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Fig. 2. TUNEL assay of testicular sections for apoptotic spermatogenic cells by single administration of butylparaben. Vehicle-treated control (A), and at 3h (B), at 6h (C),
and at 24 h (D) after administration. Arrows indicate apoptotic cells. Note the maximal apoptotic cell number at 6 h after administration. Scale bar=50 wm. Quantification
of apoptotic cells (E). Values representing the number of apoptotic cells/mm? cross sectional area of seminiferous tubules are expressed as the eans : SE (n=8). Statistically
significant differences between means from the control and treated groups were determined by ANOVA followed by Fisher’s PLSD test (*P<0.05; ** P<0.01, versus control).

2000). Spermatogenic cell apoptosis is also induced by many factors
including hormonal deprivation, heat, radiation and environmen-
tal endocrine disruptors (Koii and Hishikawa, 2003; Shaha, 2007).
Excessive and/or abnormal apoptosis of spermatogenic cells is one
of the main reasons for oligozoospermia and azoospermia (Tesarik
et al, 1898).

There is much evidence that butylparaben can interact with
estrogen receptors (ERs). For example, several studies employing
an ER-mediated yeast growth assay or a reporter assay with human
breast cancer cell line MCF-7 have demonstrated the interaction
between butylparaben and ERs (Routledge et al, 1998; Pedersen
et al, 2000; Okube et al, 2001). Routledge et al. (1998) reported
that estrogenic activity was inhibited by 4-hydroxy tamoxifen. In
addition, proliferative effects of parabens on MCF-7 cells were com-
pletely suppressed by the anti-estrogen ICl 182,780 in vitro (Ckubo
et al, 2001). Moreover, butylparaben has also been shown to
increase uterine weightin bothimmature rats and mice and in adult

ovariectomized mice in the rat uterotrophic assay (Routiedge et al,,
1998), thus indicating its estrogenic activity. Decreased testicular
testosterone biosynthesis, as well as decreased serum LH and serum
FSH levels, occurs after exogenous estrogen exposure, together
with increased spermatogenic cell apoptosis (I¥Souza et al., 2005;
Alam et al, 2010b). Similarly, butylparaben has been shown to
decrease serum testosterone levels, resulting in decreased counts
of round and elongated spermatids (Byford et al., 2002; Qishi, 2002;
Taxvig et al, 2008). As far as we are aware, the present study
has shown for the first time that butylparaben induces increased
apoptosis of spermatogenic cell shortly after treatment. These find-
ings agree well with our previous data on di(n-butyl) phthalate,
a suspected estrogenic compound, which significantly increases
spermatogenic cell apoptosis in prepubertal rats (Alam et al,
2010a,b). The mechanism how butylparaben induces spermato-
genic cell apoptosis is not known at present and further exploration
is needed. The development of the male reproductive system and
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Fig. 3. Semithin sections (A-D) and transmission electron micrographs (E-F) of seminiferous tubules after single butylparaben administration. Vehicle-treated control (A),
and at 3h (B), at 6h (C), and at 24 h (D) after treatment. Arrows indicate apoptotic spermatogenic cells. Scale bar =20 wm. Control rats showing normal Sertoli cell nucleus
(ScN), spermatogonium (SG), and spermatocyte (SPC) (E). An apoptotic spermatogenic cell characterized by heterochromatin condensation and shrinkage of cytoplasm
surrounded by a normal Sertoli cell nucleus is distinctly observed at 24 h (F). Scale bar=2 pm.

spermatogenesis are controlled by testosterone. Although the pos-
sibility that decreased testosterone levels may result in the increase
in spermatogenic cell apoptosis cannot be ruled out, it seems to
be due to direct cytotoxic effects of parabens on spermatogenic
cells or estrogenic action. For example, our previous study has
demonstrated that an estrogenic compound, such as di(n-butyl)
phthalate/estradiol-3-benzoite-induced spermatogenic cell apo-
ptosis was not associated with testicular steroidogenesis (Alam
et al, 2010bh).

It has also been reported that estrogen directly induces
spermatogenic cell apoptosis by cytochrome c release from
mitochondria and FasL up-regulation in in vitro model with iso-
lated spermatogenic cells (Mishra and Shaba, 2005). However,
this apoptosis was inhibited by tamoxifen, indicating that an
estrogen-induced change occurs through hormone receptor inter-
action in spermatogenic cells. Therefore, it is possible to postulate
that the ERs present in testes, probably in spermatocytes and
spermatids, have a role in inducing spermatogenic cell apopto-
sis when binding to exogenous estrogenic compounds including
butylparaben. Indeed, both ERa and ER are present in rat sperma-
tocytes and round spermatids (Saunders et al,, 1998; Pelletier et al,,

