chemical effects, knowledge of the chemical toxicity
mechanisms in human embryos is important. To reveal the
functional mechanisms in living cells, inferring a gene
regulatory network is a useful approach. We applied our
developed statistical methods based on Structural Equation
Modeling to infer the gene regulatory networks in human
embryonic stem cells. In this study, we improved the SEM
approach and applied this enhanced version to expression
profiles in human embryonic stem cells exposed to various
chemicals. For almost all of the tested chemicals, the cell
differentiation-related genes and the neuron development-
related genes were intermixed in the inferred networks. Since
the chemicals’ networks displayed diffusion type shapes, the
effects of chemical toxicity are considered to affect a few target
genes at first, and then ultimately many genes via regulatory
mechanisms. Furthermore, the genes that were finally affected
were conserved among chemicals with the same toxicity: Tujl
in Neurotoxic chemicals, Oct3/4 and Pax6 in Genotoxic
chemicals, and Oct3/4 in Carcinogenic chemicals. These finally
affected genes are considered to be the results of toxicity-
specific effects in ES cells, and they reflected the features of the
toxicity. We also found that some chemicals shared the same
regulatory mechanism. The detected toxicity-specific effects
are valuable for developing methods to prevent chemicals from
disturbing normal development.

Keywords-Structural Equation Modeling; Gene Regulatory
Network; Embryonic Stem Cell; Environmental Chemicals

I.  INTRODUCTION

We are exposed to many chemicals, which are produced
by our usual life activities. Since the toxicity of
environmental chemicals is known as one of the typical
factors causing developmental toxicity, we investigate the
specific effects of chemical toxicity [1]. Developmental
toxicity is either a structural or functional alteration, and
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these alterations interfere with the normal developmental
programming in early embryos. These interferences can
cause abnormal development and diseases [2][3]. For
example, Methylmercury is known as a developmental toxin
that affects fetal development [4][5]. Furthermore, certain
chemicals can cause serious developmental problems and
abnormal cell differentiation in embryos [6][7][8].

To prevent the harmful effects of chemicals, elucidation
of the toxic stress response in embryonic cells is crucial
[9][10]. A gene regulatory network is a useful approach to
reveal the regulatory mechanisms in living cells. Using the
gene expression information, the regulatory networks among
the genes can be inferred. Various algorithms, including
Boolean and Bayesian networks, have been developed to
infer complex functional gene networks [11][12]. In our
previous investigation, we developed an approach based on
graphical Gaussian modeling (GGM). The GGM approach is
combined with hierarchical clustering for calculations with
massive amounts of gene expression data, and we can infer
the huge network among all of the genes by this approach
[13][14]. However, GGM infers only the undirected graph,
whereas the Boolean and Bayesian models infer the directed
graph, which shows causality. Although all of these
approaches are suitable for establishing the relationships
among the genes, they cannot reveal the relationships
between un-observed factors and genes, due to insufficient
information in the gene expression profiles. To clarify the
mechanisms of biological processes in living cells, un-
observed factors that affect the target gene's expression
should also be considered. Thus, an alternative approach that
includes un-observed factors should be applied.

Recently, we developed a new statistical approach, based
on Structural Equation Modeling (SEM) in combination with
factor amalysis and a four-step procedure [15][16]. This
approach allowed us to reconstruct a model of transcriptional
regulation that involves protein-DNA interactions from only
the gene expression data, in the absence of protein
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information [15]. The significant features of SEM are the
inclusion of latent variables within the constructed model
and the ability to infer the network, including its cyclic
structure. Furthermore, the SEM approach allows us to
strictly evaluate the inferred model by using fitting scores.
The SEM approach is useful for detecting the causality
among selected genes, as the linear relationships between
genes are assumed to minimize the difference between the
model's covariance matrix and the calculated sample
covariance matrix [17][18][19]. Some fitting indices are
defined for evaluating the model adaptability, and thus the
most suitable model can be selected by SEM [1][19].

Here, we applied the SEM approach to infer the
regulatory network among 9 development-related genes. The
mRNA levels of these 9 genes were measured in human

embryonic stem cells exposed to 15 environmental chemicals.

The chemicals were considered to have developmental
toxicities that adversely affect the developmental process in
human embryos. Thus, inferring the gene regulatory network
among development-related genes will help us to elucidate
the toxic stress response in the human embryo. Furthermore,
we improved our SEM approach for constructing preliminary
initial models from the time-series data, in the absence of
known regulatory interactions among the genes. We applied
this improved SEM approach to infer the chemical-specific
regulatory network among the development-related genes.

