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Figure 4. AAD in BAPN/Angli-treated wild type (WT)
mice is accompanied by enhanced MMPY expression,
neutrophil infiftration, and supsroxide production. A,
Analysis of MAMP9 mRNA expression by reverss tran-
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thoracic aortas (Figure 5). In control mice treated with BAPN
alonc or BAPN and NE, immunostaining of MMP9 und
neutrophils was only rarely observed in the tissues (Figure S5).
These findings suggest that the increased levels of MMP9
detected in the AAD uortas are derived primarily from
neutrophils that infiltrale both the aortic intima and media,

Reduction of AAD Incidence by Pharmaceutical
and Genetic Depletion of MMPY or by

Neutrophil Depletion

To determine whether MMP9 plays a direct role in the AAD
mouse model, BAPN/Angll-treated mice were treated with
synthetic MMP inhibitor ONO-4817. As shown in Figure GA,
when ONO-4817 was administered orally on daily basis to
BAPN-treated WT mice from 48 hours prior to Angll
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scription polymerase chain reaction in aortic tissues
from the WT mice treated with vehicle {control), BAPN,
BAPN/Angll (BAPN-+Angll), or BAPN/NE (BAPN-+NE),
Polymerase chain reaction products of 3 independent
samples from each group are shown. B, Gelatinolytic
activity of the aortic tissue homogenates was assessed
by gelatin zymography. BAPN/Angll-treated WT aorta
shows gelatinolytic bands of 92 kDa and 87 kDa, cor-
responding to pro-MMP8 and active MMPS, respec-
tively. G, Serial paraffin sections of dissected thoracic
aorta of BAPN/Angll-freated WT mice were stained
with H&E and immunostained with anti-MMPS anti-
body, antineutrophil antibody, or control immunoglobu-
lin G, Note the infittration of MMP3-positive neutrophils
in the media of the dissected lesion. D, Film in situ
zymography and dihydroethidium staining of aortic tis-
sues from BAPN/Angli-treated or control vehicle-
treated WT mice. Serial frozen sections were made and
stained with H&E or subjected to film in situ zymogra-
phy using gelatin films coated with or without 1,10-
phenanthroline. Frozen sections were also stained with
dihydrosthidium. Scale bars, 200 um. AAD indicates
acute aortic dissection; BAPN, j-aminopropionitrile
monofumarate; Angll, angiotensin II; WT, wild type;
MMP3, matrix metalloproteinase 9; NE, norepinephrine;
H&E, hematoxylin and eosin stain; FIZ, film in situ
zymography; GAPDH, glyceraldehyde 3-phosphate
dehydrogenase; and DHE, dihydroethidium.

infusion until sacrifice, the incidence of AAD decreased
significantly from 100% to 60%, and spontancous death
caused by aortic rupture was blocked completely. Consistent
with these observations, when MMP9™'™ mice were treated
with BAPN/Angll, AAD incidence was attenuated remark-
ably to basal levels (109% of the MMP9™"" mice) whereas
BAPN alone induced thoracic ancurysm formation at a
frequency comparable with that observed in WT mice (Figure
6A and 6B). Hence, these findings support a direct role for
MMPY in the development of AAD.

Although multiple cell populations are capable of express-
ing MMP9 (eg, macrophages,'? endothelial cells,® and vas-
cular smooth muscle cells?), neutrophil infiltrates dominated
the affected tissues, As such, we depleted neutrophils during
ancurysm formation by treating the mice with anti-Gr-1