2000). In the present study, we also observed that butylparaben-
induced apoptosis was commonly found in spermatocytes, less
frequently in spermatids and not found in spermatogonia and
somatic cells. Moreover, butylparaben adversely affects spermato-
zoa by an inhibitory effect on acrosin and impairment of sperm
membrane function (Song et al., 1991), suggesting that spermato-
genic cells are a direct target of parabens in testicular toxicity
(Tavares et al, 2009). In addition, our previous studies have
reported that disruption of Sertoli cell-spermatogenic cell physical
interactions leads to detachment and sloughing of spermatogenic
cells from the seminiferous epithelium after exposure to phtha-
lates, and these detached spermatogenic cells lost the support and
nurture provided by Sertoli cells and eventually undergo apopto-
sis (Alam et al, 2010¢). Similarly, in the present study, we also
observed that apoptotic cells become detached from their neigh-
bors, probably due to collapse of Sertoli cell vimentin filaments.
The maximal number of apoptotic spermatogenic cells was
found at 6h after butylparaben administration, and at 24h, the
number of apoptotic cells began to decline, though it was still signif-
icantly greater than that in the control group. This is most probably
due to the rapid elimination of apoptotic cells by phagocytosis, a
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common fate of cells undergoing apoptosis (Maeda et al,, 2002;
Tay et al, 2007). In the present finding, in transmission electron
microscopy, apoptotic cells appeared to be engulfed by neighbor-
ing Sertoli cells. Sertoli cells play an important role in clearing
apoptotic spermatogenic cells by the process of phagocytosis It
is likely to be a self-defense mechanism (Maeda et al., 2002). Dur-
ing spermatogenic cell differentiation, although more than half of
differentiating spermatogenic cells die by apoptosis before they
mature into spermatozoa (Dym, 1994), only a limited number of
apoptotic cells are detected when testicular sections are examined
by TUNEL assay (Koji et al., 2007 Maeda et al,, 2002). Unfortunately,
the role of phagocytosis in butylparaben administration cannot be
ascertained at present, and further exploration is needed.

In conclusion, the present results of single butylparaben
administration in prepubertal rats demonstrated histopathologi-
cal changes in the seminiferous tubules and loss of spermatogenic
cells by apoptosis. Because of the importance of these effects, more
detailed studies on the mechanism of toxicity induced by parabens
in the male reproductive organs are necessary. This study is now
underway in our laboratory to elucidate the mechanism of action
of testicular dysfunction induced by parabens.
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Introduction

The search for sustainable and environmentally-friendly fuel is a
burgeoning field in biology because organic waste products and
organisms are abundant and renewable sources of biofuel
compounds. There is strong focus on producing biofuel from food
crops, such as corn and soy, as well as oleaginous algae, such as
Chlamydomonas reinhardtii and Nannochlovopsis oceanica. One of
the big advantages of algae over terrestrial crops is that they
require less land to grow on while producing more biomass [1].
This characteristic is important in large-scale production to
minimize competition with the production of food or with the
preservation of neighboring habitats. Algae can be farmed in open
tanks or closed columns and does not deplete soil for agricultural
use. Most oleaginous algae accumulate biofuel compounds in low
nitrogen conditions at the expense of cell growth [2] [3] [4]. For
that reason, we have focused our analysis on a newly sequenced
strain of microalgae, Fistulifera sp. strain JPCC DA0580, which is
able to accumulate lipids while undergoing logarithmic growth [5].
Fistulifera sp. strain JPCC DA0580 is a pennate diatom that is
possibly an allodiploid, sharing many of its genes with the diatoms,
Phaeodactylum tricornutum and Thalassiosira pseudonana. It
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demonstrates a high growth rate concurrently with achieving
high lipid content (40-60% w/w) [6]. There have been 20,618
genes sequenced from the nuclear, chloroplast and mitochondrion
genomes. Although the Fistulifera sp. strain JPCC DA0580
genome contains some genes that are homologous to the ones
involved in lipid metabolism, the cellular mechanisms for its ability
to simultaneously grow and accumulate lipids is unknown.

In our analysis, we utilized RNA-Sequencing (RNA-Seq) data
gathered from Fistulifera sp. strain JPCC DA0580 while it was
grown in oil accumulating and non-accumulating conditions at
four time points, from 0 to 60 hours. RNA-Seq is a high-
throughput sequencing method that produces a large amount of
data per experiment and can be used to investigate differences in
gene expression between several conditions. The method produces
count data of RINA sequences which can be normalized using
Reads Per Kilobase Per Million (RPKM). The normalization
corrects for the varying coverage a sequence may get due to its
length. Most analyses that involve comparisons in gene expression
focus on identifying differentially expressed genes, especially
methods that use linear modeling which take advantage of
preexisting microarray analyses [7] [8]. Another type of method
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that is less stringent is gene set enrichment analysis (GSEA), which
is more focused on relating the results with previous knowledge.
GSEA approaches the data analysis by looking for associations
between predefined groups of genes, a gene set, and a phenotype
of interest. This type of method is better at detecting small but
coordinated differences in gene expression than linear modeling
and is less interested in differendally expressed genes and more
focused on a group of genes being expressed differently from the
background expression. GSEA generally has simple requirements
for the data to be analyzed. The important elements are sets of
genes that can be compared to the data and data values that can
be distilled into one value per gene, usually gene expression or fold
change. This makes GSEA more suitable for analysing our data.

