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network among genes can be utilized for the estimation of a
chemical’s effect, from experimentally obtained expression
profiles. The ability to identify expression profiles and the
corresponding biological functions is expected to provide
further possibilities for SEM in the inference of regulatory
mechanisms by chemical toxicity.
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Alternative pre-mRNA splicing allows exons of pre-mRNA to
be spliced in different arrangements to produce functionally
distinct mRNAs. More than 95% of human genes encode splice
isoforms, some of which exert antagonistic functions. Recent stud-
ies revealed that alterations of the splicing machinery can cause
the development of neoplasms, and understanding the splicing
machinery is crucial for developing novel therapeutic strategies
for malignancies. Colorectal cancer patients need novel strategies
not only to enhance the efficacy of the currently available agents
but also to utilize newly identified therapeutic targets. This review
summarizes the current knowledge about the splice isoforms of
VEGFA, UGTIA, PXR, cyclin D1, BIRCS (survivin), DPD, K-RAS,
SOX9, SLC39A14 and other genes, which may be possible ther-
apeutic targets for colorectal cancer. Among them, the VEGFA
splice isoforms are classified into VEGFAxxx and VEGFAxxxb,
which have proangiogenic and antiangiogenic properties, respec-
tively; UGTIA is alternatively spliced into UGT1A1 and other
isoforms, which are regulated by pregnane X receptor isoforms
and undergo further splicing modifications. Recently, the splicing
machinery has been extensively investigated and novel discover-
ies in this research field are being reported at a rapid pace. The
information contained in this review also provides suggestions for
how therapeutic strategies targeting alternative splicing can be
further developed.

Introduction

Colorectal cancer (CRC) is the third most common cancer worldwide
and the second most common cause of cancer mortality; ~608 000
deaths are attributed to this disease annually (1). As indicated in the
National Comprehensive Cancer Network (NCCN) guidelines version
1.2013 (2), the anticancer agents used for CRC include 5-fluorouracil
(5-FU), irinotecan hydrochloride (CPT-11), oxaliplatin and molecu-
larly targeted agents such as bevacizumab, cetuximab and panitu-
mumab. According to the guidelines, in the adjuvant setting for stage
I or ITI patients with resectable CRC, regimens including 5-FU-based
agents and leucovorin with or without oxaliplatin are recommended,
and for stage IV patients with unresectable CRC, regimens including
5-FU-based agents and leucovorin with oxaliplatin or CPT-11 and the
addition of bevacizumab, cetuximab or panitumumab are considered

Abbreviations: 5-FU, S5-fluorouracil; 2-OMe, 2-O-methyl; 2-MOE,
2/-O-methoxyethyl; 3’SS, 3’ splice site; 5’SS, 5” splice site; BIR, baculovirus
IAP repeat; BIRCS, baculoviral IAP repeat-containing 5; CCND1, cyclin D1;
CDK, cyclin-dependent kinase; CPT-11, irinotecan hydrochloride; CRC, colo-
rectal cancer; CRNDE, colorectal neoplasia differentially expressed; DPD,
dihydropyrimidine dehydrogenase; ESE, exonic splice enhancer; ESS, exonic
splice silencer; hnRNP, heterogeneous nuclear ribonucleoprotein; IAP, inhibi-
tor of apoptosis protein; ISE, intronic splice enhancer; ISS, intronic splice
silencer; pre-mRNA, precursor messenger RNA; PXR, pregnane X recep-
tor; siRNA, small interfering RNA; SR protein, serine/arginine-rich protein;
UGT1A1, UDP glucuronosyltransferase 1A1; VEGF, vascular endothelial
growth factor; VEGFR, VEGF receptor.
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(2). Over the past two decades, there have been advances in the
treatment of CRC; however, patients need novel strategies not only
to enhance the efficacy of the above agents but also to utilize newly
identified therapeutic targets.

Alternative precursor messenger RNA (pre-mRNA) splicing is
the process by which the exons of pre-mRNA are spliced in dif-
ferent arrangements to produce structurally and functionally dis-
tinct mRNAs and proteins (Figure 1A ) (3). After the completion of
the Human Genome Project in 2004, alternative splicing has been
recognized as one of the most important mechanisms that main-
tains genomic and functional diversity. It is well known that >95%
of human genes encode splice isoforms (4), some of which exert
antagonistic functions. A recent study revealed that alterations of
the splicing machinery can cause the development of myeloid neo-
plasms (5), and understanding the splicing machinery is crucial for
the development of novel therapeutic strategies for malignancies.
Another recent study revealed that a series of functionally associ-
ated splice isoforms are simultaneously expressed under a common
regulatory network (6), which supports the notion that an entire set
of splice isoforms or their common regulatory network should be
considered as therapeutic targets, rather than focusing on a single
gene as a target. In this review, we summarize the current knowl-
edge about the potential of using splice isoforms as therapeutic
targets, focusing on CRC, and discuss the future work that needs
to be done to develop therapeutic strategies targeting these splice
isoforms.

Alternative pre-mRNA splicing

The first studies on pre-mRNA splicing were published in 1977 (7,8).
Two regulatory factors have been the focus of most investigations
related to the splicing machinery: cis-elements and trans-elements
(Figure 1A). Among the cis-elements, consensus splice sites such as
the 57 splice site (5’SS; also known as a splice donor site), the branch
point motif, the poly-pyrimidine tract [(Y)n] and the 3’ splice site
(3’SS; also known as a splice acceptor site) are essential for pre-mRNA
splicing. Splice enhancers and silencers are also categorized into cis-
elements, both of which are important for the recognition of the 5’SS
and 3’SS sites. Depending on their localization within the genome,
splice enhancers and silencers are subclassified into exonic splice
enhancers (ESEs), intronic splice enhancers (ISEs), exonic splice
silencers (ESSs) and intronic splice silencers (ISSs). Cis-elements are
bound by trans-elements. Among the trans-elements, spliceosomes are
multicomponent complexes comprising >200 subunits. Among the
subunits of spliceosomes, serine-/arginine-rich proteins (SR proteins,
SRp) predominantly bind to ESEs and ISEs; in contrast, heterogene-
ous nuclear ribonucleoproteins (hnRNPs) commonly bind to ESSs and
ISSs. In many cases, hnRNPs block spliceosome assembly, resulting
in exon skipping. Recently, tissue- or organ-specific SR proteins and
hnRNPs have been extensively investigated (9,10). Figure 1B shows
several patterns of alternative splicing in which splice isoforms are
generated: (i) exon skipping in which an alternative exon is excluded
or included, (ii) intron retention between constitutive exons, (iii) inclu-
sion of one of the exons in a mutually exclusive manner, (iv) use of
alternative 5’SSs, (v) alternative 3’SSs, (vi) alternative initiation sites
and (vii) alternative polyadenylation sites.