I. MATERIALS AND METHODS

A.  Expression data

We utilized expression data that were measured to clarify
the effects of chemical toxicity on neuronal differentiation
[71[20]. In these expression data, nine genes considered to be
affected by chemicals were measured in human embryonic
stem cells: GATA2, Nanog, Oct3/4, Nodal, Lmx1A, MAP2,
Nestin, Pax6, and Tuj1 [7][20]. Among the 9 genes, GATA2,
Nanog, Oct3/4, and Nodal are mainly related to cell
differentiation, and the other genes are related to neuron
development. As an internal control, the expression of beta-
actin was also measured. The expression data of these 10
genes were obtained from human embryonic stem cells
exposed to 15 chemicals: Methylmercury (MeHg), 2-
Nitropropane (2-NP), Acrylamide (ACA), p-Nitroaniline (p-
NA), 4-hydroxy PCB107 (PCB), Benzo[a] pyrene (BZP),
Diethylnitrosamine (DENA), Diethylaminofluorene (DEAF),
Phenobarbital (PB), Tamoxifen (TMX), Diethylstilbestrol
(DES), TCDD (TCDD), Thalidomide (THAL), Bisphenol-A
(BPA), and Permethrin (PER) [7][20]. The toxicity of each
chemical was classified into one of four types: Neurotoxic
(MeHg, 2-NP, ACA, p-NA, and PCB), Genotoxic (BZP,
DENA, and DEAF), Carcinogenic (PB, TMX, DES, and
TCDD), and others (THAL, BPA, and PER). The human
embryonic cells were exposed to each chemical for several
time periods: 24 hours, 48 hours, 72 hours, and 96 hours.
Each chemical was also tested at 5 concentrations: very low,
low, middle, high, and very high. The expression of the
genes was measured twice under each condition by RT-PCR,
and thus 600 (15 chemicals x 4 time periods x 5
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concentration types X 2 repeats) expression patterns per gene
were measured [20].

First, the expression level of each gene was normalized
to the internal beta-actin control and averaged, as follows:

1< e,
Eg =ﬁ210g2 —,——“ (1)
i=1 bActin
Here, N is the number of repeated experiments, e, is the
measured expression level of gene g under onme set of
conditions, and ey, is the beta-actin expression level
measured under the same conditions. The expression level of
each gene was divided by that of beta-actin, for intracellular
normalization. To minimize the experimental error, the
logarithms of the normalized expression data were obtained
and averaged.

B.  Multi-factor analysis of variance

In this study, the data contained three factors that affect
gene expression: chemicals, exposure times, and
concentrations. To detect the significant factors for
differences in gene expression, we applied the analysis of
variance (ANOVA) for multiple factors [21]. Although the
multi-factor ANOVA model includes each factor's effect and
all combinations of interactions between the factors, the
triple interactions among the factors were confounded with
error terms, because the data lacked repetition [21].
Therefore, we used the linear effects model for analysis:

Ej=ptoi Bty t(aB)y+(a)at(By)utem )]
where Ejy is the expression level of each gene under one
condition, x is the averaged value of all measured data, a; is
the effect of factor 4, f; is the effect of factor B, y; is the
effect of factor C, (ef); is the interaction between factors 4
and B, and & is the error term.

Depending on the linear effects model, the total some of
squares, Srny could be decomposed into the following
components:

Stoar=S4+SptSc+Sus+SactSpctSe 3)

where S, Sz, and Scmean the sum of the squared differences
between each factor’s marginal mean and the overall mean;
S.4z, Sac, and Spc mean the sum of the squared differences for
particular corresponding data means, marginal means, and
overall mean; and S, measures the difference between Sy
and the total sum of squares of all effects. The degree of
freedom for Sy,,; was the number of all observed data minus
one, and the degrees of freedom for S, Sz, and S were the
number of levels for the factor minus one. The mean square
values for S, Sz, and Scwere the sums of the squares divided
by the numbers of degrees of freedom. In S,, the degree of
freedom was the total degrees of freedom minus the sum of
the factor degrees of freedom. The mean square of S, was the
sum of the squares divided by the number of degrees of
freedom. In the analysis of variance, Sy accounted for the
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factor effects (S, Sz, Sev Su Siacs Se) and the contribution
of S,.

To compare the factor effects, the statistical F-test was
used. The F statistic is the mean square for the factor divided
by the mean square of the error terms. This F statistic is
known to follow an F distribution with degrees of freedom
for each factor effect and degrees of freedom for the error
terms. Thus, we could calculate the probabilities of the factor
effects from the # statistics.

C.  Extraction of causdlities from expression data

In an SEM analysis, an initial model should be assumed,
but no regulations were defined among the selected genes in
this study. Thus, we had to construct an initial model among
the 9 genes for each chemical. To detect the regulatory
relationships between the gene pairs from the measured time
series expression data, we applied cross correlation
coefficients to the expression profiles measured for each
chemical and each concentration.

Cross correlation is utilized as a measure of similarity
between two waves in signal processing by a time-lag
application, and it is also applicable to pattern recognition
[22]. The cross correlation values ranged between —1 and +1.
In a time series analysis, the cross correlation between two
time series describes the normalized cross covariance
function. Let X, = { x;,..., xy }, ;= { y1,..., vy} represent two
time series data including N time points. The cross
correlation is then given by

N

Z(x:‘ _55)()/:'«1 “5;) (4)

o= 1=l

B B0

t=} t=]

where d is the time-lag between variables x and y. In this
case, the expression profiles were measured at four time
points, and thus three cross correlations of each gene pair
were calculated with d=-1, 0, +1.