There are a variety of GSEA tools available for analyzing high-
throughput sequencing data from experiments investigating two
conditions with a robust number of replicates on a model organism
[9]. For example, online services such as DAVID [10] [11],
FuncAssociate [12] and GOLEAST [13], statistical packages for R
such as SPIA [14] and standalone scripts such as PAGE [15].
Unfortunately, our data was not suitable for these methods. When
ivestigating multiple time points with a new organism, it is
sometimes not feasible to have enough replicates, even with the
decreasing cost of RNA-Seq experiments. There are some
methods that can accommodate these data but they still depend
on variance estimation which is inadequate for our data.
Therefore, we proposed a new approach to analyse data from a
new organism that takes into account the change in gene
expression through time in order to avoid reducing our data as
done by some existing tools.

We demonstrate a modified approach to GSEA that is able to
analyse one sampled data with multiple time points, and custom
annotations in an investigation on the difference in gene
expression between two conditions through four time points. We
then use the results to identify a sequence of reactions starting with
a compound such as glucose, and ending with a compound of
interest such as triacylglycerol. To create gene sets for a genome
with custom annotations, we associate our genes with known
KEGG pathways and make each metabolic pathway a gene set. In
order to fully utilize the time-course data, each time point is
treated as a variable so that GSEA is performed in multiple
dimensions, and gene expression variation across time can be
conserved. We use re-sampling to address the low replicate
number issue and create an empirical cumulative distribution that
is then used to calculate the enrichment p-value on multidimen-
sional data without the need to assume multivariate normality.
Finally, we visualize and interpret the results using graphs that join
the enriched gene sets. The graphs also let us calculate a
hypothesized pathway of reactions from one compound to
another. In the interest of learning about oil accumulation, we
chose to focus our demonstration on the reactions involved in
turning glucose into the target biofuel lipid, triacylglycerol (TAG).

Results and Discussion

Gene Set Enrichment Analysis

Using the modified GSEA method on our data, we identified 9
significantly enriched pathways (Table 1). These pathways contain
genes whose difference in gene expression was significantly
different, as a group, to the general background level of gene
expression of the whole data set.

The photosynthesis and photosynthesis antenna protein path-
ways were two related pathways that were significantly enriched
with p-values <0.0001. The gene expression in the photosynthesis
pathway showed a positive relationship between log fold change
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and time, indicating that there was increased energy synthesis via
photosynthesis  during oil accumulation. Although a similar
relationship was present in the photosynthesis antenna proteins
pathway, the log fold change values at 60 hours was higher than in
the photosynthesis pathway. Further investigation reveals that the
values came from the expression of light-harvesting complex I
chlorophyll a/b binding proteins; LHCAIL LHCA2 and LHCA4.
Additionally, the general difference in expression of proteins in
light-harvesting complex II is lower than in light-harvesting
complex I. The preference of light-harvesting complex I may be
due to the highly efficient nature of photosystem I [16] even
though Fistulifera sp. strain JPCC DA0580 is using both systems
simultancously in this case.

The other prominent pathways are related to cellular energy
metabolism; glycolysis, the pentose phosphate pathway and
oxidative phosphorylation were significantly enriched in our
analysis. The glycolysis and pentose phosphate pathways are
fundamental to the conversion of glucose to fatty acids while
oxidative phosphorylation is essential for providing the energy
needed to power metabolic reactions. Some of the proteins in the
oxidative phosphorylation pathway form the membrane protein
V-type ATPase. It is a proton pump responsible for ATP turnover
m mitochondria and was up-regulated in our data. There is some
evidence of a relationship between increased G16-Ci18 length fatty
acids, which are used in TAG production, and increased
hydrolytic activity of V-ATPase [17]. Along with a gradual
down-regulation of NADH dehydrogenase, it would seem that
Fistulifera sp. stram JPCCG DA0580 focuses on recycling ATP
instead of reducing NADP+ for its energy requirements during oil
accumulation. Predictably, most glycolysis genes were up-regulat-
ed during the experiment, although there were notable exceptions;
phosphoglucomutase (PGM), phosphoglycerate kinase (PGK) and
glyceraldehyde 3-phosphate dehydrogenase (GAPDH). PGM
transfers a phosphate group to and from the 1’ position to the 6
position in a-D-glucose so its down-regulation suggests that
Fistulifera sp. strain JPCC DAO0580 is getting its source of o-D-
glucose 6-phosphate elsewhere. PGK and GAPDH are used in two
reversible reactions to make glycerate 3-phosphate which is a key
molecule for TAG production [18]. However, this reaction can be
done in one irreversible step by glyceraldehyde-3-phosphate
dehydrogenase (NADP) which was up-regulated in our data.
The substrate for that reaction, glyceraldehyde 3-phosphate, is
used in the pentose phosphate shunt to make nucleic and amino
acids like deoxyribose, 2-Deoxy-D-ribose 1-phosphate and D-
ribulose 5-phosphate. The genes involved in those reactions were
found to be up- regulated in our data; they were ribokinase (rbsK),
phosphopentomutase (PGM2), 6-phosphogluconate dehydroge-
nase (PGD) and 3-hexulose-6-phosphate synthase (hxlA). So it
seems that Fistulifera sp. strain JPCC DA0580 relies on glucose to
produce TAG, and nucleic and amino acids to achieve accumu-
lation and growth at the same time while using a proton pump to
power the reactions under low nitrogen conditions.