The normal expression profile is indicated in the lower left panel,
whereas the aberrant splicing that is observed in malignancies is
shown in the lower right panel of Figure 1A, and can be subclassified
into two categories: (i) aberrant splice isoforms as individual
transcripts and (ii) an aberrant expression profile of splice isoforms
as an entire set of transcripts; both of which occur at the germ cell
or somatic cell level. Herein the word ‘change’ is used to encompass
both ‘genetic polymorphism’ and ‘genetic alterations’. The former
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Fig. 1. (A) The regulation of alternative pre-mRNA splicing and its alteration in malignancies (adapted from ref. 3). Cis-elements and trans-elements are
indicated with rectangles and ellipses, respectively. In the nucleotide sequences, Y denotes a pyrimidine (U or C) and R denotes a purine (G or A). ESE, exonic
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mRNA splicing (adapted from ref. 3). The green boxes indicate constitutive exons and the blue boxes indicate alternatively spliced exons.
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category ‘aberrant splice isoforms’ can be caused by changes in the
5’-untranslated region (UTR), coding regions and 3’-UTR, as well
as ESEs and ESSs, and altered expression of trans-elements may
also cause aberrant splice isoforms. In contrast, the latter category
‘aberrant expression profiles’ can be caused by altered expression and
structures of trans-elements, changes in the 5-UTR, 3’-UTR, ESEs,
ESSs, ISEs and ISSs, and possibly by changes of the consensus splice
sites in introns. Recent evidence has demonstrated that most splicing
occurs cotranscriptionally, and transcription modulates the splicing
as well (11). In the following sections, the potential use of splice
isoforms as therapeutic targets for CRC, all of which were recently
identified, is discussed.

Vascular endothelial growth factor

The vascular endothelial growth factor (VEGF) gene superfamily
consists of at least six ligands, many of which are spliced to generate
a multitude of ligand isoforms (12). The VEGF molecules bind spe-
cifically to one or two of the three VEGF receptors (VEGFRs), with
VEGFA binding to VEGFR-1 and VEGFR-2 (13). VEGFA and its
receptors have been the most common research focus with regard to
therapeutic targets with antiangiogenic effects. In addition to the pre-
viously known subfamily of VEGFA isoforms (VEGFAxxx), another
subfamily, VEGFAxxxb, was identified in 2002 (i4). The terminal
exon 8 of VEGFA gene is spliced in a mutually exclusive manner,
resulting in a six amino acid substitution (CDKPRR to SLTRKD)
to generate VEGFAxxx and VEGFAxxxb, respectively (Figure 2A).
Recent studies have revealed the VEGFAxxx isoform to have proan-
giogenic properties, whereas VEGFAxxxb has antiangiogenic proper-
ties (15,16).

Bevacizumab (17), which was approved for clinical use against
CRC in 2004, is a humanized monoclonal antibody that inhibits both
the VEGFAxxx and VEGFAxxxb isoforms by blocking their common
kinase domain receptor binding site (18). Despite the effectiveness
of bevacizumab when it is combined with cytotoxic agents, its low
response rate, high rate of resistance and adverse events have been dis-
cussed (19). These disadvantages of using bevacizumab may be caused
by non-specific targeting, probably resulting from the non-specificity
of the antibody for the pro- and antiangiogenic isoforms. In response
to these findings, strategies specifically blocking the VEGFAxxx sub-
family have been explored and pegaptanib was developed as a short
modified RNA aptamer that specifically binds to VEGFAxxx but not
VEGFAxxxb (20). Another possible target for CRC is a trans-element,
SRp55, which is known to increase VEGFAxxxb expression, leading
to antiangiogenic effects (21). In addition, IGF1, TNF-a and TGF-
1 were also identified as being involved in regulating the alternative
splicing of VEGFA (21).

UDP glucuronosyltransferase 1A1 and pregnane X receptor

CPT-11, a semisynthetic camptothecin derivative that functions
as a topoisomerase I-inhibitor, has been used as an effective anti-
cancer prodrug against CRC. CPT-11 is anabolized to its active
metabolite, SN-38, by carboxylesterase (22), and catabolized to its
inactive metabolite by glucuronidation (23). UDP glucuronosyltrans-
ferase 1A1 (UGT1A1) is the main enzyme involved in glucuroni-
dation of UDP, and genetic polymorphisms of this enzyme, such as
UGT1A1#28 (leading to a TA insertion in the promoter region) (24)
and single nucleotide polymorphisms (25,26}, are known to affect its
glucuronidation activity. However, it is widely recognized that the
UGT1AT1 activity cannot be explained by the polymorphisms alone.
One of the main reasons may be the alternative splicing of the UGTIA
gene. Based on a search of the National Center for Biotechnology
Information (NCBI) database and a PubMed literature survey, at least
nine isoforms, including UGT1A1, are generated by the alternative
splicing of UGTIA (Figure 2B), among which UGT1A1, UGT1A7,
UGT1A9 and UGT1A10 have glucuronidation activity (27,28), but
some of the other isoforms are non-functioning. This means that con-
trolling the alternative splicing of UGTIA is important to avoid or
decrease the adverse effects associated with CPT-11 and to enhance
its efficacy. Recently, Guillemette’s group found that the UGT1A

Splice isoforms as therapeutic targets for CRC

locus encodes a previously unknown splice isoform, UGTI1A-i2,
which is different from the previously known isoform, UGT1A-il,
which results from the alternative splicing of the terminal exon 5
(29). They found that UGT1A-il has glucuronosyltransferase activ-
ity, but UGT1A-i2 is inactive. By an immunohistochemical analysis
using antibodies specific for each of the isoforms, they revealed that
UGT1A-il and UGT1A-i2 are coproduced in the same structural
regions in various organs (30). They further clarified that there is
decreased expression of both UGT1A-i1 and UGT1A-i2 in CRC com-
pared with corresponding normal tissues. Knockdown of endogenous
UGT1A-i2 enhanced the cellular UGT1A-i1 activity (31), which sup-
ports the notion that UGT1A-i2 has a dominant-negative function and
is a potential target for regulating the efficacy of CPT-11.

In addition, the UGT1A1 activity is regulated by splice isoforms of
the pregnane X receptor (PXR) gene, which encodes a xenoreceptor
that regulates drug metabolism and transporter genes (32). Currently,
the PXR is known to have three major splice isoforms, T1, T2 and T3
(Figure 2C) (33). The expression of UGT1A1 isoforms, as well as
that of UGT1A3 and UGT1A4, is upregulated by the T1 and T2 iso-
forms, but not by T3, which indicates that splice isoforms of PXR are
potential therapeutic targets that may regulate the efficacy of CPT-11.
In contrast, CPT-11 treatment of HCT116 cells preferentially affected
the alternative splicing of factors such as RBM8A, which was not
observed in cells treated with cisplatin or vinblastine (34). This indi-
cates that the alternative splicing induced by CPT-11 was not simply
due to reduced topoisomerase I activity, but rather was due to rapid
RNA polymerase II hyperphosphorylation caused by CPT-11 (34).