D. Construction of the initial model

In this study, we inferred the chemical-specific
regulatory network, and thus the differences between times
and concentrations could be merged for the construction of
the initial model. Fig. 1 shows the new method developed for
constructing an initial model of each chemical, with the
merging of several conditions. First, we constructed lag
matrices to merge the time difference. The time difference
was summarized by the time lag values in the cross
correlations among genes. Since the time lags indicated the
order of the expression pattern among the gene pairs, the
rough causality between all gene pairs could be extracted. In
this study, three cross correlations were calculated with three
lags, —1, 0, and +1, and the three absolute values of the cross
correlations were compared. The value d with the highest
absolute value was selected as the causal information
between the gene pairs, and the selected lag value d
wasarranged as a matrix element in a lag matrix.
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Figure 1. Procedure for initial model construction: (a) Time-lag matrices
for each chemical. Five time-lag matrices were obtained for each chemical.
(b) Binomial relationships. (¢) Frequency matrix of causal relationships
between all gene pairs. (d) Selection of possible causal relationships from
the frequency matrix. (¢) Construction of an initial model with selected
causal relationships.

Lag Matrices were constructed for each concentration of a
chemical. Thus, five time lag matrices were constructed for
each chemical (Fig. 1a).

We subsequently merged the concentration difference of
each chemical. For each chemical, there are five lag matrices
according to the chemical concentrations, and we considered
that the chemical-specific relationships among the genes
would be conserved in several lag matrices. To obtain the
chemical-specific relationships among the genes, we
extracted the binary relationships between gene pairs from
the five lag matrices for each chemical. If the same
relationships existed in several lag matrices, then the
binomial relationships were duplicated (Fig. 1b).

In the next step, we constructed one frequency matrix for
each chemical. From the binary relationships, we counted the
frequencies of all gene regulatory pairs, and each frequency
number was arranged as an element of a frequency matrix
(Fig. 1c). In this step, the concentration difference could be
merged, since the elements of the frequency matrix indicate
the information for the different concentrations. We
subsequently selected the gene pairs with frequency matrix
values greater than or equal to two, as the chemical-specific
regulation (Fig. 1d). At the final step, we constructed an
initial model for each chemical from the extracted
relationships between the genes (Fig. le). These initial
models included the time series information as the directions
of edges, and the different concentrations of each chemical
were summarized as the existence of edges in the model. By
using this approach, an initial model can include cyclic
structures.

E. Structural Equation Modeling without Latent Variables
(SEM without LV)

After the construction of an initial model for each
chemical, we applied the SEM calculation to infer the
network model that fit the measured expression data. In
general, SEM is a comprehensive statistical model that
includes two types of variables: observed and latent. These
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variables constitute the structural models that consider the
relationships between the latent variables and the
measurement models that consider the relationships between
the observed variables and the latent variables. These
relationships can be presented both algebraically, as a system
of equations, and graphically, as path diagrams.

In this study, the 9 genes (GATA2, Nanog, Oct3/4, Nodal,
Lmx1A, MAP2, Nestin, Pax6, and Tuj1) were defined as the
observed variables. Meanwhile, none were defined as latent
variables, since considerations about the common regulator
of several genes are dispensable for this study. The un-
observed factor, which affected each gene's expression, was
calculated as an error. All observed variables were
categorized into one of two types of variables, exogenous
and endogenous, according to their interactions with other
variables. Exogenous variables are those that are not
regulated by the other variables, and endogenous variables
are regulated by the others. In the initial model, the starting
genes are defined as exogenous variables, while all other
genes are defined as endogenous variables. Regulatory
relationships exist between the observed variables in the
network models. The model is defined as follows:

y=Ayte &)

Here, y is a vector of p observed variables (measured gene
expression patterns), and A is a p X p matrix representing the
regulatory relationships between the observed variables.
Errors that affect the observed endogenous variables are
denoted by e.

The SEM software package SPSS AMOS 17.0 (IBM,
USA) was used to fit the model to the data. The quality of
the fit was estimated by the Chi-square statistic (CMIN), the
goodness-of-fit index (GFI), which measures the relative
discrepancy between the empirical data and the inferred
model, and the adjusted GFI (AGFI), which is the GFI
modified according to the degrees of freedom. Furthermore,
we used CFI and RMSEA as fitting scores, to evaluate the
model fitting. Since these indices have threshold values, as
criteria to decide whether the model is suitable to obtain data
independent of a huge sample number, they were considered
to be useful to clarify the degree of model fitting in this study.

F. Parameter estimation

Parameter estimation was performed by comparing the
actual covariance matrix, calculated from the measured data,
with the estimated covariance matrices of the constructed
model. Maximum likelihood is commonly used as a fitting
function to estimate SEM parameters:

Fy(S, Z(0))=logi(O)|-log|SH(2(6)"S)—p ©6)

Here, Z(0) is the estimated covariance matrix, S is the sample
covariance matrix, [Z| is the determinant of matrix X, /(%) is
the trace of matrix X, and p is the number of observed
variables. The principal objective of SEM is to minimize
Fyu (S, Z(6)), which is the objective function and is used to
obtain the maximum likelihood. Generally, Fy;(S, Z()) is a
nonlinear function. Therefore, iterative optimization is
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required to minimize Fy;(S, Z(6)) and to find the solutions
[23].

G. Iteration for the optimal model

The regulatory network analysis by SEM consists of two
parts: parameter fitting and structure fitting. Afier the
parameters of the constructed model are estimated by
maximum likelihood, the network structures are evaluated
according to the goodness of fit between the constructed
model and the measured data. Through acceptance or
rejection of the models, the optimal model that describes the
measured data can be selected.

