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FIGURE A1 | Gene interaction networks of the literature-based gene set (set 1) in mESCs, EB, and NP of neuronal differentiation. The optimized network
was generated at p > 0.300. Red indicates that parent genes up-regulate children genes. Blue indicates that parent genes down-regulate children genes.
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FIGURE A2 | Gene interaction networks of the analysis-based gene set (set 2) in mESCs, EB, and NP of neuronal differentiation. The optimized network
was generated at p > 0.300. Red indicates that parent genes up-regulate children genes. Blue indicates that parent genes down-regulate children genes.
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FIGURE A3 | Gene interaction networks of the enrichment gene set (set 3) in mESCs, EB, and NP of neuronal differentiation. The optimized network was
generated at p > 0.300. Red indicates that parent genes up-regulate children genes. Blue indicates that parent genes down-regulate children genes.
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Abstract

We are exposed to many environmental chemicals in our daily life. Certain chemicals threaten our health,
especially that of embryos and can cause serious developmental problems. To prevent abnormal development
and diseases caused by chemicals, it is important to clarify the mechanisms of chemical toxicity in embryonic
cells. The gene regulatory network is one of the useful methods for clarifying functional mechanisms in living
cells, so we applied a statistical method to infer the gene regulatory network in human embryonic stem cells. In
this study, we improved our previously developed SEM approach for inferring a network model from 9 gene
expression profiles in human embryonic stem cells, which were exposed to various chemicals. The estimated
regulatory models clarified the differences between chemicals, and the shapes of the inferred models reflected
the features of the chemical toxicities. The toxicity of acrylamide affected neuronal cell-related genes, while that
of diethylnitrosamine disturbed cell differentiation-related genes. On the other hand, the TCDD network
reflected feedback regulation, and finally disturbed neuronal cell-related genes. In the Thalidomide network, cell
differentiation genes related to axis formation in embyronic cells were affected by thalidomide toxicity.

Keywords: structural equation modeling, environmental chemical, gene regulatory network, embryonic stem
cell

1. Introduction
1.1 Introduction of the Problem

Environmental pollution is a byproduct of our usual life activities. Vehicle exhaust contains gases, including
many noxious chemicals. Factories discharge industrial waste in the air, ground, and water. Many rivers are
polluted by domestic sewage and wastewater. The emitted chemicals are sometimes trapped in clouds and then
contaminate the ground in rainfall. Thus, we are exposed to many chemicals in our daily life, and some
environmental chemicals can cause serious developmental toxicity effects. Developmental toxicity is either a
structural or functional alteration, and these alterations interfere with the normal developmental programming in
early embryos. These interferences can cause abnormal development and diseases (Baccarelli & Bollati, 2009;
Hou et al., 2012). One of the most infamous environmental chemicals is methylmercury, which is known to
affect fetal development (Yuan, 2012; Tatsuta et al., 2012). Furthermore, other chemicals are also considered to
be toxic, since they can cause abnormal cell differentiation in embryos (Rappolee et al., 2012; He et al., 2012;
Harrill et al., 2011).

To prevent chemically-induced developmental abnormalities and diseases, it is important to clarify the
mechanisms of chemical toxicity in embryonic cells (Giindel et al., 2007; Thompson & Bannigan, 2008). The
gene regulatory network is one of the nseful methods to clarify the regulatory mechanisms. To infer the networks
among the genes from the mRNA levels, various algorithms, including Boolean and Bayesian networks, have
been developed (Akutsu et al., 2000; Friedman et al., 2000). In our previous investigation, we developed an
approach based on graphical Gaussian modeling (GGM) in combination with hierarchical clustering, and we
could infer the huge network among all of the genes by this approach. (Aburatani et al., 2003; Aburatani &
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Horimoto, 2005). However, GGM infers only the undirected graph, whereas the Boolean and Bayesian models
infer the directed graph, which shows causality. Although all of these approaches are suitable for establishing the
relationships among the genes, they cannot reveal the relationships between un-observed factors and genes,
because of insufficient information in the gene expression profiles. To clarify the mechanisms of biological
processes in living cells, un-observed factors, which affect the target gene’s expression, should also be
considered. Thus, an alternative approach that includes un-observed factors should be applied.

Recently, we developed a new statistical approach based on Structural Equation Modeling (SEM), to infer the
protein-DNA interactions for gene transcriptional control from only the gene expression profiles, in the absence
of protein information (Aburatani, 2011; 2012). We applied this approach to reveal the causalities within the
well-studied transcriptional regulation system in yeast (Aburatani, 2011). The significant features of SEM are the
inclusion of latent variables within the constructed model and the ability to infer the network, including the cycle
structure. Furthermore, the SEM approach allows us to strictly evaluate the inferred model, by using fitting
scores. The linear relationships between variables are assumed to minimize the differences between the model's
covariance matrix and the calculated sample covariance matrix. Some fitting indices are defined for evaluating
the model adaptability, and thus the most suitable model can be selected by SEM (Bollen, 1989; Duncan, 1975;
Pearl, 2001).

Here, we applied the SEM approach to infer the regulatory relationships among 9 neurodevelopmentally-related
genes. The expression profiles of these genes were measured in human embryonic stem cells exposed to four
environmental chemicals. The chemicals are known to have harmful toxicities that affect the developmental
process in human embryos. Thus, inferring the regulatory network among the developmentally-related genes will
help us to reveal the mechanisms of toxicity-dependent responses in the embryo. Furthermore, we improved our
SEM approach for assuming preliminary initial models from the time-series data. By using this new approach,
we can construct an initial model for the SEM calculation in the absence of known regulatory interactions. The
resulting gene expression data clarified the chemical-specific interactions among the developmentally-related
genes.