Cyclin D1

The cyclin family is composed of proteins that control the progres-
sion of the cell cycle by activating cyclin-dependent kinases (CDKs).
Among them, the protein encoded by CCNDI (cyclin DI) forms a
complex with CDK4 and CDKG6. The cyclin D1-CDK4/CDK6 com-
plex induces the phosphorylation of retinoblastoma protein, which
releases transcription factors from the phosphorylation of retinoblas-
toma protein complex, thereby promoting cell division through the
G,-S checkpoint (35). For this reason, cyclin DI has been regarded
as a proto-oncogene and overexpression of cyclin DI occurs at a
high frequency in patients with CRC (36,37}, esophageal cancer (38)
and other malignancies. In addition, cyclin DI can activate estrogen
receptors in a CDK-independent manner in breast cancer (39) and
an abundance of cyclin DI affects the radiation sensitivity in some
malignancies (40). The transcriptional mechanisms and other func-
tions of cyclin D1 have recently been analyzed (41).

Although genetic alterations of the cyclin DI locus are rarely
observed, recent studies have demonstrated that the alternative splic-
ing of cyclin D1 can influence the cancer risk and carcinogenesis (42).
The cyclin D1 gene is known to produce two alternative splice iso-
forms: CD1la and CD1b (Figure 2D). CDla is a canonical isoform
that consists of five exons, whereas CD1b includes exons 1-4 and a
partial intron 4 (43). In colon cancer and other malignancies, the sin-
gle nucleotide polymorphism G870A, which is the last nucleotide of
exon 4 (CCG and CCA) and is located adjacent to the 5’SS of intron 4
(GURAGU in Figure 1A), modulates the alternative splicing between
exon 5 and intron 4, thus generating CD1a and CD1b, respectively
(44). In addition, trans-elements ASF/SF2 (45) and Sam68 (46) regu-
late the alternative splicing toward the generation of CD1b. Although
both CDla and CD1b can associate with CDK4 and CDKS, they
show distinct functions and cellular localizations. Phosphorylation
of Thr286, which is located within exon 5 (Figure 2D), allows for
the nucleocytoplasmic translocalization of cyclin DI and its subse-
quent degradation (47); hence, CD1a can translocate to the cytoplasm,
whereas CD1b remains constitutively in the nucleus. Although such
functions of CD1a have not been observed, CD1b can cause cellular
transformation and has been linked to human carcinogenesis (42,47).
By performing the immunocytochemical analyses using antibodies
for each of the isoforms, Li er al. (40) showed that CDla, but not
CD1b, elicited the DNA damage response in colon cancer cells when
stably associated with chromatin. Considering the above results, the

2313

€107 “s1 ARIA UO AIRIQUT ANSIOAIUN 010K 18 /B0 $1eumoDIorxo  uiaies// g Woll papeOIUMOCT



K.Miura et al.

A VEGFA 16.27 Kb ~———————— Forward strand ( 6p12) —»
Pre-mRNA  —

1
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UGT1A7 (NM_019077.2)
UGT1A6 (NM_001072.3)
UGT1A5 (NM_019078.1)
UGT1A4 (NM_007120.2)
UGT1A3 (NM_019093.2)

530 a.a.
530 a.a.
530 a.a.
531 a.a.
532 a.a.
534 a.a.
534 a.a.
534 a.a.

UGT1A1 (NM_000463.2) 533 a.a.
C PxXR . ————— Forward strand ( 3q12-13.3) —»
Pre-mRNA —t—
345 689
T1 (NM_022002.2) 473 a.a.
T2 (NM_003889.3) e 434 a.a.
T3 (NM_033013.2) R e e, Y ey U R 18 T T T B9 397 a.a.
D cyclin D1 13.39 Kb ——————— Forward strand ( 11q13) —»
Pre-mRNA | - | }
1 4 Int4 8 Tgrzss
CD1a (NM_053056.2) 295 a.a.
CD1b 275 a.a.

E BIRC5 (survivin)

11.44 Kb - Forward strand ( 17¢g25) —»

Pre-mRNA
12 28 2
Sur2B (NM_001012271) 165 a.a.
SurWT (NM_001168.2) 142 a.a.
Sur-DeltaEx3 (NM_001012270.1) 137 a.a.
Sur3B (ENST00000432014) 120 a.a.

Fig. 2. Splice isoforms of VEGFA (A), UGTIA (B), PXR (C), cyclin D1 (D) and survivin (E). For each of the genes, the pre-mRNA is indicated at the top and
mature mRNAs are indicated below. White boxes indicate 5-UTR and 3’-UTR. The NM numbers and the numbers of amino acids were provided based on the
information contained in the NCBI database (as of 30 September 2012).
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two splice isoforms of cyclin DI must be distinguished in order to
develop therapeutic strategies targeting cyclin D1, and CD1b should
be targeted for downregulation to maintain the inherent cell cycle
control.

Baculoviral inhibitor of apoptosis protein repeat-containing 5
(survivin)

The inhibitor of apoptosis protein (IAP) family, which is characterized
by the presence of baculovirus IAP repeat (BIR) domains (48,49},
prevents apoptosis through direct inhibition of caspases and procas-
pases, and these proteins are expressed at elevated levels in the major-
ity of human malignancies (50). Currently, seven genes in the IAP
family have been isolated, among which the baculoviral IAP repeat-
containing 5 (BIRCS) gene, also known as survivin, has been the most
investigated as a therapeutic target for malignancies, and novel agents
targeting this gene or protein are currently under development. Among
them, YM155 (Astellas Pharma, Tsukuba, Japan) is a small molecule
inhibitor of survivin (51). In 2012, Nakamura et al. (51) revealed that
YMI155 suppresses the expression of survivin through binding to the
C-terminal region of interleukin enhancer-binding factor 3, although
their study on the molecular mechanism is still underway. LY2181308
(Eli Lilly and Co., Indianapolis, IN) is a second-generation antisense
oligonucleotide with a phosphorothioate backbone and other struc-
tural modifications, which targets the translation initiation site of the
survivin transcripts (52). Both of these agents are designed to block
all of the survivin transcripts. Recently, amiloride was reported to
regulate the alternative splicing of survivin, as well as that of APAF1
and CRK (53).

Several splice isoforms of survivin have been reported (Figure 2E).
In 2007, Sampath and Pelus (54) published a detailed review on the
splice isoforms of survivin. The splice isoform Sur2B was regarded to
be proapoptotic until the middle of the 2000s. However, the results of
recent studies in CRC (55) and other malignancies (56,57) indicated
different outcomes. In 2010, Sawai et al. (55) reported that Sur2B
expression in CRC is an important factor involved in the invasive
capacity of tumors in the presence of 5-FU. In 2011, Huang et al.
(56) reported that the SurWT, Sur-DeltaEx3 and Sur2B isoforms
were significantly elevated in astrocytoma and were associated with
a poorer prognosis and Vivas-Mejia’s study on ovarian cancer cells
showed that Sur2B was more abundant in taxane-resistant cells than
in taxane-sensitive cells (57). Using CRC samples and corresponding
normal tissues, Pavlidou et al. (58) analyzed the expression levels of
the isoforms, and Antonacopoulou et al. (59) analyzed the correlation
between the expression of survivin isoforms and single nucleotide
polymorphisms. It is still difficult to integrate all of the information
on the survivin isoforms because some of the results have been con-
tradictory, but the information will be important to design therapeutic
strategies targeting survivin.