The other significant pathways are related to synthesizing the
materials for TAG and growth; they are fatty acid biosynthesis and
amino sugar and nucleotide sugar metabolism. Expectedly, the
difference in gene expression in fatty acid biosynthesis shows a
general up-regulation of the genes in the pathway as Fistulifera sp.
strain JPCC DA0580 accumulates TAG and continues cell
growth. Gene expression in the amino sugar and nucleotide sugar
metabolism pathway also had a positive trend through time. The
up-regulation of genes in this pathway suggests that sugars are
being metabolised for growth during oil accumulation. Two of the
up-regulated genes are glucokinase (glk) and glucose-6-phosphate
isomerase (GPI) which are involved in reversible reactions that
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Table 1. Results of GSEA Method.

Gene Set Enrichment Analysis on Time-Course Data

Pathway Name

Photosynthesis - antenna proteins

convert glucose into fructose and eventually lead to the production
of nucleotide sugars. As the reactions are reversible, we are unable
to discern whether the forward or backward reaction was
dominant without further data but their up-regulation means that
there was a considerable amount of converting occurring.

The next significantly enriched pathway, carbon fixation in
photosynthetic organisms, has several genes that are also present
in pyruvate metabolism, glycolysis and the pentose phosphate
pathway. The genes that exhibit varied differences in gene
expression are the ones associated with pyruvate metabolism.
During the experiment, malate dehydrogenase (decarboxylating)
up-regulated the reaction that turns malate into pyruvate. In
contrast malate dehydrogenase (oxaloacetate-decarboxylating) was
down-regulated. The preference for the decarboxylating reaction
could be due to the reactant, NADP, being used in other reactions,
such as photosynthesis. Notably, the pyruvate metabolism pathway
was not significantly enriched as a gene set however it only shares
seven reactions with the carbon fixation in photosynthetic
organisms pathway and is directly linked to 13 other pathways.
It is likely that the process of oil accumulation uses the reactions in
the carbon fixation pathway as a whole, instead of pyruvate
specifically.

The remaining significantly enriched pathway was unexpectedly
the methane pathway. Upon further investigation, it was
discovered that many genes expressed in the methane pathway
were also expressed in other pathways. For example, both
glycolaldehyde dehydrogenase (ALDA) and 6-phosphofructoki-
nase | (pfkA) are in the pentose phosphate pathway while (2R)-3-
sulfolactate dehydrogenase (comC) is also found in the cystein and
methionine metabolism pathway where it takes part in reactions
that make pyruvate. The overlap of genes between gene sets can
cause problems with detection, especially if some of the genes has a
particularly strong signal. In this case, the genes in the pentose
phosphate pathway have strongly defined differences in gene
expression that may be masking the difference in gene expression
of other genes. Although it is fairly reasonable for some genes to be
present in multiple pathways, it should be checked if the
overlapping genes are making biased contributions. The effect is
further amplified in our data as the number of annotated genes are
few.

Enriched Pathway Plots

To better visualize the results from GSEA, we plotted the
enriched pathways as graphs (Figure 1). The graph’s nodes were
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P-value

o*

The enriched pathways identified using GSEA and their enriched p-values. There were 9 pathways enriched out of 39 pathways tested.
*P-value <0.0001.
doi:10.1371/journal.pone.0107629.t001

set up as compounds as we wanted to focus on compounds and
reactions instead of the usual approach using genes. As such, the
glycerolipid pathway was added so that the key compound, TAG,
was included. The graph consisted of 353 compounds and 661
reactions. Most compounds were unique to their pathway but
there were 18 compounds that were found in two pathways and 13
compounds that were found in three pathways. These included
pyruvate, oxaloacetate and ADP and were found in glycolysis,
pentose phosphate metabolism and other related processes.

Once the graph was constructed, the shortest path between
glucose and TAG was calculated. As the graph was created using
pathways that showed a significant relationship with oil accumu-
lation, it can be considered a hypothesized path of metabolic
reactions that metabolises glucose to produce TAG. We found two
shortest paths with a length of 11 compounds (Figures 2 and 3);
the conventional path found in KEGG contains 15 compounds.
Our two shortest paths were very similar to each other, mainly
differing between the use of glycerol or glycerone. Although it is
possible to produce TAG in a smaller number of steps, it is
unknown where the reactions take place in the cell. If the proteins
are located close to each other, the path that was identified could
be how Fistulifera sp. strain JPCC DA0580 produces TAG from
glucose. Future experiments on metabolite quantity could also
provide adequate evidence for the hypothesis.