2. Methods
2.1 Expression Data

We utilized the expression data that were measured to clarify the effects of environmental chemical exposure on
neuronal differentiation (He et al., 2012; Fujibuchi et al., 2011). In these expression data, nine genes considered
to be affected by chemicals were measured in human embryonic stem cells: GATA2, Lmx1A, MAP2, Nanog,
Nestin, Nodal, Oct3/4, Pax6 and Tujl (He et al., 2012; Fujibuchi et al., 2011). The expression of beta-actin was
also measured, as an internal control. The expression levels of these 10 genes were measured in human
embryonic stem cells exposed to four chemicals: acrylamide, diethylnitrosamine, TCDD and thalidomide (He et
al., 2012; Fujibuchi et al., 2011). The toxicities of these chemicals are different: acrylamide is neurotoxic,
diethylnitrosamine is genotoxic, TCDD is carcinogenic, and thalidomide has other toxicity. The human
embryonic cells were exposed to each chemical for several time periods: 24 hours, 48 hours, 72 hours and 96
hours. Each chemical was also tested at 5 concentrations: very low, low, medium, high and very high. The
expression of the selected genes was measured twice under each condition by RT-PCR, and thus 160 (4 time
periods x 5 concentrations X 2 repeats x 4 chemicals) expression patterns per gene were measured (Fujibuchi et
al., 2011).

First, the expression level of each gene was normalized to the internal beta-actin control and averaged, as
follows: '

i=1 €4 4ctin

E, =—1-f;10g2[—,e;—} M
& N 1

Here, N is the number of repeated experiments, e;; is the measured expression level of gene g under one set of

conditions, and ef, cim 15 the beta-actin expression level measured under the same conditions. By dividing by

the expression level of beta-actin, the intracellular expression level of each gene was normalized. To minimize
the experimental error, the logarithms of the normalized expression data were obtained and averaged.
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2.2 Extraction of Causalities from Expression Data

Usually, we assume an initial model from previous knowledge for the SEM calculation, but there are no defined
regulations among the selected genes in this study. Thus, we had to construct an initial model of each chemical
from the regulatory relationships between the gene pairs. To detect the regulatory relationships from the
measured time series expression data, cross correlation coefficients were applied to the expression profiles.
These cross correlation coefficients were calculated for each chemical and each concentration. Cross correlation
is utilized as a measure of similarity between two waves in signal processing by a time-lag application, and it is
also applicable to pattern recognition (Li & Caldwell, 1999). In a time series analysis, the cross correlation
between two time series describes the normalized cross covariance function. Therefore, the range of cross
correlation values is from -1 to +1. If we let X, = {xx Xy (oY, =y, Yy § represent two time series
datasets including N time points, then the cross correlation is given by

> - T - 7)
= @

=1 =1

where d is the time-lag between variables X and Y. In this case, the expression profiles were measured at four
time points, and thus three cross correlations of each gene pair were calculated with d=-1, 0, and 1.

2.3 Construction of the Initial Models

To infer the chemical-dependent regulatory networks, the differences between times and concentrations should
be merged. In this study, we developed a new method for constructing an initial model of each chemical, with the
merging of time and concentration conditions. Figure 1 shows the newly developed method. First, we
constructed lag matrices to simplify the information from the time series data. The elements of the lag matrices
were the time lags, which were defined for the calculation of the cross correlation. In this study, cross
correlations were calculated with three lags, -1, 0, and +1. The absolute values of these three cross correlations
were compared, and the lag value d with the highest absolute value was arranged as a matrix element. Lag
matrices were constructed for each concentration, and thus five lag matrices were obtained for each chemical
(Figure 1a),

In the next step, we merged the difference in the concentrations of each chemical. Binomial relationships were
extracted from each lag matrix. For each chemical, there are five lag matrices according to the chemical
concentration, and we considered that the chemical-specific relationships among the genes will be conserved in
several lag matrices. If the same relationships existed in several lag matrices, then the binomial relationships
were duplicated (Figure 1b).

We subsequently constructed one frequency matrix of binary relationships for each chemical. We counted the
frequency of the appearance of relationships in binomial relationships. The number representing the frequency of
each gene pair was arranged in this matrix, and thus the range was from 0 to 5 (Figure 1c). In the frequency
matrix, we can merge the differences in the concentrations, since the elements of the frequency matrix indicate
the information for the different concentrations. We selected the possible relationships from the frequency matrix.
It is considered that a possible relationship would be indicated by its frequency of appearance. Thus, we selected
the relationships with two or more values in the frequency matrix (Figure 1d). At the final step, an initial model
was constructed with the selected possible relationships. By this approach, an initial model can include cyclic
structures (Figure 1e).
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Figure 1. Developed procedure for initial model construction

The procedure for constructing an initial model from the time-lag information of the cross correlation
coefficients. (a) Time-lag matrices for each chemical. In this study, three time-lags were selected for the
calculation of the cross correlation coefficients. Thus, three cross correlation coefficient values were obtained
between all gene pairs. The time-lag value with the highest absolute value among the cross correlation
coefficients was selected. Time-lag matrices were constructed for each concentration, so five time-lag matrices
were obtained for each chemical. (b) Binomial relationships. These relationships were extracted from the five
time-lag matrices. If the same relationships exist in several concentration matrices, then the extracted binomial
relationships are duplicated in this step. (¢) Frequency matrix of causal relationships between all gene pairs.
From the binomial relationship, we can count the frequency of relationships between gene pairs. (d) Selection of
possible causal relationships from the frequency matrix. The possible relationships between genes are considered
to persist at several chemical concentrations. Thus, we selected the relationships with two or more values in the
frequency matrix. (¢) Construction of an initial model with selected causal relationships. By this approach, an
initial model can include cyclic structures.

2.4 Structural Equation Modeling without Latent Variables (SEM without LV)

After the construction of an initial model for each chemical, we applied the SEM calculation to infer the network
model that fit the measured expression data. Usually, two types of variables can be included in the SEM model:
observed and latent. These variables constitute the structural models that consider the relationships between the
latent variables and the measurement models that consider the relationships between the observed variables and
the latent variables. These relationships can be presented both algebraically, as a system of equations, and
graphically, as path diagrams.