Dihydropyrimidine dehydrogenase

After its development in 1957 (60), 5-FU has been a core anticancer
agent used for CRC. Approximately 90% of the administered 5-FU is
catabolized by dihydropyrimidine dehydrogenase (DPD), mainly in
the liver, whereas the remaining 10% of 5-FU is anabolized to exert
cytotoxic activity (61), making DPD the most important determi-
nant of 5-FU metabolism (62). Screening for genetic alterations with
genomic DNA and mRNA sequencing, van Kuilenburg et al. (63)
identified genetic alterations in deep intronic regions such as ¢.1129-
5923C>G, which caused aberrant splice isoforms of the DPD gene.
Their study indicates that caution should be exercised when screen-
ing for introns, as well as for exons, when identifying DPD-deficient
patients and determining the likely efficacy of 5-FU.

Other splice isoforms implicated in CRC

Some of the other genes encoding splice isoforms that may be possible
therapeutic targets for CRC are the K-RAS (64), macroH2A1 (65,66),
SOX9 (67), SLC39A14 (68,69), colorectal neoplasia differentially
expressed (CRNDE) (70), BARD1 (71), CDH17 (72), CYP24A1 (73

Splice isoforms as therapeutic targets for CRC

and PPARG genes (74). It is well known that somatic mutation of the
K-RAS gene is an early event in colorectal carcinogenesis. However,
since the middle of the 2000s, the splice isoforms K-RAS4A and
K-RAS4B have been reported to have differential functions in apop-
tosis (75) and differentiation (76) in the intestinal epithelia. In 2009,
Abubaker et al. (64) analyzed CRC tissues for somatic mutations
in the K-RAS gene, as well as performing an immunohistochemical
analysis of the splice isoforms. Their study demonstrated that the
expression of K-RAS4A and K-RAS4B was associated with several
clinicopathological features of CRC, and both the K-RAS mutation
and K-RAS4A expression were independent prognostic markers in a
multivariate analysis.

MacroH2A1 is the founding member of the macroH2As family,
which has the ability to replace the functions of canonical histones, and
has two splice isoforms: macroH2A1.1 and macroH2A1.2. In 2011,
Novikov et al. (65) demonstrated that the expression of macroH2A1.1
is suppressed in CRC and other malignancies compared with normal
tissues. An immunohistochemical study of the two isoforms by Sporn
et al. (66) in 2012 revealed that the loss of macroH2A1.1 was associ-
ated with a worse prognosis of CRC.

The SOX9 transcription factor, which has antioncogenic potential
in CRC, generates two isoforms: canonical SOX9 and MiniSOX9,
which is a truncated isoform of SOX9 expressed at high levels in CRC
(67). An immunohistochemical analysis of CRC and correspond-
ing normal tissues using isoform-specific antibodies revealed that
MiniSOX9 behaves as a SOX9 inhibitor and increases the oncogenic
potential of CRC cells (67). This indicates that MiniSOX9 may be a
therapeutic target for CRC.

SLC39A14 is a divalent cation transporter, which consists of nine
exons and has two splice isoforms with a mutually exclusive exon 4,
which generates two isoforms: SLC39A14-4A and SLC39A14-4B.
In 2011, Thorsen et al. (69) demonstrated that SLC39A14-4B mRNA
is highly expressed in colonic adenoma and CRC tissues compared
with the SLC39A14-4A mRNA. In 2011, Sveen er al. (68) reported
that SLC39A14-4B can be used as a marker to distinguish CRC from
other pathological conditions of the colon. In addition, Graham et al.
(70) indicated that splice isoforms of the CRNDE gene seem to be dif-
ferentially expressed in different stages of CRC.

In 2011, Yi and Tang reported a review article on the potential
use of splice variants as diagnostic, predictive and prognostic mark-
ers for CRC (77), which included information about APC, TIMP-1,
VEGFA, DYXICI and c¢-FLIP, among other genes. Their article pro-
vided information about the splice isoforms with regard to the use of
chemotherapy for CRC. A genome-wide exon array analysis in 2011
detected several CRC-specific splice isoforms (TCFI12, OSBPLIA,
TRAKI, ANK3, CHEKI, UGP2, LMO7, ACSL5 and SCIN) (78). In
addition, trans-elements, such as SR protein kinase 1 and SR protein
kinase 2, have also been discussed as therapeutic targets for CRC and
other malignancies (79), although trans-elements are not described in
detail in this review. Most of the studies presented here were reported
after 2011, and the information on splice isoforms is still being
accumulated.

Therapeutic strategies to target splice isoforms

Therapeutic targeting of splice isoforms may be achieved through
conventional small molecules, but these molecules can only target a
small subset of proteins, such as enzymes (e.g. tyrosine kinases) and
receptors (e.g. the epidermal growth factor receptor). On the other
hand, RNA-based therapeutics can theoretically target all of the pre-
mRNAs and mRNAs with a wider range and higher selectivity than
small molecules (80), although almost all of these modalities are still
in preclinical development. Currently, the most important issue to be
resolved for the use of RNA-based therapeutics as macromolecules is
the development of an optimal drug delivery system.

The RNA-based therapeutics include antisense oligonucleotides,
small interfering RNA (siRNA), splice-switching oligonucleotides
and other molecules such as ribozymes and aptamers. Among them,
synthetically modified antisense oligonucleotides are about 20 nucle-
otides long (Figure 3A) and the annealing of the oligonucleotides
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Fig. 3. Macromolecules targeting splice isoforms associated with malignancy. (A) A synthetically modified antisense oligonucleotide, (B) siRNA, (C) a splice-switching
oligonucleotide and (D) an antibody. In (C), an example of splice switching is presented, in which an ESE located in the aberrant exon is annealed to an oligonucleotide,
and the aberrant exon is skipped. AGO, argonaute; ESE, exonic splice enhancer; RISC, RNA-induced silencing complex; RNase H, ribonuclease H.
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to mRNA allows the cleavage of the mRNA by ribonuclease H. To
provide enhanced structural stability and pharmacological qualities
while not interfering with the activity of ribonuclease H, various
modifications of their chemical structures have been made, such as
the use of a phosphorothioate linkage instead of natural phosphates
as a backbone of nucleotides, and 2’-O-methyl (2-OMe) residues,
2/-O-methoxyethyl (2”-MOE) residues or locked nucleic acids (81)
have also been developed. In addition, the chemistry-dependent tox-
icities induced by their structures is another important issue to be
considered. siRNA (Figure 3B) is another modality that consists of a
double-stranded RNA fragment 21-22 nucleotides long. After inter-
acting with the multiprotein RNA-induced silencing complex, the
antisense strand of the siRNA anneals to the complementary mRNA
as a target, and the endonuclease argonaute 2 cleaves the annealed
mRNA. In this modality, off-target effects and the innate immune
response via the activation of Toll-like receptors should be carefully
managed. Splice-switching oligonucleotides (Figure 3C) modulate
pre-mRNA splicing with spliceosomes and repair the defective pre-
mRNA to generate proteins that have distinct functions. Monoclonal
antibodies (82) have also been used for various targets (Figure 3D). In
contrast with the RNA-based therapeutics, some antibodies targeting
oncogenic proteins have already been in clinical use; and those for
each of the splice isoforms will likely be further developed for clinical
use. The development of antibodies is still very expensive, and further
considerations for their development are discussed elsewhere (83).
Targeting trans-elements that act as spliceosomes or splicing modula-
tors is another option.