In the final step, we showed that the genes along the
hypothesized paths were up-regulated by plotting the direction
of the difference in gene expression on the edges of the graph.
When viewed next to each other, the direction of the difference in
gene expression at each time point shows which reactions change
from up-regulation to down-regulation and vice versa (Figure 4).
We observed that genes along the identified shortest paths were
up-regulated during the 60 hours of the experiment. However, the
up-regulation occurs in sections along the path instead of being
concerted. This suggests that the gene expression of a phenotype
does not change for every gene along the reaction path at a single
time point. Instead, the change in gene expression occurs in
sections which eventually leads to the up-regulation of the full
path. This visual presentation also brings to attention the
possibility of time lag effects where there could be little difference
in expression in earlier time points and not others. As our method
does not address this issue directly, the testing may be
underpowered at detecting true signals. The testing could be
improved by applying a restriction on the difference in fold change
between time points or restricting time points to those where fold
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Figure 1. The graph of the significantly enriched pathways found using our GSEA method combined with the glycerolipid pathway.
The full network contains 307 compounds and 558 reactions but compounds without reaction data were not drawn to reduce clutter. The graph is
plotted with compounds drawn as nodes and reactions drawn as edges. The compounds are colored by their pathway membership; compounds
belonging to 2 or more pathways are a mixture of the pathway colors. There were 7 compounds belonging to three pathways, 15 compounds
belonging to two pathways and 117 compounds that were unique to their pathway. Many of the shared compounds are concentrated in the center
of the graph and are related to glycolysis and pentose phosphate metabolism.

doi:10.1371/journal.pone.0107629.g001

change differences exist. However, this would require more
knowledge about the organism than we currently have available.

Conclusion

GSEA is a useful tool for exploring data when there is a
preconceived area of interest such as oil accumulation for our data.
The way it can be used to analyse data more broadly is a big
advantage when the data set is limited. As the cost of high-
throughput sequencing experiments is decreasing, investigations
with new organisms and time-course experiments can be utilized
more often. For our expression data, we wanted to include time as
a variable in our analysis so we modified GSEA to use it instead of
removing it by averaging them. Although the number of replicates
in our data caused issues with accurately isolating experimental
and biological effects, we were still able to extract meaningful
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information through our use of resampling and GSEA. Being able
to keep the time variable is an important step for future
investigations. Drawbacks observed during our analysis included
overlapping elements between gene sets, the reliance on pre-
existing knowledge of our organism and as a consequence, the
inability to assign meaning to unannotated data and improve our
method’s accuracy.

The results from GSEA were then graphed to produce a clear
visualization of the results that is easier to interpret and grants
access to other approaches for understanding the data. By plotting
the direction of the difference in gene expression on our graph, we
were able to observe the change in direction of the difference in
gene expression as they occurred during the experiment. Using
graphs in this way makes existing graph tools available, extending
the investigation beyond the initial GSEA. In this analysis we
looked at the shortest path of reactions between two compounds
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but betweenness indexes can also be investigated to identify
bottleneck compounds that are important in the network. These
methods can be used to help generate hypotheses as a basis for
further investigations.

Methods

Data preparation

The expression data was gathered from Fistulifera sp. strain
JPCC DAO0580 grown in two substrates; the treatment substrate
was artificial sea water where oil accumulation took place, and the
control substrate was a 10 fold dilution of the treatment substrate
where oil was not accumulating [19]. The RNA-Seq data was
obtained at four time points (0, 24, 48 and 60 hours) when
Fistulifera sp. strain JPCC DA0580 was grown in the two
substrates. Sequences with RPKM values of 0 for all time points
were discarded leaving a remainder of 22,550 sequences. We used
Ssearch with MIQS [20] to annotate the sequences so that 7,822
sequences were annotated with a KEGG Orthology identifier (K
ID). The unannotated sequences either did not have a match in
the KEGG database or the match did not have a KEGG
Orthology identifier. The gene expression of the annotated
sequences were then averaged if their matching K ID was shared
among several sequences, by using the following equation

Zyi¥;

RPKM, = 1)

Part A.

O Glycerol

sn-Glycerol 3P

J1-Acyl-sn-Glycerol 3P
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where RPKM, is a vector of RPKM values at each time point for
K ID x, v; is the i th vector of RPKM values for K ID x and # is
the number of RPKM vectors with K ID x. For our data, this
resulted in 2,873 RPKM,,’s where each vector had a length of four
that corresponded to the four time points, 0, 24, 48 and 60 hours.

As RNA-Seq data often have a disproportionate amount of
small RPKM values, they are usually not normally distributed,
even with the use of log transformation. The resulting fold changes
calculated from them can follow the same non-normality. We
corrected the RPKM values by implementing a threshold of 0.1 to
minimize the influence of small read numbers [21]. This was done
using the sSRAP R package which also performed a log transform
during the normalization process [22]. The normalized RPKM
vectors, SRAP,, were then used to calculate the log fold change for
each K ID x by the following equation

FC,=sRAP, —sRAP,

control (2)

where FC; is the log fold change vector of K ID x, SRAPy s
the vector of control RPKM values of K ID x and sRAP
is the vector of treatment RPKM values of K ID x.

treatment

Xtreatment

Gene Set Enrichment Analysis

We first established the gene sets which would be used in the
analysis. Generally, gene sets are lists of gene identifiers that share
an attribute of interest. For our analysis, these were K IDs divided
into each metabolic pathway in the KEGG database. The