In this study, the nine developmentally-related genes (GATA2, Lmx1A, MAP2, Nanog, Nestin, Nodal, Oct3/4,
Pax6 and Tuj1) were defined as the observed variables. Meanwhile, none were defined as latent variables, which
were common regulators of several genes. The un-observed factor, which affected each gene's expression, was
displayed as an error. The observed variables were classified as one of two types: exogenous variables and
endogenous variables. Exogenous variables are not regulated by other variables in the system, as opposed to
endogenous variables, which are regulated by other variables in the system. In the initial model, the starting
genes are defined as exogenous variables without errors, while all other genes are defined as endogenous
variables with errors. We inferred the regulatory relationships that exist between the observed variables in the
network model. The model is defined as follows:

y=Ay+e 3)
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Here, y is a vector of p observed variables (measured gene expression patterns), and Ais a p X p matrix
representing the regulatory relationships between the observed variables. Errors that affect the observed
endogenous variables are denoted by & . The above equation can be represented in the SEM matrix format as:

o Lk ©

In this study, we did not define the latent variables, and thus Os were arranged as zero partial matrices, which
denote no relationships with ¢ latent variables. The SEM is based on a covariance analysis defined as
S =%(0), where S is the covariance matrix calculated from the observed data and 2(0) is the
matrix-valued function of the parameter €. Let ® denote the covariance matrix of the error terms £, and G
denote the px(p+¢q) combined matrix of the px g zero matrix and the p x p identity matrix. The
covariance matrix of model is given by

?(9)_61—0 0 "’®1~0 0 'I'G, )
N o 1-1 0o I-T1I

EBach element of the covariance matrix model is expressed as a function of the parameters that appear in the
model. The unknown parameters were estimated, in order to minimize the difference between the model
covariance matrix and the sample covariance.

The SEM software package SPSS AMOS 17.0 (IBM, USA) was used to fit the model to the data. The quality of
the fit was estimated by the goodness-of-fit index (GFI), which measures the relative discrepancy between the
empirical data and the inferred model, and the adjusted GFI (AGFI), which is the GFI modified according to the
degrees of freedom. Furthermore, we used CFI and RMSEA as fitting scores, to evaluate the model fitting. Since
these indices have threshold values, as criteria to decide whether the model is suitable to obtain data independent
of a huge sample number, they are considered to be useful to clarify the degree of model fitting in this study.

2.5 Parameter Estimation

data, and the estimated covariance matrices 2A@) of the constructed model. To minimize the difference
between S and Z(@), the Maximum Likelihood (ML) method is commonly used as a fitting function to
estimate the SEM parameters:

Parameter estimation was performed by comparin% the actual covariance matrix S, calculated from the measured

F,; (S,2(6)) = log|=(6)| - log|S| + t+(2(0) "' ) - p (6)

Here, 2(9) is the estimated covariance matrix, S is the sample covariance matrix, lZ} is the determinant of
matrix %, () is the trace of matnx 2., and p is the number of observed variables. The principal objective
of SEM is to minimize F, S 2(9) which is the objective function and is used to obtain the maximum
likelihood. Generally, F; A(;LS' 2(19) is a nonlinear function. Therefore, iterative optimization is required to
minimize F,, (S ,2(8)) and to find the solutions (Joreskog & Sorbom, 1984).

2.6 Iteration for Optimal Model

In the SEM analysis, both the parameters and network structures are fitted to the measured data. The parameters
are estimated by maximum likelihood, and the network structures are evaluated by the scores of goodness of fit
indices. The goodness of fit scores indicate the similarity between the constructed model and the measured data.
Through the acceptance or rejection of the models, the optimal model that describes the measured data can be
selected.

By using the estimated parameters, the variance-covariance matrix between the variables could be calculated in
the network model. This model’s variance-covariance matrix is compared with the actual variance-covariance
matrix between observed variables, which is calculated from the measured data. The similarity between a
constructed model and the actual data is defined in a quantitative manner by the fitting scores. In this study, four
different fitting scores were utilized: GFI, AGFI, CFI and RMSEA. Values of GFI, AGFI and CFI above 0.90 are
required for a good model fit. RMSEA is one of the most popular parsimony indexes displayed in the table, and
RMSEA values below 0.05 represent a good model fit (Spirtes et al., 2001). Furthermore, RMSEA values of 0.10
or more are considered to indicate that the constructed model is far from the actual data. To optimize the model,
we developed an iteration algorithm as follows:

58



www.ccsenet.org/jmbr Journal of Molecular Biology Research Vol. 2, No. 1; 2012

Step 1: Deletion of a non-significant edge from the constructed network model

Use 0.05 as the significance level for the determination of the significant regulation among the variables. After
the parameters are estimated, the inverse matrix of the Fisher information matrix of parameters is calculated. The
inverse matrix of Fisher information represents the asymptotic parameters' covariance matrix. The probability of
each parameter is calculated by using this asymptotic parameters' matrix, since all of the parameters are usually
normally distributed.

Step 2: Reconstruction of the network model

The structure of the network model without the non-significant edge is completely different from that of the
former model. Thus, all parameters should be re-calculated from the reconstructed model, and the similarity of
the network structure should also be re-calculated.

Step 3: Iteration of Steps 1 and 2 until all edges become significant

Since the probabilities of all of the edges in the reconstructed models have also changed, the deletion of the
non-significant edges is executed step-by-step.

Step 4: Addition of a possible causal edge to the reconstructed model

According to the Modification Index (MI), we add a new causal edge between the observed variables. The MI
measures how much the chi-square statistic is expected to decrease if a particular parameter setting is
constrained (Joreskog & Sorbom, 1984). The MI value indicates the possibility of new causality between the
variables, and thus we add a new edge according to the highest MI score.

Step 5: Iteration from Steps 1 to 3

The addition of a new edge to a constructed model changes the structure of the network model again. In other
words, all parameters, including the probabilities of all edges, have also changed. Thus, we execute the iteration
from Step 1 to Step 3 again.