In the network model, the covariance matrix between
variables is calculated by the estimated parameters. The
similarity between the constructed model and the actual
relationships is predicted by comparing the matrix calculated
from the network model to the matrix calculated from the
actual data. To detect the quantitative similarity between a
constructed model and an actual relationship, fitting scores
are usually utilized. In this study, the quality of the fit was
predicted by four different fitting scores: CMIN(Prob), GFI,
AGFI, CFI, and RMSEA. The value of CMIN(Prob) is
calculated by the Chi-square statistic divided by the degrees
of freedom, and a CMIN(Prob) value higher than 0.05 is
considered as a good model fit. Values of GFI, AGFI, and
CFI above 0.90 are required for a good model fit. RMSEA is
one of the most popular parsimony indexes displayed in the
table, and RMSEA values below 0.05 represent a good
model fit [24]. Furthermore, RMSEA values of 0.10 or more
are considered to indicate that the constructed model is far
from the actual data.

To optimize the model, an iteration algorithm was
developed, as follows:

Step 1: Deletion of a non-significant edge from the model.
Use 0.05 as the significance level for the determination of
the significant regulation among the variables. After the
parameters are estimated, the inverse matrix of the Fisher
information matrix of parameters is calculated. The inverse
matrix of Fisher information represents the asymptotic
parameters' covariance matrix. The probability of each
parameter is calculated by using this asymptotic parameters'
matrix, since all of the parameters are usually normally
distributed.

Step 2: Reconstruction of the network model. The
structure of the network model without the non-significant
edge is different from that of the former model. Thus, all
parameters should be re-calculated from the reconstructed
model, and the similarity of the network structure is also re-
calculated.

Step 3: Iteration of Steps 1 and 2 until all edges become
significant. Since the probabilities of all of the edges in the
reconstructed models have also changed, the deletion of the
non-significant edges is executed step-by-step.

Step 4: Addition of a possible causal edge to the
reconstructed model. According to the Modification Index
(MI), we add a new causal edge between the observed
variables. The MI measures how much the chi-square
statistic is expected to decrease if a particular parameter
setting is constrained [24]. The MI value indicates the
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possibility of new causality between the variables, and thus
we add a new edge according to the highest MI score.

Step 5: Iteration from Steps 1 to 3. The addition of a new
edge to a constructed model changes the structure of the
network model. In other words, all parameters, including the
probabilities of all edges, have also changed again. Thus, we
execute the iteration from Step 1 to Step 3 again.

Step 6: Determination of significant relationships among
error terms. After all of the edges are significant and all of
the MI scores are lower than 10.0 in the constructed model,
significant relationships between error terms are estimated
by the MI scores. The relationships among the error terms
have no direction, and thus they are a correlation between
error terms. These relationships were used for the
calculations, but were not incorporated within the network.

H. Extraction of association rules by affinity analysis

We applied affinity analysis to discover the similar
regulatory mechanism models among the 15 chemicals'
networks. To detect the relative chemical pairs as association
rules, we created a binary dataset with conserved regulations
among different chemicals. According to the original
definition of association rule mining [25], we defined the
problem of association rule mining as follows: Let /= { ij,...,
i, } be a set of n binary attributes called items. Let 7= { #,...,
I, } be a set of database transactions. Each transaction # is
represented by the binary vector = ( #/, #, ..., #"), which
includes 7 elements. The value of 7 indicates the appearance
of transaction # in item 7. In this study, the 15 chemicals
were defined as a set of items, and each conserved gene
regulation between the different chemicals was considered as
one transaction. Thus, the value of 1 indicated the
appearance of the conserved gene regulation in the
chemical's network, while the value of 0 indicated its
absence.

An association rule is defined as the implication of the
form I,=> I,, where I, and I, are sets of some items in 7, but
some of the same items are not present in [, and ;. To detect
the association rules, we used some constraints: support,
confidence and lift. Support is defined as the proportion of
transactions that contain the item set to all transactions. Thus,
support(L,I,)=prob(l,I,) was calculated as the joint
probability of I, and I, The confidence constraint is
displayed as conf{l,=>1;), and it is defined as the conditional
probability prob(L|l;). Thus, we calculated confll=>1) from
the proportion of transactions with the item set I, to the
transactions with the item set Z,. The lift constraint is defined
as:

lif(I=>1y) = confl=>1;)/prob(ls) @)
Lift is a measure of the performance of an association rule
with respect to the population as a whole, against the random
choice. Thus, lift was obtained by calculating the ratio of the
target response to the average response. In general, a lift
value over 1 is suitable for association rules.
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TII.  RESULTS AND DISCUSSION

A. Chemical concentrations had no effect

In this study, gene expression was measured in the
presence of different concentrations of various chemicals,
with several exposure times. To reveal the most effective
factor for gene expression, multi-factor ANOVA was applied
to the measured data. In statistics, ANOVA is utilized to
detect differences between groups in terms of some variables.
Usually, the chance of committing a type I error will increase
by performing multiple two-sample t-tests, and a statistical
test is needed to determine whether or not the means of more
than two groups should be applied, such as Tukey's HSD test
and so on. Although these post-hoc tests are useful for
detecting the factor pairs with significant differences
between them, the factor pairs are not important in this study.
Instead, we wanted to determine factors, which caused gene
expression differences, and thus we compared three factors:
chemicals, time differences, and concentrations.