B-D-Fructose 6P

a-D-Glucose 6

O
D-Glucose

Figure 2. The first shortest path found in our graph between glucose and triacylglycerol using breadth-first search. A. This is the
detailed view of the path showing the names of the compounds involved at each step. B. The shortest path is highlighted in green on the full graph
to show its location. In contrast, the path presented in KEGG is highlighted in orange. The shortest path contains 11 compounds while the KEGG path

contains 15 compounds.
doi:10.1371/journal.pone.0107629.g002
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2-Dehydro-3-Deoxy-D-Glyconate

D-Gluconic acid

D-Glucose

D-Glucono-1,5-Lactone

Figure 3. The second shortest path found in our graph between glucose and triacylglycerol using breadth-first search. A. This is the
detailed view of the path showing the names of the compounds involved at each step. B. The shortest path is highlighted in green on the full graph
to show its location. In contrast, the path presented in KEGG is highlighted in orange. The shortest path contains 11 compounds while the KEGG path

contains 15 compounds.
doi:10.1371/journal.pone.0107629.g003

pathways we chose to investigate were associated with carbohy-
drate (15 pathways), energy (8 pathways) and lipid metabolism (17
pathways). The Secondary Bile Acid Biosynthesis gene set was
removed as our data contained no data for it, thus our analysis
used a total of 39 gene sets [23] [24]. Importantly, these 39 gene
sets included the glycolysis and glycerolipid metabolic pathways
which contains the compounds central to oil accumulation,
glucose and TAG.

The following steps of the algorithm were carried out for each
gene set which produces a test statistic and p-value that describes
the significance of the gene expression of the gene set compared to
the overal gene expression.

Step 1: Create a matrix of fold change data of genes
present in gene set S.

FCM, =

(F Cxo FCipy FCygs FCigo ) 3)

where FCM; is a 1 x 4 matrix, s denotes gene set s, 1 is the
number of genes in the set and 4 is the number of time points in
our data. Each row of FCM; corresponds to a fold change vector
FC, (Equation 2). This vector consists of FC,, which is the fold
change of K ID x at time . In our data, ? takes a value from time
point 0, 24, 48 or 60 (hours).
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Step 2: Calculate the column mean of FCM;.

IyiFCio  ZvifCiae  ZviFCigg EViFCi,e())

Fonr - (e 7 ; g @

where FCM; is a column mean vector of matrix FCMj (Equation
3). This is used to represent the fold change of gene set s through
the 4 time points.

Step 3: Resample n rows from the whole fold change
data matrix to construct a new matrix, RSM;. The resulting
matrix, RSM;;, is the ith matrix created from randomly resampling
fold change vectors without replacement [25]. It has the same
dimensions as FCM; (Equation 3) but the rows of RSM; do not
necessarily overlap with rows in FCMj.

Step 4: Calculate the column mean of RSM;. The
column mean RSM; is used to represent the background fold
change of n genes and is calculated in a similar manner as
equation 4.

Step 5: Repeat steps 3 and 4 6000 times. The RSM; from
iteration i are stored as rows in a 6000 x 4 matrix, ECD.

Step 6: Calculate the enrichment p-value of gene set s
by using an empirical cumulative distribution derived
from the 6000 x 4 matrix ECD. The empirical cumulative
distribution is defined by the following function
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C. Time 48 hours

D. Time 60 hours

Figure 4. These graphs highlight the fold change direction of known genes in our data in response to oil accumulating conditions
at each time point. A gene involved in a reaction is represented by an edge while the compounds in a reaction are represented by the nodes.
Genes that were up-regulated during oil accumulation are drawn as green edges while red edges represent genes that were down-regulated. Genes
for which data was unknown were drawn as gray edges. The compounds colored in black are part of the first shortest path found between glucose
and triacylglycerol (Figure 2). The edges that connect those compounds shift from red to green during the 60 hour course of the experiment.

doi:10.1371/journal.pone.0107629.9g004

Fs(“) =

Syil(ECD;p <1y, ECD; 04 <taz4,ECD; 43 <ugs, ECD; g9 <ugp) (5)
n

where F; is the empirical cumulative distribution of gene set s, 0 is
a fold change vector with a length equal to the number of columns
of ECD (Step 5), 4 is a value in u at time 7 which takes the values
0, 24, 48 and 60 in our data, [ is the indicator matrix, ECD;; is the
fold change value of the ith row at time # in the ECD matrix and n
is the size of gene set .

The enrichment p-value of gene set s is calculated by
substituting u with FCMj (Equation 4).

The algorithm detailed above was implemented in R [22], and
the empirical cumulative distribution and enrichment p-value was
calculated using the mecdf package [26].
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have yet to be fully implemented in the research community. In this article, a set of unique RNA external
standards (or RNA standards) and probe pairs that were added to total RNA in the samples before ampli-
fication and labeling are described. Concentration-response curves of RNA external standards were used
across multiple commercial DNA microarray platforms and/or quantitative real-time polymerase chain
reaction (RT-PCR) and next-generation sequencing to identify problematic assays and potential sources
of variation in the analytical process. A variety of standards can be added in a range of concentrations
spanning high and low abundances, thereby enabling the evaluation of assay performance across the
expected range of concentrations found in a clinical sample. Using this approach, we show that we are
able to confirm the dynamic range and the limit of detection for each DNA microarray platform, RT-
PCR protocol, and next-generation sequencer. In addition, the combination of a series of standards and
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Recent advances in DNA microarray technology have opened up
new applications in both basic and clinical research {1-41. Conse-
quently, new tests in many areas of biomedical science, including
clinical pharmacogenetics, cancer genotyping, and cancer progno-
sis, have been developed {5-7 .