Step 6: Determination of significant relationships among error terms

After all of the edges are significant and all of the MI scores are lower than 10.0 in the constructed model, the
significant relationships between the error terms are estimated by the MI scores. The relationships among the
error terms have no direction, and thus they are a correlation between error terms. The relationships between the
error terms were considered to be other regulatory systems in the living cell. Thus, these relationships among the
error terms were used for the calculations, but were not incorporated into the network, and thus they have been
excluded from the figures.

3. Results
3.1 Initial Model Assumption

To construct the initial network model of each chemical, we utilized our newly developed method. One of the
distinguishing features of our new method is its ability to include the cyclic structure in the network model.
Cyclic regulation, such as feedback regulation, is considered to be important for living cells to control normal
gene expression, and the new method is useful to detect the cyclic regulation from the gene expression data. The
initially constructed models are shown in Figure 2. The initial model of TCDD was the most complex structure.
The components of the constructed models were 9 genes with 19 relationships in Acrylamide, 8 genes with 12
relationships in Diethylnitrosamine, 9 genes with 23 relationships in TCDD, and 8 genes with 10 relationships in
Thalidomide.

There are some obvious features in the network diagram of each initial model. The numbers of exogenous and
endogenous genes are different from each other. In the initial Acrylamide model, four genes were arranged as
exogenous variables, but only Oct3/4 was arranged as the last endogenous variable. Thus, it is considered that
acrylamide quickly affected the expression of many genes, and only one gene was affected later. In contrast, only
one gene was arranged as an exogenous variable and many genes were arranged as the last endogenous variables
in the initial Thalidomide model. These differences between the initial chemical models summarized the
distinctive gene expression profiles for each chemical. The initial TCDD model involved some cyclic regulation,
even though the other models had only hierarchical regulation.
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Figure 2. Initial network models

The initial models of the selected chemicals were constructed by the developed approach. One initial model was
constructed for each chemical, since the initial model included summarized time-series information and
concentration information. (a) Initial model constructed from all gene expression profiles with all Acrylamide
exposure. (b) Initial model of Diethylnitrosamine. (c¢) Initial model of TCDD. (d) Initial model of Thalidomide.
The numbers of genes in the initial models were 9 in Acrylamide, 8 in Diethylnitrosamine, 9 TCDD, and 8 in
Thalidomide.

Before the calculation of SEM, all of the initial models were simplified, since the initial models included some
duplicated interactions among the genes, such as direct interactions between two genes and indirect interactions
between them. In the simplification process for the initial models, the longest path between two genes was
retained, since the arrows indicated only time precedence, not causalities in the initial model. Therefore, the
difference between direct and indirect interactions is not important. By retaining the longest paths, all of the
preceding information was included, as the simplest diagram.

3.2 Inferred Networks by SEM

The final inferred networks for each chemical and the goodness of fit scores are depicted in Figure 3, and the
estimated regression weights of the edges are displayed in Table 1. The inferred networks of the chemicals
revealed distinct structures. The differences between the gene regulation by chemicals were clarified by the
shapes of the inferred network models. The Acrylamide network was a centralized model, the
Diethylnitrosamine network was a ladder-like model, the TCDD network was a closed circular structure, and the
Thalidomide network was a diffusion type.
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Figure 3. Inferred Toxic-dependent Networks

The optimal model for each chemical, obtained by the developed SEM iteration procedure. A positive
relationship between genes is displayed with a solid arrow. A negative relationship between genes is displayed
with a dashed arrow. Gene names with blue characters indicate “neurodevelopment related genes”, genes with
red characters indicate “cell differentiation-related genes” and genes with black characters indicate “related to
transcription of insulin”. (a) Acrylamide model; (b) Diethylnitrosamine model; (¢) TCDD model and (d)
Thalidomide model. The fitting scores are displayed under each model.

One of the unique features of the inferred Acrylamide network was that many genes were arranged at the top
phase in the regulatory network, and only one gene was arranged as the final result of all regulation in the
network. On the other hand, the shape of the Diethylnitrosamine network looked like a ladder, and two serial
regulations interacted with each other. One serial regulation started from Lmx1A, and the other started from Tuj1.
These top phase genes were considered as signal input genes, and they were different from those in the
Acrylamide and Thalidomide networks. For example, Tujl was arranged as a signal input gene in the
Diethylnitrosamine network, but it was arranged as an output object in the Acrylamide and Thalidomide
networks. The unique feature of the TCDD network is the involvement of some closed circular structures in the
inferred model. Among the parts of the circular structure, the regulatory direction from GATA2 to Nodal was
different from the other relationships. Furthermore, the regression weight between GATA2 and Nodal was
estimated as a negative value. Thus, it was considered that the inferred regulation from GATA2 to Nodal
reflected feedback control by GATAZ2. In the Thalidomide network, the shape of the network model was reversed,
as compared to that of the Acrylamide network. Only two genes were arranged at the top phase in the regulatory
network, but many genes were arranged at the middle phase in the model. This means that only a few genes are
directly affected by thalidomide, but finally many genes are affected throughout the gene regulatory network.
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Table 1. Regression weight and probability of each edge

Acrylamide Diethylnitrosamine

Parent Child Regression Weight P Parent Child Regression Weisht P
GATA2 LmxlA 0.921 FAE Tujl Nodal 0.702 il
Nanog  Nodal 0.522 0.003 Lmx1A MAP2 0.378 0.003
Nestin -~ Oct-34 -0.437 0.01 Tujl Oct-34 0.63 bt
Nestin Pax6 0.64 i MAP2  Oct-34 -0.475 ok
Nodal Pax6 -0.803 b Nodal  Nanog 0.295 Hrk
Lmxl1A  Pax6 -0.232 rEE MAP2  Nanog 0.754 Rl
Oct-34 Pax6 0.592 kR Lmx1A GATA2 0.636 AR
Nodal Tujl 0.843 HAE Nodal  Nestin 0.33 *EE
Pax6 Tujl 1.09 b Nodal Pax6 -0.209 0.005
Oct-34  Tuyjl -0.702 ok Nanog  Pax6 0.418 ok
Nanog  Nestin 0.902 A