The 15 chemicals were divided into 3 categories by their
toxicities: Neurotoxic chemicals, Genotoxic chemicals,
Carcinogenic chemicals, and other type chemicals. We
compared the gene expression differences between these
toxicity types. We calculated a p-value from the F statistic
for each gene. The p-value is the probability that the
variation between conditions may have occurred by chance,
so genes with smaller p-values vary more significantly. Thus,
the gene’s variation is less likely to have occurred by chance,
and is conversely more likely to be comnected to the
difference in conditions. The probabilities of expression
differences for each gene, grouped by each factor, are shown
in Table L. Interestingly, the expression of all of the genes
was significantly different among the chemicals and the time
differences. However, the chemical concentrations showed
almost no significant differences in terms of the expression
of the genes. Thus, the concentrations of the chemicals had
no effect on the expression of the tested genes in the ES cells.

TABLE L RESULTS OF MULTI-FACTOR ANOVA

Chemical{a) Conceatration{b)  Time (c) a*b a'c b*e
GATA2 <00 0.076 <0.01 0.55% <0.01 0.450
Nanog <0.0% <001 <0.01 0.0t <001 0.022
Oct34 <0.01 <001 <001 0.055 <0.01 0.044
Nodat <0.01 0130 <0.01 <0.01 <0.01 0.040
LmxiA <0.04 0.714 <0.01 <0.01 <001 0787
MAP2 <0.01 0479 <0.01 <0.01 <001 0578
Nestin <0.01 <00 <0.0% 0042 <0.01 0.548
Pax8 <0.01 0.575 <0.01 <0.01 <0.01 0.861

Tujt <0.01 0011 <0.01 0.810 <0.01 0.087

a. Probabilities were calculated from the F statistics and the degrees of ﬁ'eedom:
b. Significant probabilities are displayed as "<0.01" in this table.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

107



B.  The complexities of the initial models are related to the
chemical toxicity

We utilized our newly developed method to construct the
initial gene regulatory network models under the conditions
with 15 chemicals. One of the distinguishing features of our
new method is its ability to include a cyclic structure in the
network model. Cyclic regulation, such as feedback
regulation, is considered to be important for cells to control
normal gene expression, and the new method is useful to
detect cyclic regulation from the gene expression data. Fig. 2
shows the constructed initial network models.

In Fig. 2, the components of the constructed models
were: 9 genes with 22 relationships in MeHg, 9 genes with
23 relationships in 2-NP, 9 genes with 19 relationships in

@ (b) (c)
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ACA, 9 genes with 23 relationships in p-NA, 9 genes with17
relationships in PCB, 9 genes with 9 relationships in BZP, 8
genes with 14 relationships in DENA, 8 genes with 10
relationships in DEAF, 8 genes with 19 relationships in PB,
9 genes with 23 relationships in TMX, 7 genes with 9
relationships in DES, 9 genes with 23 relationships in TCDD,
8 genes with 10 relationships in THAL, 6 genes with 9
relationships in BPA, and 8 genes with 10 relationships in
PER. The distribution of the number of relationships
according to the toxicity type is displayed in Fig. 3. In Figs.
2 and 3, the numbers of edges were obviously different,
according to the chemicals' toxicity. Neurotoxic and
Carcinogenic chemicals contained more relationships than

{f) (g) (h)

tang hadat

Figure 2. Initial network models: (a) MeHg, (b) 2-Np, (¢) ACA, (d) p-NA, (e) PCB, (f) BZP, (g) DENA, (h) DEAF, (i) PB, (j) TMX, (k) DES, (1) TCDD,
(m) THAL, (n) BPA, (0) PER. The networks with the same toxicity are arranged on the same line.
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Figure 3. Box plot of edge numbers: Distribution of the number of edges
in each initial model.

Genotoxic and other chemicals. Furthermore, only one or
two genes were arranged as the last endogenous genes in the
initial models with Neurotoxic and Carcinogenic chemicals,
as opposed to two or more genes in the initial models of
Genotoxic and other chemicals. Thus, the effects of the
Neurotoxic or Carcinogenic chemicals were complicated, but
could be summarized into only one or two target genes. In
contrast, the expressions of many genes were finally affected
by Genotoxic and other chemicals, via simple regulatory
networks. These differences between chemical toxicity types
summarized the distinctive gene expression profiles for each
chemical.

All of the initial models included some duplicated gene
interactions, such as a direct interaction between two genes
and an indirect interaction between them. Before the SEM
calculation, we simplified all of the initial models. To
simplify these duplicated interactions, we only retained the
longest path between two genes. In the initial model, the
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edges do not represent the direct regulation, but the time
provenience information. In other words, the difference
between direct and indirect interactions in the initial model is
not very important. Thus, the regulation displayed by a direct
path could be replaced by indirect paths in the model. By
retaining the longest paths, all of the preceding information
was included, as the simplest diagram.