Clinical applications of DNA microarray technology include
gene expression analysis for early disease detection, disease classi-
fication and diagnosis, selection of treatment protocol, determina-
tion of changes in disease status, and the monitoring of therapeutic
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dna-chip.cojp (R, Matoba).
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effects and side effects. A clinical application in which DNA micro-
array gene expression analysis has already been applied is the
“MammaPrint,” developed in the United States and Europe, used
to select the optimal breast cancer treatment {5}. In addition, Onc-
oType DX, a product based on quantitative real-time polymerase
chain reaction (RT-PCR)?, has also been used for analyzing the
expression of multiple RNA targets as an indicator in the selection
of optimal breast cancer treatment {&}.

! Abbreviations used: RT-PCR, real-time polymerase chain reaction; HURR, human
universal reference total RNA; HBRR, human brain reference total RNA; JMAC, Japan
Multiplex bio-Analysis Consortium; cDNA, complementary DNA; 3D, three-dimen-
sional; aRNA, antisense amplified RNA; SSC, sodium saline citrate; SDS, sodium
dodecyl sulfate; PBS, phosphate-buffered saline; mRNA, messenger RNA.
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However, if DNA microarray data are to be routinely used for
clinical applications, it is vital that the data are both reliable and
reproducible and that errors or ambiguities in the interpretation
of results are eliminated {8-10]. In particular, because gene expres-
sion is highly variable, quality assurance in the handling of speci-
mens—storage conditions, transport conditions, and pretreatment
protocols—must be robust (Fig, 1).

We report here the development of a set of unique RNA external
standards (or RNA standards) and probe pairs that may be spiked
into test samples to ensure equivalence across many microarray
platforms. This suite of synthetic nucleotides is derived from unique
non-mammalian sequences and designed to minimize cross-hybrid-
ization with common transcripts from humans, mice, and rats. Six
microarray platforms were evaluated using this set of standards:
3D-Gene (Toray Industries, Tokyo), Agilent SurePrint (Agilent Tech-
nologies, Santa Clara, CA, USA), Genopal (Mitsubishi Rayon, Tokyo),
GeneSQUARE (Kurabo Industries, Osaka, Japan), S-Bio (Sumitomo
Bakelite, Tokyo), and NimbleGen (Roche NimbleGen, Basel, Switzer-
land). An RT-PCR protocol (Life Technologies, Foster City, CA, USA)
and a next-generation sequencer GAIl (Illumina, San Diego, CA,
USA) were also tested. We compared performance across DNA
microarray platforms and/or RT-PCR and next-generation sequenc-
ing by spiking a set of our standards into a commonly available com-
mercial total RNA sample. A variety of standards can be added in a
range of concentrations spanning high and low abundances, thereby
enabling the evaluation of assay performance across the expected
range of concentrations found in a clinical sample.

Using this approach, we show that we are able to confirm the
dynamic range and the limit of detection for each DNA microarray
platform, RT-PCR protocol, and next-generation sequencer. In
addition, the combination of a series of standards and their probes
was investigated on each platform, demonstrating that multiplat-
form calibration and validation is possible (Fig. 2).

Materials and methods
RNA external standard transcripts

Ten candidate external RNA standard clones (in pUC19 plasmid)
were synthesized from artificial sequences designed to have the

following characteristics: (i) a unique sequence that exhibits low
similarity with any eukaryotic genome and EST sequence known
to date, (ii) no nucleic acid homopolymer longer than three bases,
(iii) a G+C content in the range of 40 to 60%, (iv) no repeated
sequences such as a motif, and (v) no strong secondary structure
within the sequence. The standard sequences were designed by
using our original program software. Inserts for the clones are
500 to 1000 bp with a 30-bp polyadenylated tail and T7 promoter
sequence. All candidate standards were prepared by in vitro tran-
scription of linearized plasmids using a T7 RNA polymerase
(MEGAScript Kit, Life Technologies, Carlsbad, CA, USA) according
to the manufacturer’s instructions. Ten transcripts corresponding
to the RNA external standards were purified using TURBO DNase
(Life Technologies) and further purified by phenol-chloroform
extraction and ethanol precipitation. The 10 standard transcripts
were dissolved in RNase-free water and then quantified using a
Quant-iT RNA Assay Kit (Life Technologies). The sequences of the
external standards (R001-500 to RO10-1000) have been deposited
in the DDBJ/GenBank/EMBL databases under the accession num-
bers AB610939 to AB610950.

RNA external standard spiked total RNA cocktail

Human universal reference total RNA (HURR, Agilent Technolo-
gies) and human brain reference total RNA (HBRR, Agilent Technol-
ogies) controls were used. Ten external RNA standards were
diluted using HURR or HBRR RNA solution at 50 ng/ml. The stan-
dard spiked total RNA cocktail (see Supplementary Tables S1 and
52 in online supplementary material) was prepared at the Japan
Multiplex bio-Analysis Consortium (JMAC) central laboratory and
delivered to each test site.