Oct-34 Pax6 1.11 bl

Oct-34  Nestin -0.193 e

TCDD Thalidomide

Parent Child  Repression Weight P Parent Child Regression Weipht P
GATA2 Nanog -0.787 X MAP2  Oct-34 -0,443 0.023
GATA2 Nestin 0.22 *EX MAP2 Pax6 0.349 0.005
Lmx1A Nanog 1.374 i Nestin  Nodal 1.03 R
Lmx1A  Tujl 0.476 0.004 Nestin  GATA2 0.664 *kE
MAP2  Nestin 0.906 bl Oct-34 Pax6 0.932 rokx
Nanog  MAP2 1.024 Rl Oct-34  Nodal 0.258 rEE
Nanog  Nodal 0.967 ol Oct-34 Tujl -0.597 b
Nodal GATA2 0.931 *Hx Pax6 Tyl 1.12 ok
Pax6 Oct-34 0.988 b Nodal Tul 0.349 i
Pax6 Tujl 0.5 0.003 GATA2  Tuyjl 0.167 0.015
Tujl Oct-34 ~0.324 A MAP2  Nanog 0.84 o
Nestin  LmxlA 0.842 FEE
Tujl Nanog 0,196 0.002

4. Discussion

Our inferred model revealed the differences between the gene regulation by environmental chemicals.
Furthermore, the shapes of the network models reflected the different features of the chemical toxicities well. In
the Acrylamide network, the effects of acrylamide toxicity finally aggregated to Tujl, which is known to
contribute to microtubule stability in neuronal cells (Rosenstein et al., 2003). Acrylamide is neurotoxic, and thus
it is reasonable that its effect finally aggregated to a neuronal cell-related gene.

In the Diethylnitrosamine network, the cell differentiation genes were arranged from the middle to lower steps.
This means that diethylnitrosamine disturbed normal cell differentiation in the embryonic stem cell. These
harmful effects were considered to be caused by the carcinogenic genotoxicity of diethylnitrosamine (Ito et al.,
1992; Puatanachokchai et al., 2006; Iatropoulos et al., 2006). On the other hand, the neuronal-related genes were
arranged at a later phase in the TCDD network model. Although both diethylnitrosamine and TCDD have the
same carcinogenic toxicities, their regulatory mechanisms were different.

From the Thalidomide network, it was considered that the receptors of thalidomide toxicity may be rarer than
those of other chemicals. However, several types of genes are finally affected by thalidomide chemical toxicity.
Among the cell differentiation genes, Nodal and Nanog are important for normal early embryonic development.
Nodal is related to the development of the left-right axial structure (Hamada et al., 2002; Grandel & Patel, 2009),
and its signaling pathway is important very early in development, for cell fate determination and many other
developmental processes (Grandel & Patel, 2009). Nanog is a key factor for maintaining pluripotency in
embryonic stem cells (Mitsui, 2003; Chambers et al., 2003). According to the abnormal expression of these ceil
differentiation-related genes, the thalidomide phenotype, with its harmful side effects, may occur in the human
embryo.

We applied an improved SEM approach to reconstruct a gene regulatory model from the gene expression data in
human embryonic stem cells, and we have shown that SEM is a powerful approach to estimate the gene
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regulation caused by chemical toxicity. The inferred networks clarified the differences between the gene
regulation by chemicals, and the features of the chemical toxicities were well reflected in the network structures.
Thus, the network construction by SEM is one of the useful approaches for inferring the regulatory relationships
among genes. Furthermore, the inferred network among genes can be utilized for the estimation of a chemical’s
effect, from experimentally obtained expression profiles. The ability to identify expression profiles and the
corresponding biological functions is expected to provide further possibilities for SEM in the inference of the
effects of chemical toxicity on regulatory mechanisms.
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Abstract—Chemical toxicity threat our daily health, especially
for embryos. Reveling toxicity-dependant regulation in human
embryo is one of the effective approaches to prevent some
chemical effects. In previous study, we developed a network
inference approach, based on Struectural Equation Modeling
(SEM). In this study, we improved the SEM approach and
applied this enhanced approach to expression profiles in
human embryonic stem cells exposed to various chemicals. The
inferred gene regulatory models among neurodevelopment
related genes clarify the differences between chemicals, and the
network shapes reflected the features of chemical toxicities.
The effects of Acrylamide toxicity finally aggregated to a
neuronal cell-related gene, even though Diethylnitrosamine
disturbed normal cell differentiation-related genes.
Furthermore, gene regulatory network with Thalidomide was
complicated, but embryonic development-related genes were
estimated as the finally effected genes by Thalidomide toxicity.

Keywords-Structural Equation Modeling; Embryonic Stem
Cell; Gene Regulatory Network; Chemical Toxicity.

L INTRODUCTION

We are exposed to many chemicals in our daily life, and
chemical toxicity is known to exert harmful effects on
human health. Actually, some diseases are caused by
exposure to environmental pollution [1][2], including
chemicals such as methylmercury [3][4], and so on.
Furthermore, some chemical toxins are threatening, since
they can cause abnormal cell differentiation in embryos
[51[6]1[7]. Clarifying the details of the toxic stress response in
embryonic cells is crucial for the prevention of harmful
chemical effects [8][9].

To gain a better understanding of the role of the toxic
stress response, a gene regulatory network is useful. With the
gene expression information, the regulatory networks among
the genes can be inferred. Various algorithms, including
Boolean and Bayesian networks, have been developed to
infer complex functional gene networks [10][11]. In our
former investigation, we developed an approach based on
graphical Gaussian modeling (GGM). The GGM approach is
combined with hierarchical clustering for calculations with
massive amounts of gene expression data, and we can infer
the huge network among all of the genes by this approach
[12][13]. However, GGM infers only the undirected graph,
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whereas the Boolean and Bayesian models infer the directed
graph, which shows causality.