C.  Structures of inferred networks

The final inferred networks for each chemical are
depicted in Fig. 4, and the goodness of fit scores are
displayed in Table II. From Table II, almost all of the
models were considered to fit well with the measured data by
some fitting scores, CMIN(Prob), CFI, and RMSEA, except
for the DES network. In the DES network, all of the fitting
scores indicated that the inferred network could not be
judged as a well-fitted model. Since the obtained fitting
scores were the best scores in this analysis, we considered
the network inference for DES to need more expression data.

The inferred networks of chemicals revealed distinct
structures. The cell differentiation-related genes and the
neuron development-related genes were intermixed in almost
all of the inferred networks, except for MeHg and BPA. In
the inferred network of MeHg, the regulations among cell
differentiation-related genes and the regulation among
neuron development-related genes were separated to the
right and left. This specific shape means that the effects of
MeHg appeared differently between neuronal and other
development. This difference may be related to the two
different effects of MeHg: developmental deficits in children
[26], and risk of cardiovascular disease in adults [27]. On the
other hand, cell differentiation-related genes and neuron
development-related genes were separated at the top and
bottom in the BPA network. In the BPA network, neuron
development-related genes were only disturbed by cell
differentiation-related genes.

TABLE II. FITTING SCORES OF INFERRED NETWORKS

Neurotoxic Genotoxic Carcinogenic Other
MeHg 2-NP ACA p-NA PCB BZP DENA DEAF PB TMX DES TCDD : THAL BPA PER
CMIN (Prob); 0.50 0.34 0.06 0.26 0.30 0.44 0.16 0.1 0.01 0.27 0.00 0.63 0.31 0.52 0.1
GFl 0.76 0.82 0.83 0.78 0.79 0.79 0.84 0.77 0.75 0.81 0.74 0.83 0.83 0.78 0.78
AGFI 0.60 0.63 0.61 0.59 0.61 0.62 0.65 0.60 0.54 0.61 0.52 0.64 0.60 0.64 0.56
CFl 1.00 0.99 0.96 0.97 0.98 1.00 0.97 0.94 0.90 0.98 0.88 1.00 0.99 1.00 0.96
RMSEA 0.00 0.07 0.15 0.10 0.08 0.03 0.12 0.14 0.21 0.08 0.23 0.00 0.08 0.00 0.14

a, Five fitting scores were utilized for measuring the fimess level between the constructed model and the measured data.
b. The well-fitted threshold of each score is: CMIN(Prob)is P>0.05, GFI > 0.90, AGFI> 0.90, CFI>0.90, RMSEA< 0.05.
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Figure 4. Inferred chemical networks: A positive relationship between genes is displayed with a solid arrow. A negative relationship between genes is
displayed with a dashed arrow. Gene names with blue characters indicate "neuron development-related genes", and genes with red characters indicate "cell
differentiation-related genes". (a) MeHg, (b) 2-Np, (¢) ACA, (d) p-NA, (¢) PCB, (f) BZP, (g) DENA, (h) DEAF, (i) PB, (j) TMX, (k) DES, (I) TCDD, (m)
THAL, (n) BPA, (o) PER. The networks with the same toxicity are arranged on the same line.

Concerning the shapes of the inferred networks, we
defined the network shape by comparing the numbers of
genes at the top phase (N(fop)) and the final phase
(N(bottom)) within each chemical network. One of the
specific shapes was a centralized model, which was defined
as N(top)-N(bottom)>2. In this model, many genes were
arranged at the top phase, and only a few genes were
arranged at the final phase in the network structure. The
ACA network was the only network with a centralized model.
The other specific shape was a diffusion model. The shape of
a diffusion model is defined as N(bottom)-N(top)>2. Among
the well-fitted models, four networks were classified into
diffusion models: BZP, DEAF, PB, and PER. The shape of
the BPA network was different from those of the other
networks, and resembled a bow-tie like model.

Fundamentally, the genes were hierarchically controlled
in the inferred networks, but there were a few recursive
relationships. Interestingly, the values of the regression

weights of the recursive regulations among all of the inferred
networks were negative: regulation from Oct3/4 to Nestin in
the p-Na network, regulation from GATA2 to Nanog in
TCDD, and regulation from Nanog to Lmx1A in PER. These
recursive regulations indicated that feedback regulation
exists in ES cells.

D. Detection of Toxicity-Specific Effects

To detect the specific features that were dependent on the
toxicity type, we monitored the position of each gene in the
inferred networks. Table III displays the number and
probability of incoming edges and those of outgoing edges
for each gene. Among the Neurotoxic chemicals' networks,
Tujl has significantly few incoming edges and significantly
many outgoing edges. Actually, Tujl was arranged as a
result of network regulation in almost all of the Neurotoxic
networks.
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TABLE Il INTERACTING EDGES OF EACH GENE
Neurotoxic Genotoxic Carcinogenic
QUTPUT INPUT OUTPUT INPUT OUTPUT INPUT
Num P Num P Num P Num P Num P Num P
Oct3/4 4 0.113 8 0111 2 0.120 7* 0.032 1" 0.043 9* 0.042
GATA2 5 0.135 3 0.083 1 0.091 3 0222 6 0.146 2 0.070
Lmx1A 3 0.084 7 0.141 6 0.101 2 0.145 4 0.141 3 0.114
MAP2 9 0.077 2 0.049 7 0.070 3 0.222 5 0.155 6 0.160
Nanog 7 0.132 5 0.146 7 0.070 3 0.222 7 0.118 8 0.079
Newtin 7 0.132 5 0.146 2 0.120 5 0.174 3 011 6 0.160
Nodal 0.107 5 0.146 6 0.101 2 0.145 4 0.141 4 0.154
Pax6 9 0.077 8 0.111 0 0.060 5 0.174 10" 0.025 4 0.154
Tuj1 1" 0.031 10" 0043 2 0.120 3 0.222 [ 0.146 4 0.154

This means that the toxicities of Neurotoxic chemicals are
considered to finally affect Tujl, which is known to
contribute to microtubule stability in neuronal cells [28].
Although the expression levels of 5 genes were measured as
neuron development-related genes, Tujl was detected as the
final target of Neurotoxicity.