Future perspectives

In this review, we summarized the splice isoforms that represent pos-
sible therapeutic targets for CRC. As discussed in this review, iso-
form-specific antibodies for VEGFA (16), UGTIA (30), cyclin D1
(40), K-RAS (64) and SOX9 (67) are currently available, and they
can be utilized for immunohistochemical analyses and other pur-
poses, and may eventually be useful for clinical applications. With the
recent advances in nucleotide sequencing technologies, an entire set
of genomic DNA sequences has been analyzed, and in the next stage,
an entire set of RNA sequences will be further analyzed; the interpre-
tation of the latter, however, is far more complex compared with the
former, mainly due to the wide variety of mature mRNAs resulting
from alternative splicing. To elucidate the regulatory mechanism(s)
for alternative splicing as a whole, the two sets of sequence informa-
tion will have to be integrated. Although the importance of individual
cis-elements in the splicing machinery has been widely discussed, the
concept of a ‘splicing code’, which is defined as a complex combina-
tion of the cis-elements that direct constitutive or alternative splic-
ing, was proposed as early as the 1970s. To experimentally prove this
concept had been a major challenge, but recent studies combining
transcriptome-wide data with advanced machine learning algorithms
were able to predict new classes of alternative splicing events under
regulation by the splicing code (84,85). Furthermore, in a recent
genome-wide siRNA screening, Moore et al. (6) identified a coor-
dinated alternative splicing of Bcl-X, MCLI, CASP9 and other apop-
tosis-associated genes under a common regulatory network. These
findings suggest that we should consider a set of splice isoforms or
their common regulatory network when developing therapeutic strate-
gies for malignancies, rather than targeting a single gene. To what
extent the mechanisms regulating alternative splicing are organ-spe-
cific remains unclear, but the phenomenon is complex, and is the sub-
ject of many ongoing studies.

Research in these various areas is still ongoing, and new discoveries
are being reported at a rapid pace. Recent reports have demonstrated
that alternative splicing is also affected by newly identified regulatory
factors, such as RNA polymerase II elongation (86), the chromatin
structure (87,88), histone modifications (89), the RNA structure (90)
and the spliceosome structure (91), most of which are interwoven
bidirectionally (87,88). Importantly, the splicing machinery is regu-
lated by innate microRNAs, siRNAs, small nucleolar RNAs and other

Splice isoforms as therapeutic targets for CRC

non-coding RNAs (92,93), and these should also be considered as
therapeutic targets. The rapidly increasing information available about
nucleotide sequences, trans-elements, and newly identified regulatory
factors, along with novel bioinformatics technology, such as the multi-
mapping Bayesian gene eXpression (MMBGX) program by Turro er al.
(94), which enables the detection of differential splicing at the isoform
level, will provide additional information about how therapeutic strat-
egies targeting alternative splicing in malignancies can be developed.
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Abstract The treatments and prognoses of pelvic organ
carcinomas differ, depending on whether the primary
tumor originated in the rectum, urinary bladder, prostate,
ovary, or uterus; therefore, it is essential to diagnose
pathologically the primary origin and stages of these
tumors. To establish the panels of immunohistochemical
markers for differential diagnosis, we reviewed 91 of the
NCBI articles on these topics and found that the results
correlated closely with those of the public protein database,
the Human Protein Atlas. The results revealed the panels of
immunohistochemical markers for the differential diagno-
sis of rectal adenocarcinoma, in which [+] designates
positivity in rectal adenocarcinoma and [—] designates
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negativity in rectal adenocarcinoma: from bladder adeno-
carcinoma, CDX2[+], VIL1{+], KRT7[—], THBD[—] and
UPK3A[—]; from prostate adenocarcinoma, CDX2[+],
VIL1[+], CEACAMS5[+], KLK3(PSA)[—1, ACPP(PAP)[—]
and SLC45A3(prostein)[—]; and from ovarian mucinous
adenocarcinoma, CEACAMS[+], VIL1[+], CDX2[+],
KRT7[—] and MUC5AC[—]. The panels of markers dis-
tinguishing ovarian serous adenocarcinoma, cervical carci-
noma, and endometrial adenocarcinoma were also represented.
Such a comprehensive review on the differential diagnosis
of carcinomas of pelvic organs has not been reported before.
Thus, much information has been accumulated in public dat-
abases to provide an invaluable resource for clinicians and
researchers.

Keywords Rectal adenocarcinoma - Carcinoma of pelvic
organs - Differential diagnosis - Immunohistochemistry -
Public database

Abbreviations
IHC Immunohistochemistry

H-E Hematoxylin and eosin

LNs Lymph nodes

HPA Human Protein Atlas

NCBI National Center for Biotechnology
Information

HPR Human Proteome Resource

KRT Keratin

IF Intermediate filament

CEA Carcinoembryonic antigen

CEACAMS Carcinoembryonic antigen-related cell
adhesion molecule 5

CDX2 Caudal type homeobox 2

VIL1 Villin 1

THBD Thrombomodulin
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UPK3A Uroplakin 3A

KLK3 Kallikrein-related peptidase 3

PSA Prostate-specific antigen

ACPP Acid phosphatase, prostate

PAP Prostatic acid phosphatase

SLC45A3 Solute carrier family 45, member 3
MUC5AC  Mucin 5AC, oligomeric mucus/gel-forming

WT Wilms’ tumor

CDKN2A Cyclin-dependent kinase inhibitor 2A
HPV Human papillomavirus

VIM Vimentin

ESR1 Estrogen receptor 1

PR Progesterone receptor

Introduction

Establishing the origin of primary tumors or metastatic
cancer cells from carcinomas of pelvic organs is often
difficult preoperatively and intraoperatively. It is essential
to diagnose the primary origin and tumor stage pathologi-
cally because treatment selection and prognosis differ
according to the organ of origin, namely, the rectum, uri-
nary bladder, prostate, ovary, or uterus. It is important to
use immunohistochemistry (IHC) to support the patholog-
ical diagnosis with hematoxylin and eosin (H-E) staining
when determining the primary origin and stage. IHC helps
to reduce the rate of false-negative and false-positive
diagnoses, and the knowledge of IHC is constantly
expanding. Therefore, it would be beneficial to integrate all
of the current knowledge on IHC markers for the differ-
ential diagnosis of carcinomas of the pelvic organs.