Recently, we developed a new statistical approach, based
on Structural Equation Modeling (SEM) in combination with
factor analysis and a four-step procedure [14]. This approach
allowed us to reconstruct a model of transcriptional
regulation that involves protein-DNA interactions, from only
the gene expression data. Furthermore, SEM approach
allows us to strictly evaluate the inferred model by using
fitting scores. The SEM approach is available for the
detection of causality among selected genes, as the linear
relationships between genes are assumed to minimize the
difference between the fitted model covariance matrix and
the calculated sample covariance matrix [15][16][17].

Here, we applied the SEM approach to the limited
expression data of neurodevelopment related genes in human
embryonic stem cells exposed to various chemicals. The
chemicals were considered to be toxic and to adversely affect
the neurodevelopment related genes. Thus, inferring the gene
regulatory network among neurodevelopment related genes
will help to elucidate the toxic stress response in the human
embryo. Since the regulatory interactions among the genes
were unclear, a new approach for assuming an initial model
should be developed for the application of SEM. In this
study, we used an improved SEM approach that includes a
new method for constructing a preliminary initial model, in
the absence of known regulatory interactions. The resulting
gene expression data clarified the chemical-specific
interactions among the neurodevelopment related genes.

II.  MATERIAL AND METHODS

A. Expression data

We were provided the expression data which were
measured in previous investigation [6], and the details of
data are follows. The nine genes considered to be affected by
chemicals were measured in the human embryonic stem
cells: GATA2, Lmx1A, MAP2, Nanog, Nestin, Nodal,
Oct3/4, Pax6 and Tujl [6][18]. As an internal control, the
expression of beta-actin was also measured. The expression
data were obtained from human embryonic stem cells
exposed to 15 chemicals [6][18]. The toxicity of each
chemical was classified into one of three types: Neurotoxic,
Carcinogenic and others. The human embryonic cells were
exposed to each chemical for several time periods: 24 hours,
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48 hours, 72 hours and 96 hours. Each chemical was also
tested at 5 concentrations: very low, low, middle, high and
very high. The expression of the selected genes was
measured twice under each condition by RT-PCR, and thus
300 expression patterns per gene were measured [18].

The measured expression level of each gene was
normalized as follows:

Eg:"]':/”ZIOg{ z J M

i
i=l € terin

Here, N is the number of repeated experiments, e; is the

measured expression level of gene g under one set of
o i . . .

conditions, and ¢, ,... is the beta-actin expression level

measured under the same conditions. The expression level of
each gene was divided by that of beta-actin, for intracellular
normalization. To minimize the experimental error, the
logarithms of the normalized expression data were obtained
and averaged.

B.  Extraction of causalities from expression data

For the iteration of model fitting in SEM, an initial model
should be assumed from known information. To construct
the initial model among the 9 neurodevelopment genes from
the time series expressions, we applied cross correlation to
the expression profiles measured for each chemical and each
concentration.

Cross correlation is utilized as a measure of similarity
between two waves in signal processing by a time-lag
application, and it is also applicable to pattern recognition
[19]. The cross correlation values range between -1 and +1.
In a time series analysis, the cross correlation between two
time series describes the normalized cross covariance
function. Let X, = {x,,--,xy }, ¥, = {y,,"-+, ¥, } represent two

time series data including N time points, and then the cross
correlation is given by
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where d is the time-lag between variables X and Y. In this
case, the expression profiles were measured at 4 time points,
and thus three cross correlations of each gene pair were
calculated with 4 =-~1,0,1.

C. Construction of the initial model

In this study, we focused on the chemical-specific
regulatory network, and thus the differences between times
and concentrations could be merged for the construction of
the initial model. Figure 1 shows the new method developed
for constructing an initial model of each chemical, with the
merging of several conditions. The time difference was
summarized by the cross correlations among genes. The time
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lag, which was defined for the calculation of the cross
correlation, was used for the extraction of causality between
all gene pairs. According to the time lags, three cross
correlations were calculated between each gene pair, and we
compared them with the absolute values of the cross
correlations. The value d, with the highest cross correlation,
was selected as the causal information between the gene
pairs, and a matrix composed of the selected ds was
constructed as the time lag matrix of each chemical at one
concentration. Thus, five time lag matrices were constructed
for each chemical (Fig. 1a).

To obtain the chemical-specific interactions among genes,
we extracted the binomial relationships between gene pairs
from the five constructed time lag matrices for each chemical
(Fig. 1b). From the binomial relationships, we constructed a
frequency matrix for each chemical, composed of the
frequencies of all gene pairs (Fig. 1c). In this step, the
difference in the concentration is merged as the frequency in
the matrix. We extracted the gene pairs with frequency
matrix values greater than or equal to two, as the chemical-
specific regulation (Fig. 1d). From the extracted relationships
between the genes, we reconstructed an initial model for
each chemical (Fig. le). These initial models included the
time series information as the directions of edges, and the
different concentrations of each chemical were summarized
as the existence of edges in the model.
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Figure 1. Developed procedure for initial model construction.

The procedure for constructing an initial model from the time-lag
information of the cross correlation coefficients. (a) Time-lag matrices for
each chemical. In this study, three time-lags were selected for the
calculation of the cross correlation coefficients. Thus, three cross
correlation coefficient values were obtained between all gene pairs. The
time-lag value with the highest absolute value among the cross
cotrelation coefficients was selected. Time-lag matrices were constructed
for each concentration, so five time-lag matrices were obtained for each
chemical. (b) Binomial relationships. These relationships were extracted
from the five time-lag matrices. If the same relationships exist in several
concentration matrices, then the extracted binomial relationships are
duplicated in this step. (c) Frequency matrix of causal relationships
between all gene pairs. From the binomial relationship, we can count the
frequency of relationships between gene pairs. (d) Selection of possible
causal relationships from the frequency matrix. The possible relationships
between genes are considered to persist at several chemical
concentrations. Thus, we selected the relationships with two or more
values in the frequency matrix. (e) Construction of an initial model with
selected causal relationships. By this approach, an initial model can

include cyclic structures.
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D. Structural Equation Modeling without Latent Variables
(SEM without LV)

In general, SEM is a comprehensive statistical model that
includes two types of variables: observed and latent. These
variables constitute the structural models that consider the
relationships between the latent variables and the
measurement models that consider the relationships between
the observed variables and the latent variables. These
relationships can be presented both algebraically, as a system
of equations, and graphically, as path diagrams.