Among the Genotoxic chemicals® networks, Oct3/4
exhibited a significant number of incoming edges.
Furthermore, both Pax6 and Oct3/4 were arranged at the
lower phase in all Genotoxic networks. Oct3/4 is one of the
key regulators of pluripotency [29], and Pax6 is known as a
key transcription factor for the development of the cerebral
cortex and other sensory organs [30]. Considering the
features of both Pax6 and Oct3/4, developmental processes,
such as normal cell differentiation, were disturbed by
Genotoxic chemicals.

In the Carcinogenic networks, both the incoming and
outgoing edges of Oct3/4 were significant, and Oct3/4 was
arranged as a result in almost all of the Carcinogenic
networks. The chemicals that were classified as either
Genotoxic or Carcinogenic are known as carcinogens
[31][32]. Thus, the Genotoxic and Carcinogenic features
indicated that the chemical disturbance of Oct3/4 is related to
cancer. The other feature of the Carcinogenic networks,
regulation from Nanog to Nodal, was conserved among all of
the Carcinogenic networks. Both Nanog and Nodal are
important for normal early embryonic development. Nanog
is a key factor for maintaining pluripotency in embryonic
stem cells [33][34]. Nodal is related to the development of
the left-right axial structure [35][36], and its signaling
pathway is known to be important very early in development,
for cell fate determination and many other developmental
processes [36]. Although the Carcinogenic chemicals do not
affect genetic structures, the regulatory mechanisms of these
carcinogenic chemicals may be similar.

a. The significant values (P<0.05) are highlighted with *.

To compare the conserved gene relationships among
chemicals with the same toxicity, we extracted the conserved
gene regulations from the chemicals' networks. The numbers
of conserved regulations were: 13 within Neurotoxic
chemicals, 2 within Genotoxic chemicals, and 11 within
Carcinogenic chemicals. Even though the average numbers
of edges in the inferred models were similar among the three
toxicity types (10.6 in Neurotoxic, 10.1 in Genotoxic, and
12.5 in Carcinogenic), the numbers of conserved regulations
were different. From this feature, it is considered that a
similar regulatory mechanism controlled the Neurotoxic
chemicals’ effects and the Carcinogenic chemicals’ effects in
ES cells, but the gene regulation by each Genotoxic chemical
was independent of the toxicity type.

E.  Similar mechanisms between chemicals

By utilizing the data mining method, we identified the
chemicals with similar regulation. First, we constructed a
transaction Table about the conserved regulation for each
chemical, as shown in Table IV. Each row of data indicates
the conserved regulation between genes, and each column
indicates one chemical. In this transaction table, the value of
1 means that the corresponding regulation appeared with the
chemical, whereas the value of (0 means that the regulation
did not exist in the chemical’s network.

In the affinity analysis, we set the thresholds as: Support
> 0.5, Confidence > 0.5, and lift > 1. According to these
restrictions, 2 rules were extracted. One is BP4 => DEAF,
and the other is DEAF => PCB. These results reflected the
finding that the regulations in the BPA network were also
conserved in the DEAF network. Furthermore, the
regulations in the DEAF network were conserved in the PCB
network. Although these three chemicals were categorized
into different types of toxicities, they may share the same
regulatory mechanisms to affect the ES cells.
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IV. CONCLUSION

We applied an improved SEM approach to reconstruct a
gene regulatory model from gene expression data in human
embryonic stem cells. Our results confirmed that SEM is a
powerful approach to estimate the gene regulation caused by
chemical toxicity. The shapes of the inferred network models
for the various chemicals were different, but the inferred
networks had a tendency to finally affect the same gene by
their toxicity type. One of the neuron development-related
genes, Tujl, was arranged as the result of almost all of the
Neurotoxic toxicity networks. Furthermore, Oct3/4 was

International Journal on Advances in Life Sciences, vol 5 no 1 & 2, year 2013, http.//www.iariajournals.org/life_sciences/

important for both the Genotoxic and Carcinogenic networks.

Since the Genotoxic chemicals are also carcinogenic, Oct3/4
is considered to be carcinogenic in ES cells. We detected
some specific features for each toxicity type, and thus the
inferred network among genes can be utilized for the
estimation of a chemical’s effects, from experimentally
obtained expression profiles. The ability to identify
expression profiles and the corresponding biological
functions is expected to provide further possibilities for SEM
in the inference of regulatory mechanisms by chemical
toxicity.