None of the IHC markers is absolutely sensitive or
specific for a particular tumor type because tumors often
show aberrant expression of proteins; hence, a panel of
THC markers is essential. Figure 1 illustrates a recent case
in which the diagnosis of the primary origin of metastatic
cancer cells was important. A concurrent diagnosis of
prostate carcinoma was made in a patient with rectal ade-
nocarcinoma and postoperative pathological examination
revealed that some of the lymph nodes (LNs) were meta-
static from rectal adenocarcinoma and others were from
prostate adenocarcinoma (Fig. 1c-g). Based on these
findings, androgen deprivation therapy (leuprorelin acetate)
and systemic chemotherapy, including oxaliplatin, were
introduced postoperatively. This case highlights that stan-
dardized panels of JHC markers need to be established for
an accurate diagnosis in such cases. Another case report
described a giant T4 rectal adenocarcinoma mimicking
urinary bladder adenocarcinoma in a patient who under-
went surgery after the primary origin was identified by IHC
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[1]. In this case, an incorrect diagnosis by IHC may have
led to improper treatment. In yet another report, IHC was
found to be important for the diagnosis of endoluminal
metastasis of colon cancer via the ureter [2].

Public databases have recently accumulated much infor-
mation for clinicians and basic researchers. The public pro-
tein database, Human Protein Atlas (HPA), provides a
powerful strategy for diagnoses with pathological images and
clinicopathological information from a wide variety of nor-
mal tissues, cell lines, and cancer tissues [3]. We surveyed
literature from the National Center for Biotechnology Infor-
mation (NCBI) PubMed database and reviewed approxi-
mately 600 related NCBI articles. From these, we selected 91
key studies and integrated their data into one summary,
which was validated utilizing the HPA database. This review
identifies panels of IHC markers for the differential diagnosis
of rectal adenocarcinoma from carcinomas of other pelvic
organs, including the urinary bladder, prostate, ovary, and
uterus. These panels will be helpful not only for general
surgeons, but also for urologists and gynecologists. To our
knowledge, such a comprehensive review on the differential
diagnosis of carcinomas of pelvic organs has never been
reported before, from any country.

Review of the NCBI database

In December 2010, we selected approximately 200 articles
in the first round of the NCBI PubMed literature survey on
the THC of carcinomas of the rectum and other pelvic
organs, using the following keywords: “differential diag-
nosis” and “rectal adenocarcinoma” or “pelvic carci-
noma”, and “immunohistochemistry”. This process
identified 24 THC markers (Table 1). We then conducted a
second literature survey using the following key words:
“official symbol” or “other aliases” and “organ name”
and “carcinoma” and “immunohistochemistry”; in which,
the “official symbol” and “other aliases” are listed in
Table 1, and “organ name” was either “rectal”, “bladder”,
“wrothelial”, “prostate”, “ovary”, “cervical” or “endo-
metrial”. This revealed approximately 600 references
related to IHC of carcinomas of pelvic organs, but they did .
not necessarily include information for the current study.
These references were carefully checked, and the 91 key
articles were selected. We evaluated these 91 studies and
integrated their data into Fig. 2 [4-94].

Guidelines for immunoreactivity
In Fig. 2, each of the 91 references is indicated by a leading

number for all cells. We used the guidelines proposed by
Hammerich et al. [32] to standardize the immunoreactivity
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Fig. 1 Synchronous double carcinomas of the prostate and colorec-
tum with lymph node metastasis. a Magnetic resonance imaging
(MRI) axial image showing the rectal adenocarcinoma (yellow
arrows). b MRI axial image showing the prostate adenocarcinoma
(purple arrows). A metastatic LN in the pararectal region with H-E
staining (¢) and immunohistochemistry (IHC) for carcinoembryonic
antigen (CEA) (d), showing possible rectal adenocarcinoma origin.

among different studies, and the immunoreactivity was
classified into three grades: (+), which means all or most
tumors are positive; (— +), which means some tumors are
positive; and (—), which means most or all tumors are
negative (Fig. 2). In parentheses, the positive rates for
each of the markers are expressed as percentages, instead
of (+), (— +), or (—) if the information was available
(Fig. 2).

Retrieval of data from the Human Protein Atlas

The HPA [3], hosted by the Swedish Human Proteome
Resource (HPR) program, is available at the web address:
http://www.proteinatias.org/index.php. This database pro-
vides the expression profiles at the protein levels, as well as
THC images for a wide variety of tissues and cell lines. The
antibody information used for each of IHC can also be
retrieved. This database yielded IHC data for colorec-
tal adenocarcinoma, bladder adenocarcinoma, prostate

~~, Lymph nodes metastatic from
./ rectal adenocarcinoma ‘

Lymph nodes metastatic from
prostate adenocarcinoma

() Lymph nodes without metastasis

A metastatic lymph node (LN) in the lateral pelvic region with H-E
staining (e) and IHC for prostate-specific antigen (PSA) (f), showing
the possibility of prostate adenocarcinoma origin. g Schematic
illustration of the distribution of dissected lymph nodes. Lymph
nodes metastatic from rectal adenocarcinoma and prostate adenocar-
cinoma are shown as yellow and purple, respectively

adenocarcinoma, ovarian adenocarcinoma, cervical carci-
noma, and endometrial adenocarcinoma; however, it does
not classify ovarian carcinoma into histological subtypes.
The immunoreactivity in the HPA database is classified
into four grades: strong, moderate, weak, and negative
(Supplementary Fig. 1). Figure 3 summarizes the positive
rates of IHC markers retrieved from the HPA database in
December, 2010.

Combining the results of the literature survey shown in
Fig. 2 and those from the HPA database shown in Fig. 3
provides panels of IHC markers for the differential diag-
nosis of rectal adenocarcinoma from carcinomas of other
pelvic organs (Table 2).