In this study, the selected genes (GATA2, LmxlA,
MAP2, Nanog, Nestin, Nodal, Oct3/4, Pax6 and Tujl),
which are related to neurogenesis, were defined as the
observed variables. Meanwhile, none were defined as latent
variables. All observed variables were categorized into one
of two types of variables, exogenous and endogenous,
according to their interactions with other variables.
Exogenous variables are those that are not regulated by the
other variables, and endogenous variables are regulated by
the others. In the initial model, the starting genes are defined
as exogenous variables, while all other genes are defined as
endogenous variables. Regulatory relationships exist
between the observed variables in the network models. The
model is defined as follows:

y=Ay+e 3)

Here, y is a vector of p observed variables (measured gene
expression patterns), and A is a p X p matrix representing

the regulatory relationships between the observed variables.
Errors that affect the observed endogenous variables are
denoted by & . The SEM software package SPSS AMOS
17.0 (IBM, USA) was used to fit the model to the data.

E. Parameter Estimation

Parameter estimation was performed by comparing the
actual covariance matrix, calculated from the measured data,
and the estimated covariance matrices of the constructed
model. Maximum likelihood is commonly used as a fitting
function to estimate SEM parameters:

F,;(S.2(6)) = logl=(0)| - log|S| +r(2(6) ' S)~p 4

Here, 2(@) is the estimated covariance matrix, S is the
sample covariance matrix, |Z| is the determinant of matrix
Z, tr(X)is the trace of matrix X, and p is the number of
observed variables. The principal objective of SEM is to
minimize F,,; (S,2(6)), which is the objective function
and is used to obtain the maximum likelihood. Generally,
F,, (S,2(0)) is a nonlinear function. Therefore, iterative
optimization is required to minimize £, (S, Z(6)) and to
find the solutions [20].
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F. Iteration for Optimal Model

The regulatory network analysis by SEM consists of two
parts: parameter fitting and structure fitting. After the
parameters of the constructed model are estimated by
maximum likelihood, the network structures are evaluated
according to the goodness of fit between the constructed
model and the measured data. Through acceptance or
rejection of the models, the optimal model that describes
measured data can be selected.

In the network model, the covariance matrix between
variables is calculated by the estimated parameters. The
similarity between a constructed model and the actual
relationships is predicted by comparing the matrix calculated
from the network model to the matrix calculated from the
actual data. To detect quantitative similarity between a
constructed model and an actual relationship, fitting scores
were developed. In this study, the quality of the fit was
predicted by four different fitting scores: GFI, AGFI, CFI
and RMSEA. Values of GFI, AGFI and CFI above 0.90 are
required for a good model fit. RMSEA is one of the most
popular parsimony indexes displayed in the table, and
RMSEA values below 0.05 represent a good model fit [21].
Furthermore, RMSEA values of 0.10 or more are considered
to indicate that the constructed model is far from the actual
data.

To optimize the model, an iteration algorithm was
developed, as follows:

Step1: Deletion of a non-significant edge from the model.
Use 0.05 as the significance level for the determination of
the chemical-specific interactions among genes. The output
of SEM programs includes the probability of each edge, and
thus we deleted the edge with the highest probability.

Step2: Reconstruction of the network model. The
structure of the network model without the non-significant
edge is different from the former network model. Thus, all
parameters should be re-calculated from the reconstructed
model, and the similarity of the network structure is also re-
calculated.

Step3: Iteration of Steps 1 and 2 until all edges become
significant. Since the probabilities of all of the edges in the
reconstructed models have also changed, the deletion of the
non-significant edges is executed step-by-step.

Step4: Addition of a possible causal edge to the
reconstructed model. According to the Modification Index
(MI), we add a new causal edge between the observed
variables. The MI value indicates the possibility of new
causality between the variables, and thus we add a new edge
according to the highest MI score.

Step5: Iteration from Steps 1 to 3. By the addition of a
new edge to a constructed model, the structure of network
model is changed again. In other words, all parameters,
including the probabilities of all edges, have also changed
again. Thus, we execute the iteration from Step 1 to Step 3
again.

Step6: Determination of significant relationships among
error terms. After all of the edges are significant and all of
the M1 scores are lower than 10.0 in the constructed model,
significant relationships between error terms are estimated
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by the MI scores. The relationships among the error terms
have no direction, and thus they are a correlation between
error terms. These relationships were used for the
calculations, but were not incorporated into the network.

I, RESULTS AND DISCUSSION

A. The chemical concentrations have no effect

In this study, gene expression was measured in the
presence of various chemicals, with several exposure times
and at different concentrations. To reveal the most effective
factor for gene expression, ANOVA and Tukey's HSD test
were applied to the measured data. In statistics, ANOVA is
utilized to detect differences between groups in terms of
some variables. Since the chance of committing a type I error
will be increased by performing multiple two-sample t-tests,
a statistical test is needed to determine whether or not the
means of more than two groups should be applied. The use
of Tukey's HSD test clarified which means are significantly
different from one another. Interestingly, the groups that
were classified by the concentration of chemicals showed no
significant difference in their gene expressions. Thus, the
concentration of chemicals had no effect on the expression of
the tested genes in the ES cells.

The numbers of significantly expressed genes between
each chemical pair are shown in Table 1. From this table, the
differences in the gene expression were not significant
among the same type of toxic chemicals. Furthermore, the
toxicity difference between neurotoxic and carcinogenic did

not cause an expression difference for almost all of the genes.

However, the exposure to ‘other' chemicals, such as
Thalidomide, bisphenol A and Permethrin, caused significant
expression changes in many genes. To reveal the differences
in gene expression due to the type of chemical toxicity, we
selected one chemical, which was the most different from
those of the other toxicity types, as the representative
chemical for each toxicity type.