Figure 5. Infiltration of MMP3-positive neutrophils
in the intima of nondissected lesions of BAPN/
Angll-induced AAD thoracic aortas. MMPS expres-
sion and neutrophil infiltration were examined by
histology and immunohistochemistry in the aortas
of untreated wild type mice (controlj or wild type
mice treated with BAPN alone, BAPN +Angll, and
BAPN-+NE. Note the accumulated MMPS-positive
neutrophils in the intima of nondissected aorta
from BAPN/Angll-treated mice. Inlets in the
BAPN-+Angll group show a higher-power view of
the rectangular areas. Scale bar, 200 xm. MMP9
indicates matrix metalloproteinase 9; H&E, hema-
toxylin and eosin stain; BAPN, j-aminopropionitrile
monofumarate; Angll, angiotensin Il; AAD, acute
aortic dissection; and NE, norepinephrine.
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Figure 6. Pharmaceutical and genetic depletion of
MMP3 or immunological depletion of neutrophils
attenuates AAD incidence in mice. A, AAD inci-
dence in BAPN/Angll-treated WT mice that were
treated with ONO-4817 (BAPN +Angll-+ONO-4817)
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neutralizing antibody. The number of circulating nentrophils
was reduced to 20% of control levels by intraperitoneal
injection of the antibody for 48 hours prior to Angll infusion
(data not shown), and, as expected, neutrophil depletion

atiennated AAD incidence significantly (Figure 6A).

Angll-Induced Neutrophil Infiltration to Aortic
Intima Independent From MMP9 Expression
Infiltration of neutrophils into the aortic intima was observed
in BAPN/Angll-treated WT mice with or without ONO-4817
administration, as well as in BAPN/Angll-treated MMP9 ™'~
mice (Figure 7A). Hence, these data demonstrate that Angll
promotes neutrophil infiltration independent of MMPY ex-
pression in our AAD model, but these results do not exclude
the possibility that normal rates of neatrophil infiltration are
maintained only within the noncross-linked, fragile vessel
wall caused by chronic BAPN treatment. Thus, we further
assessed the effect of Angll on neutrophil infiltration by

BAPN+ANgil

(left) or anti-Gr-1 antibody (BAPN +Angh+Gr-1)
(middle) and the incidence in BAPN/Angll-treated
MWMP9 ™/~ mice (right) were compared with that in
BAPN/Angll-treated WT mice (n=10 for each
group). The probability value was adjusted with the
Bonferroni method for pairwise comparisons.
*P<0.05 versus BAPN/Angll-treated WT mice. B,
Three-dimensional images of enhanced computed
tomographic scan (upper) and histology (middle
and bottom) of the aortas from MMPI™'" mice
that were treated with vehicle for 4 weeks (con-
trol), BAPN alone for 4 weeks (BAPN), or BAPN
for 4 weeks and then Angll for 24 hours

(BAPN +Angll). Note that AAD formation is blocked
in BAPN/Angll-treated MMP9™/~ mice. (Bottom)
High-power view of the rectangular areas in the
middle panel. Scale bars, 200 pm and 100 um for
the middle and bottom panels, respectively. MMP9
indicates matrix metalloproteinase 9; AAD, acute
aortic dissection; BAPN, -aminopropionitrile
monofumarate; Angll, angiotensin Il; anti-Gr-1,
anti-granulocyte-differentiation antigen-1; WT, wild
type; and H&E, hematoxylin and eosin stain,

infusing Angll in BAPN-untreated WT or MMP9™™ mice
wherein vascular structural integrity is intact. As shown in
Figure 7B, neutrophil infiltration into the aortic intima was
unaffected between the 2 groups, indicating that Angll infusion
evokes neutrophil infiltration to the intact aortic wall indepen-
dent of MMP9 expression.