IHC markers for carcinomas of the pelvic organs
Figure 2 summarizes the findings of the 91 studies [4-94],

including the results of IHC analyses and the information
of the ITHC markers.
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Table 1 Genes analyzed for immunohistochemistry of pelvic carcinomas

Official symbol  Official full name Other names Chromosomal
localization
KRT7 Keratin 7 K7; CK7; SCL; K2C7; MGC3625; MGC129731 12q12-q13
KRT20 Keratin 20 K20; CD20; CK20; KRT21; MGC35423 17q21.2
CEACAMS Carcinoembryonic antigen-related cell CEA; CD66e; DKFZp781M2392 19q13.1-q13.2
adhesion molecule 5
CDX2 Caudal type homeobox 2 CDX3; CDX-3 13q12.3
VIL1 Villin 1 VIL; D2S1471 2q35-q36
TFF1 Trefoil factor 1 pS2; BCEL; HPS2; HP1.A; pNR-2; D21S21 21g22.3
THBD Thrombomodulin TM; THRM; CD141 20pl1.2
UPK3A Uroplakin 3A UPK3; UPIIL; UPHIA; MGC119178 22q13.31
KLK3 Kallikrein-related peptidase 3 APS; PSA; hK3; KLK2A1 19q13.41
ACPP Acid phosphatase, prostate PAP; ACP3; ACP-3 3q21-q23
SLC45A3 Solute carrier family 45, member 3 PRST (prostein); IPCA6; IPCA-2; IPCA-6; IPCA-S; 1g32.1
PCANAP2; PCANAP6; PCANAPS
AMACR Alpha-methylacyl-CoA racemase RACE; CBAS4 (P504S) 5pl3
EPCAM Epithelial cell adhesion molecule EGP; ESA; KSA; M4S1; MK-1; EGP-2; EGP34; EGP40; 2p21
KS1/4; MIC18; TROP1; CO-17A; Ep-CAM; hEGP-2;
CO17-1A; GA733-2; TACST-1; TACSTD1
B3GAT1 Beta-1,3-glucuronyltransferase 1 NK1; CD57; HNK1; LEU7; NK-1; GLCATP; GLCUATP 11925
(glucuronosyltransferase P)
NKX3-1 NK3 homeobox 1 NKX3; BAPX2; NKX3A; NKX3.1 8p21
MUCS5AC Mucin 5AC, oligomeric mucus/gel-forming MUC5 11p15.5
WT1 Wilms tumor 1 GUD; WAGR; WT33; WIT-2 11p13
MUC16 Mucin 16, cell surface associated CA125; FLJ14303 19p13.2
MSLN Mesothelin MPF; SMR; CAK1 16p13.3
CDKN2A Cyclin-dependent kinase inhibitor 2A ARF; MLM; pl4; pl16; p19; CMM2; INK4; MTS1; TP16;  9p21
(melanoma, p16, inhibits CDK4) CDK4I; CDKN2; INK4a; pl4ARF;
p16INK4; pl16INK4a
VIM Vimentin FLI36605 10p13
ESR1 Estrogen receptor 1 ER; ESR; Era; ESRA; NR3A1; DKFZp686N23123 6925.1
PGR Progesterone receptor PR; NR3C3 11q22-923
BCL2 B-cell CLL/lymphoma 2 Bcl-2 18q21.33

Keratins (KRTs)

Along with actins and tubulins, keratins (KRTs) are classified
into the intermediate filament (IF) proteins, with KRTs sub-
classified from KRT1 to KRT20. KRT7 is a 54 kDa basic
protein and KRT20 is a 46 kDa acidic protein, and most
studies of keratins support the notion that KRT20 is positive in
rectal adenocarcinoma, whereas KRT7 is negative. Carcino-
mas of other pelvic organs also show distinct patterns of
immunoreactivity for KRT7 and KRT20, indicating that they
are good markers for differential diagnosis.

CEACAMS, CDX2 and VIL1

In 1965, Gold and Freedman [95] discovered a tumor-
specific antigen in human colorectal carcinoma, now
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known as carcinoembryonic antigen (CEA), using immu-
nological tolerance and absorption techniques. CEA is a
high molecular glycoprotein with 180 kDa, which is
encoded by carcinoembryonic antigen-related cell adhe-
sion molecule 5 (CEACAMS5) gene [96] and belongs to a
family of membrane glycoproteins. CEA functions as a cell
adhesion molecule and is important during embryogenesis
and tumor development [97]. CEA is positive not only in
rectal adenocarcinoma, but also in bladder adenocarcinoma
and cervical carcinoma, whereas it is negative in ovarian
mucinous and serous adenocarcinomas and endometrial
adenocarcinoma.

In 1997, Drummond et al. [98] cloned the cDNA and
amino acid sequences of the Caudal type homeobox 2
(CDX2) gene from a human jejunal cDNA library. Bai
et al. [99] also reported that CDX2 up-regulates the
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Fig. 2 Summary of the NCBI literature survey on immunohisto-
chemical markers of pelvic carcinomas. Each of the 91 references is
indicated by a leading number for each of the cells. The positive rates

transcription of a tumor suppressor gene, p2I/WAF1/
CIP1. The disruption of CDX2 expression is considered
to cause tumorigenesis of the gastrointestinal tract.
Most reports of IHC on CDX2 were published after
2003 and document CDX?2 positivity in almost all rectal
adenocarcinomas, but negativity in prostate adenocar-
cinoma, ovarian serous adenocarcinoma, and cervical
carcinoma.

Villin 1 (VIL1) is a calcium-dependently regulated,
actin-binding protein of 95 kDa, and a major structural
component of the brush border cytoskeleton [100, 101].
Bacchi and Gown [11] and Moll et al. [56] analyzed IHC
expression of VIL1 in various tissues, and most studies
suggest that VIL1 is positive in rectal adenocarcinoma. In
2003, Nishizuka et al. [65] comprehensively analyzed the
expression profiles of colon adenocarcinoma and ovarian
adenocarcinoma using cDNA microarrays and tissue
arrays, and found that VIL1 and moesin are good markers
for distinguishing these two diseases.

(percentages) for each of the markers are shown instead of (+),
(— +), or (=), if the information was available

THBD and UPK3A

Thrombomodulin (THBD), which is a 120 kDa endothelial
cell surface glycoprotein, and uroplakin 3A (UPK3A),
which is a 47 kDa membrane glycoprotein, are commonly
positive in bladder adenocarcinoma but negative in rectal
adenocarcinoma.

KLK3, ACPP and prostein

Kallikrein-related peptidase 3 (KLK3), also known as
“prostate-specific antigen (PSA)”; acid phosphatase pros-
tate (ACPP), also known as “prostatic acid phosphatase
(PAP)”; and solute carrier family 45, member 3
(SLC45A3), also known as “prostein”, are selectively
positive in prostate adenocarcinoma and negative in car-
cinomas of other pelvic organs, including rectal adeno-
carcinoma (Figs. 2, 3). KLK3 (PSA) belongs to the
kallikrein family and is a 33 kDa single-chain glycoprotein
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Fig. 3 Positive rates of immunoreactivity retrieved from the HPA

produced by the prostate epithelium and abundant in  now considered a good marker of ovarian serous
seminal fluid, which is both sensitive and specific in adenocarcinoma.

prostate adenocarcinoma [102, 103]. ACPP (PAP) is

approximately 50 kDa and belongs to the kallikrein family =~ CDKN2A

encoding serine proteases [104], whereas SLC45A3 (pro-

stein) is a prostate-specific transmembrane protein. Both ~ Cyclin-dependent kinase inhibitor 2A (CDKN2A), also
are sensitive and specific in prostate adenocarcinoma, as is ~ known as “pl6”, is selectively positive in cervical ade-