TABLE I. NUMBER OF GENES WITH SINIFICANTLY DIFFERENT EXPRESSION

Methylmercury | - 1 1
2-Nitropropane | 1 - } }
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oo |3 2 1 0 0l s 6 000 -1
. et e o s o o o e et s e e i e e
Thalidomide |5 7 5 5 5 H 4 7 7 4 4 4 5l -
others Bisphenol-A |5 6 5 5 3j4 6 7 6 3 3 370 -
Permethrin {4 6 4 5 4}4 7 7 3 4 4 410 0
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Expression profiles were compared between all chemical pairs for each gene by Turkey's HSD test,
and the genes that were estimated as exhibiting significantly different expression dep on
chemicals were counted.
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The toxicities of the 15 chemicals were divided into 3
categories, Neural, Carcinogenic and others. Thus, three
chemicals, Acrylamide, Diethylnitrosamine and Thalidomide,
were selected as the representative toxic chemicals for neural,
carcinogenic and others, respectively.

B.  Genes are hierarchically controlled by chemical
toxicity

We utilized the new method to construct the initial gene
regulatory network models under the conditions with the
three chemicals. Even though the new method can detect the
cyclic interactions among genes, such as feed-back
regulation, the structures of the constructed initial models
indicated the hierarchical regulations among the genes.
Figure 2 shows the constructed initial network models. The
initial models of Acrylamide, Diethylnitrosamine and
Thalidomide were composed of 9 genes with 19
relationships, 8 genes with 14 relationships, and 8 genes with
10 relationships, respectively.

There are some obvious features in the hierarchical
diagram of each initial model. The numbers of exogenous
and endogenous genes are different from each other. The
initial Acrylamide model was composed of 4 genes as
exogenous genes, but only Oct3/4 was the last endogenous
gene. Thus, the expression profiles of Acrylamide indicated
the quick responses of many genes after the chemical
exposure, and only one gene was affected later. In contrast,
Thalidomide exposure induced the expression of only one
gene. These differences between the initial chemical models
summarized the distinctive gene expression profiles for each
chemical.

All of the initial models included some duplicated gene
interactions, such as a direct interaction between two genes
and an indirect interaction between them. To simplify these
duplicated interactions, we only retained the longest path
between two genes, since the regulation displayed by a direct
path could be replaced by indirect paths in the model. In the
initial model, the edges do not represent the direct regulation,
but the preceding information. Thus, the difference between
direct interaction and indirect interaction in the initial model
is not very important. By retaining the longest paths, all of
the preceding information was included, as the simplest
diagram.

Figure 2. Initial network models.

The initial models which include summarized time-series information
and concentration information. (a) Initial model of Acrylamide. (b) Initial
model of Diethylnitrosamine. (c) Initial model of Thalidomide.
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C. Inferred Network by SEM

The final inferred networks for each chemical and the
estimated regression weights of the edges are depicted in
Figure 3. The inferred networks of chemicals revealed
distinct structures. In the inferred network of Acrylamide,
many genes were arranged as exogenous objects, and only
one gene was arranged as the final result of all regulation in
the network. On the other hand, two serial regulations
interacted with each other in the Diethylitrosamine network
model. One serial regulation was from Lmx1A to Pax6, and
the other was from Tuj1 to Nestin. The signal input genes in
the Diethylnitrosamine network were also different from
those in the Acrylamide network. Even though Tujl was
arranged as an output object in the Acrylamide network,
Tujl was arranged as input in the Diethylnitrosamine
network. The inferred network of Thalidomide was also
different from both the Acrylamide and Diethylnitrosamine
networks. In the Thalidomide network, only two genes were
arranged as input objects, but four genes were arranged as
output objects. This means that only a few genes will be
directly affected by Thalidomide, but finally many genes
were affected throughout the gene regulatory network.

According to our inferred network, the differences
between the gene regulation by chemicals were clarified, and
the network shapes reflected the features of chemical
toxicities. In the inferred network, the effects of Acrylamide
toxicity finally aggregated to Tujl, which is known to
contribute to microtubule stability in neuronal cells [22].
Acrylamide is neurotoxic, and thus it is reasonable that the
effect of Acrylamide finally aggregated to a neuronal cell-
related gene.

Lmx1A parent

As compared with the Acrylamide network, the cell
differentiation genes were arranged at downstream steps in
the Diethylnitrosamine network. From the carcinogenic
features of Diethylnitrosamine [23][24][25], normal cell
differentiation in the embryonic stem cell may be disturbed.

The most complicated structure was the Thalidomide
network. In the Thalidomide network, several type of genes
are finally affected by its chemical toxicity. Particularly, two
cell differentiation-related genes, Nodal and Nanog, are
important for normal early embryonic development. Nodal is
related to the development of the left-right axial structure
[26][27], and its signaling pathway is known to be important
very early in development for cell fate determination and
many other developmental processes [27]. Nanog is known
as a key factor for maintaining pluripotency in embryonic
stem cells [28][29]. Thus, the unusual expressions of these
genes, which occurred due to Thalidomide toxicity, may
have caused its harmful side effects.

IV. CONCLUSION

We applied an improved SEM approach to reconstruct a
gene regulatory model from gene expression data in human
embryonic stem cells, and we have shown that SEM is a
powerful approach to estimate the gene regulation caused by
chemical toxicity. The inferred networks clarified the
differences between the gene regulation by chemicals, and
the features of chemical toxicities were well reflected in the
network structures. Thus, the network construction by SEM
is one of the useful approaches for inferring the regulatory
relationships among genes. Furthermore, the inferred
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Figure 3. Inferred network by SEM.

The optimal model for each chemical, obtained by the developed SEM iteration procedure. A positive relationship between genes is displayed with a
solid arrow. A negative relationship between genes is displayed with a dashed arrow. Gene names with blue characters indicate "neurodevelopment
related genes", genes with red characters indicate "cell differentiation-related genes" and genes with black characters indicate "related to transcription of
insulin". (a) Acrylamide model, (b) Diethylnitrosamine model and (c) Thalidomide model. (d) The estimated regression weights of all edges in the

optimal models.
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