TABLEIV. TRANSACTION TABLE OF CONSERVED REGULATIONS
edge info. Neurotoxic chemicals hemical Car g h | Other chemicals
parent child MeHg 2-Np ACA p-NA PCB BZP DENA DEAF PB TMX DES TCDD i THAL BPA PER
Oct34 Lmx1A 0 1 2] 0 0 0 [ o 0 0 0 o [ 1 e
Oct34 Nestin o o 0 1 0 0 1 0 1 0 0 0 o 0 0
Oct34 Pax6 4 [¢] 1 o] 0 2} 1 0 0 0 s} 3} 0 0 ]
Oct34 Tuj1 0 0 1 0 0 0 o 0 0 0 0 0 1 0 0
GATA2 Oct34 1 0 0 0 ] 1 o 0 o 0 0 0 0 0 0
GATA2 LmxiA 0 0 1 1 1 o ] 0 0 0 o 0 0 o 0
GATA2 Nestin 0 [¢] s} 0 0 0 0 0 [+] 1 1 1 0 0 0
GATA2 Pax6 0 i} [4 0 1 0 0 0 0 1 1 o 0 0 0
Lmx1A GATA2 [+ [} 0 0 0 o 1 o 1 [} o o 0 1 0
Lmx1A MAP2 0 [ 0 [} 0 1 1 [ 0 0 0 5} 0 1 0
Lmx1A Nanog 0 0 0 0 0 0 0 (! 1 0 0 1 [} 0 0
Lmx1A Pax6 1 0 1 a a 1 4 Q 0 a [ [} 4 a 0
Lmx1A Tujt 0 0 o] 1 [+] o [¢] 0 [¢] 0 1] 1 4] 0 0
MAP2 Oct34 o] ¢} 0 0 1 0 1 0 1 0 [s} 0 1 0 1
MAP2 GATA2 0 1} a 0 0 1 0 0 [} 0 0 0 0 0 1
MAP2 Lmx1A 3} o 0 0 1 0 0 1 1 0 0 0 [} 0 [}
MAP2 Nanog ] 0 ] 0 0 0 1 0 o 1 0 0 1 0 0
MAP2 Nestin 1 1 0 1 0 0 [¢] 1 0 0 0 1 0 1 0
MAP2 Pax6 0 0 0 1 1 0 [ 1 o 0 0 ] 1 1 0
MAP2 Tuj1 1 0 ] 0 1 1 4 0 [ 1 0 0 o o 0
Nanog Oct34 1 0 [ 0 1 0 0 1 1 0 1 0 0 [ 0
Nanog Lmx1A 0 0 0 0 [+ 0 0 1 0 0 0 0 [+ 1 1
Nanog MAP2 3} [ 0 o [} 1 [} o 0 0 0 1 0 0 0
Nanog Nestin [} ¢} [ 1 i 0 1 <} 4} 0 0 0 0 3} 0
Nanog Nodal [} o} 1 1 [} 1 ] 0 1 1 1 1 0 0 [+]
Nanog Tuj1 0 o 0 1 1 1 0 0 0 0 0 0 0 3} 0
Nestin Oct34 [4 o 1 1 0 o 0 1 0 1 0 0 0 0 0
Nestin GATA2 0 0 0 0 1 0 0 1 0 0 0 0 1 [ 0
Nestin Nanog o 1 4] 0 [} [i] 0 a 0 1 0 4] 0 o 0
Nestin Nodal 0 0 0 1 0 [} 0 0 0 3} 0 0 1 0 0
Nodal Oct34 0 1 [¢} 0 0 1 [4 0 0 1 0 0 4 i} 0
Nodal MAP2 0 o o 0 0 o [} 0 0 o 1 0 [} 0 1
Nodal Nanog 1 1 o 0 1 o 1 1 0 o 0 0 0 1 1
Nodal Nestin 0 0 [} 0 0 0 1 0 0 [ 0 0 [ o 1
Nodal Pax6 0 0 1 0 0 4] 1 0 0 0 0 0 3} 0 0
Nodal Tujt 1 0 1 0 0 o ! 1 0 1 o 0 1 0 0
Pax6 Oct34 0 1 o 0 0 [ o 0 0 0 1 1 3} 0 0
Pax6 GATA2 [4 1 0 1 0 0 [\ 0 0 o 0 0 o 0 0
Pax6 Lmx1A o 1 1} 0 0 0 [+ 4} 0 1 1 0 o 0 0
Paxé MAP2 1 1 0 0 0 0 [+} [4 1 1 1 0 [} 0 1
Pax6 Nanog 1 o 0 0 0 o 0 [¢} 0 1 0 0 0 0 0
Pax6 Tuj1 0 0 1 0 0 0 0 0 0 0 0 1 1 [+ 0
Tuj1 Oct34 0 0 0 0 3] 0 1 0 0 1 0 4 0 0 0
Tuj1 Nanog 0 0 0 0 ¢} 0 0 0 1 o] 1 0 1 o} 0
Tujt Nodal 0 1 0 0 o] 0 1 0 [¢] ] 0 0 0 [ o
Tuji Paxé 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1
a. The first column indicates the starting gene of one edge, and the second column indicates the end gene of the same edge.
b. The value of 1 means that the di lati d with the chemical, whereas the value of 0 means that the regulation did not exist in the chemical’s network.
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