Design of probe for RNA external standards

For probe design, each external standard was divided into two
regions as follows: 1- to 300-nt and 301- to 500-nt regions for
500-nt RNA and 1- to 500-nt and 501- to 1000-nt regions for
1000-nt RNA, numbering from their 3’ ends. All candidate
sequences from the sense strand were extracted by moving 60-nt
windows in each region.
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Fig.1. Measurement uncertainty of DNA microarray analysis. Unless the uncertainties of a measurement are being evaluated and stated, the fitness for the purpose of
measurement cannot be judged properly. The uncertainties of a measurement using microarray are complicated and intertwined. The sources of uncertainties come from
mainly the platform material, RNA quality, and hybridization efficiency and during data acquisition and processing.
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First, the cross-hybridization potentials of candidate probes
against off-target RNAs were analyzed. Because exact calculation
based on thermodynamics requires a large computational cost,
the search program in the FASTA package {11] (version 3.5) with
default parameters to align candidate probes against both strands
of 56,155 human complementary DNA (cDNA) sequences from the
Ensembl database (http://www.ensemblorg, release 49) was used,
and the top 100 off-target cDNA sequences that have the closest
similarity to each probe based on the alignment scores were
selected for potential cross-hybridization targets. To refine these
results, the hybrid-min program in the UNAFold package {12}
was performed to calculate the free energy change of hybridiza-
tion, and then a program to calculate the cross-hybridization ratios
for each probe based on Ref. {13} was coded. A cross-hybridization
ratio »10-3 was removed from the candidate probes.

Second, Ty, values using the nearest neighbor method {14} were
calculated, and four candidate probes for each RNA standard that
had the closest T, to 80°C were selected (Supplementary
Table S3A). Potentials for dimerization and secondary structure
formation were also calculated by hybrid-min and hybrid-ss in
UNAFold. For thermodynamic calculations, 0.5 uM of primers,
2 mM Mg*", and 50 mM Na* parameters were used.

DNA microarray platform analyses

3D-Gene

The custom DNA microarray was constructed using the 3D-
Gene platform (Toray Industries) {15} and spotted with the DNA
probes (140 probes) shown in Supplementary Tables S3A and
$3B. The 3D-Gene platform has a three-dimensional (3D) array that
is constructed within a well with the oligonucleotide probes on the
top. A total RNA cocktail (0.5 pg) was amplified and labeled using
an Amino Allyl MessageAmp II aRNA Amplification Kit (Life Tech-
nologies) according to the manufacturer’s instructions. Each sam-
ple of aRNA (antisense amplified RNA) labeled with Cy5 was
hybridized with 3D-Gene at 37 °C for 16 h. After hybridization,
the DNA microarray was washed and dried. Hybridization signals
derived from Cy5 were scanned using Scan Array Lite (PerkinElmer,

Waltham, MA, USA). The scanned image was analyzed using Gene-
Pix Pro 6.0 software (Molecular Devices, Sunnyvale, CA, USA). Spots
that might be associated with artifacts were eliminated using soft-
ware- and visual-guided flags. In this study, the background
(blank) average was subtracted from the median values of the fore-
ground signals that are higher than the background (blank) aver-
age + 2 standard deviations to give a feature intensity.

Agilent SurePrint

The custom microarray used in this study was designed using
the Agilent e-Array platform (Agilent Technologies). Total RNA
cocktail (0.5 pug) was used as a starting material to prepare Cy3-
labeled aRNA. Fluorescently labeled aRNA was produced using
the Quick Amp Labeling Kit (Agilent Technologies) and purified
using the RNeasy Mini Kit (Qiagen, Hilden, Germany). The Cy3-
labeled 600-ng aRNA was fragmented and hybridized at 65 °C for
17 h to microarray platform slides using the Agilent Gene Expres-
sion Hybridization Kit (Agilent Technologies). The microarray plat-
form slides were washed and scanned with an Agilent scanner. The
fluorescent intensities of individual spots were obtained with Fea-
ture Extraction (version 10.5.1.1, Agilent Technologies).

Genopal

The custom oligonucleotide microarray, Genopal (Mitsubishi
Rayon), was made in the following manner. Plastic hollow fibers
were bundled in an orderly arrangement, and hardened with resin
to form a block. Oligonucleotide capture probes (140 probes) were
chemically bonded inside each hollow fiber with hydrophilic gel
{161. The block was then sliced to make thin microarray platforms,
each of which was set into a holder (for details, see htty:/fwww.
mre.coip/genome/e).

Total RNA cocktail was amplified using the MessageAmp Il Bio-
tin-Enhanced Amplification Kit (Life Technologies) according to the
manufacturer’s instructions, and was column purified. Biotinylated
RNA (5 pg) was fragmented by incubation with fragmentation
reagents (Life Technologies) at 94 °C for 7.5 min. Hybridization
was carried out with DNA microarray in 150 pl of hybridization
buffer (0.12 M Tris-HCl, 0.12 M NaCl, and 0.05% Tween 20) and