KILK3 (PSA). nocarcinoma. In 1995, Stone et al. [105] demonstrated that
the CDKN2A locus at 9p21 region codes two alternative
MUCSAC transcripts from different promoters, p16 (INK4A) and p14
(ARF). Since then, homozygous deletions and genetic
Mucins are a family of high molecular weight glycopro-  alterations of the pl6 gene have been reported in several

teins, expressed differentially in epithelia, depending on  malignancies, including melanoma and pancreatic carci-
cell-type specificity; thus, some mucins can be used as IHC ~ nomas, indicating that pl6 is a tumor suppressor [106,
markers. Mucin 5AC, oligomeric mucus/gel-forming  107]. Lukas et al. [108] reported that pl6 is a CDK

(MUC5AC), is positive in ovarian mucinous adenocarci-  inhibitor. IHC of pl6 has also been reported in female
noma and negative in rectal adenocarcinoma. genital tract cancers. Moreover, the detection of human

papillomavirus (HPV) is a powerful strategy for the diag-
WT1 nosis of cervical carcinoma and squamous cell carcinoma,

and it was also recently reported that cervical carcinoma
Wilms’ tumor (WT) develops in the kidney and is one of  can be diagnosed with its detection.
the most common solid tumors of childhood. The WT!
gene and several other genes, including W72, WT3, and  VIM, ESRI1, and PGR
WT4, have been associated with Wilms’ tumors. In 2000,
Shimizu et al. {81] immunohistochemically detected  Vimentin (VIM), one of the main IF proteins expressed in
the WT1 protein in epithelial ovarian tumors and it is  mesenchymal cells [109], is positive in endometrial
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Table 2 Proposal for sets of immunohistochemical markers for the differential diagnosis of rectal adenocarcinoma

Differential diagnosis

Immunohistochemical markers

Positive for rectal adenocarcinoma and negative  Negative for rectal adenocarcinoma and positive

for the other carcinoma

for the other carcinoma

Rectal adenocarcinoma versus bladder
adenocarcinoma

CDX2, VILI1

Rectal adenocarcinoma versus prostate
adenocarcinoma

Rectal adenocarcinoma versus ovarian
mucinous adenocarcinoma

Rectal adenocarcinoma versus ovarian
serous adenocarcinoma

Rectal adenocarcinoma versus cervical KRT20, CDX2

carcinoma

Rectal adenocarcinoma versus endometrial
adenocarcinoma

CDX2, VIL1, CEACAMS

CEACAMS, VILI, CDX2

KRT20, CEACAMS, CDX2

KRT20, CEACAMS, VILI

KRT7, THBD, UPK3A

KLK3 (PSA), ACPP (PAP), SLC45A3
(prostein)

KRT7, MUC5AC

KRT7, WT1

KRT7, p16 + HPV detection

KRT7, VIM, ESR1, PGR

adenocarcinoma, while estrogen receptor 1 (ESR1) and
progesterone receptor (PR) are positive in endometrial
carcinoma. All of these markers are negative in rectal
adenocarcinoma.

Most of the references for the IHC markers in Fig. 2
reported consistent results and provided important infor-
mation for the differential diagnosis. It is important to note
that much of the negative data on immunoreactivity may
not have been reported and are thus not reflected in this
summary. Supplementary Fig. 1 shows some of the IHC
results retrieved from the HPA database in December 2010,
along with the number of informative cases and the posi-
tive rates for each marker. The positive rates for each of the
IHC markers from the HPA database are further summa-
rized in Fig. 3. The results of the literature survey in Fig. 2
were highly concordant with those of the HPA database
(Fig. 3).

The histological classification of ovarian tumors by the
World Health Organization is widely accepted and cate-
gorizes ovarian tumors with regard to their derivation
from coelomic surface epithelial cells, germ cells, and
mesenchyme. Kaku et al. [110] reported that ovarian
tumors exhibit a wide variety of histological features and
McCluggage [111] revealed that the pathogenesis of
ovarian carcinoma is largely unknown because of the lack
of a tumor progression model. For these reasons, it is
difficult to classify ovarian carcinomas into histological
subtypes.

Panels of THC markers for differential diagnosis

This study focuses on how IHC can be used in a clinical
setting. We proposed sets of IHC markers to assist in the

differential diagnosis of rectal adenocarcinoma from car-
cinomas of other pelvic organs, including the urinary
bladder, prostate, ovary, and uterus. In the panels of IHC
markers listed in Table 2, the symbol [+] attached to the
names of the markers designates “positive” in rectal ade-
nocarcinoma and “negative” in the other pelvic organ
carcinomas, whereas [—] designates “negative” in rectal
adenocarcinoma and “positive” in the other pelvic organ
carcinomas. For example, the following panel of markers
was proposed for the differential diagnosis of rectal ade-
nocarcinoma from bladder adenocarcinoma: CDX2[+],
VIL1[+], KRT7[—], THBD[—] and UPK3A[—].

Conclusions

The Swedish HPR program was established to allow for a
systematic exploration of the human proteome using anti-
body-based proteomics [3]. The main objective of the
resource center is to produce specific antibodies to human
target proteins. These antibodies are used to study the
expression profiles in cells and tissues and to perform
functional analyses. The HPA version 1.1 was released
in November 2005. In addition to the HPA, the NCBI
(http://www.ncbinih.gov) and Ensembl databases
(http://www.ensembl.org), other public databases on life
sciences, including the Human Proteome Organization, the
Universal Protein Resource, the Swiss-Prot protein
knowledge base, and the Vega genome browser, are cur-
rently available. Much information has been accumulated
on these public databases, which provide a valuable
resource for clinicians and researchers. It is important not
only to utilize their data, but also to register our novel data
to promote further development of these databases. Finally,
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it is important to establish the internationally standardized
controls for those data, particularly for image data.

In this review, we proposed panels of ITHC markers for
the differential diagnosis of pelvic cancers. To utilize the
information, it is important to remember that the expres-
sion of each of the markers can vary depending on the
histological subtypes and differential status. Especially in
poorly differentiated adenocarcinoma and signet-ring cell
carcinoma, IHC staining of the markers is decreased [112]
and the diagnostic biopsy material is limited [113]. In this
regard, the differential diagnosis of undifferentiated ade-
nocarcinoma is more difficult than that of differentiated
adenocarcinoma. Furthermore, to use the information
gained from this review, we must remember that THC
results can be influenced by many factors, namely, the
fixation of materials, the preservation of materials, anti-
bodies, IHC methods, and so on. Concerning differential
diagnoses, clinical characteristics (such as sex, age, and
history), macroscopic distribution of the tumor, and con-
ventional histological findings are as important as THC
status. Considering all that has been discussed in this
review, the panels of IHC markers for the differential
diagnosis of pelvic carcinomas can be maximally utilized,
not only by general surgeons, but also by urologists and
gynecologists.
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