Discussion
In the current study, we demonstrated that serum levels of
MMPY and Angll are elevated in AAD patients, bul not in
patient populations with chronic, nonruptured ancurysms.
Furthermore, increased circulating levels of MMP9 correlated
with the presence of MMP9-positive nentrophils that accu-
mulated in the aortic tissues of AAD patients. Given these
findings from studies of human AAD specimens, we estab-
lished a novel mouse model that develops AAD unfailingly
within 24 hours of Angll infusion. This model was dependent
on preconditioning mouse aortas with the lysyl oxidase
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Figure 7. Angli-induced neutrophil infiltration in aortic intima is independent of MMPS expression or BAPN treatment. A, Histological and
immunohistocherical analyses of MMPS expression and neutrophil infiltration in the aortic intima of the WT mice treated with BAPN and
Anglt (BAPN +Anglly; BAPN, Angli, and ONO-4817 (BAPN+Angll-+ONO-4817); or BAPN, Angll, and anti-Gr-1 antibody (BAPN-+Angl+Gr-1);
and those in the intima of the MMP9™'~ mice treated with BAPN and Angll (BAPN+Angll) (n=10 for each group). Note that neutrophil infiltra-
tion is independent of MMP9 expression. Scale bar, 200 um. B, Histological and immunohistochemical analyses of MMP9 expression and
neutrophil infiltration in the aortic tissues of BAPN-untreated WT and MMP3™"~ mice 24 hours after Angli infusion. Note that neutrophil infil-
tration is independent of BAPN treatment. Scale bar, 200 pm. Angll indicates angiotensin Il; WT, wild type; MMP9, matrix metalloproteinase
9; H&E, hematoxylin and eosin stain; BAPN, g-aminopropionitrile monofumarate; and anti-Gr-1, anti-granulocyte-differentiation antigen-1.

inhibitor BAPN to create an aneurysmal, pre-AAD status in
immature mice. Collagen and elastin cross-links, which are
critical for maintaining vessel wall integrity, are disrupted by
BAPN administration,?” leading to the generation of mechan-
ically fragile aortas that both display medial degeneration and
develop aortic aneurysms. This type of aortic aneurysm is
typically seen in human connective tissue diseases such as
Marfan syndrome,®® but the histology of cystic medial degen-
eration is commonly seen in ancurysms that arise secondary
to aging and atherosclerosis as well It is not clearly
clucidated whether aortic matrix cross-links are different
between normal and aneurysmal aorta®®; however, scveral
studies from human pathological samples indicate that the
composition of the aortic extracellular matrix changes as
medial degeneration proceeds with enhanced deposition of
proteoglycans and decreased collagen content, coupled with
apoptosis of vascular smooth muscle cells. 3 These findings
suggest that the aortic media and its matrix components -are
disorganized as a function of discase progression, thus leading to
the generation of an aneurysmal aorta with weakened mechan-
ical properties. As such, our mouse model would appear o
recapitulate a similar state in which suitable triggers, such as
Angll, precipitate the transition from a preconditioned, chronic
aortic aneurysm to AAD.

Previous studies have suggested possible roles for MMP9
in the development of chronic atherosclerosis-derived ancu-
rysms as well as connective tissue disease-related aortic
ancurysm.3'™** By contrast, our findings demonstrate that
AAD formation itself proceeds in an MMP9-dependent fashion
that is inhibited significantly by either pharmacological or
genetic targeting of MMPY. A previous study by Gough et al'?
has shown that macrophages overexpressing autoactivating
MMP9 induce atherosclerotic plaque rupture by disruptions of
fibrous cap in apolipoprotein E mice, suggesting the ability of

MMP9 to destroy aortic tissue. Altogether, these data support the
notion that MMP9 is responsible for triggering aortic dissection
from the preconditioned aneurysmal aorta. We have further
demonstrated that neuntrophil infiltration is observed in the intima
of the predissecting aorta as well as in the dissected media, and
that neutrophil depletion attenuates AAD incidence signifi-
cantly. The importance of inflammation in the pathogenesis of
vascular discases is well documented, but until now, it has been
difficult to determine whether neutrophil accumulation triggers
dissection or oceurs as a consequence of the massive vascn-
lar damage that develops during dissection. Because MMP9-
positive neutrophils were confined to the intima of nondis-
sected lesions while the dissected lesions displayed strong
staining for MMP9-positive neutrophils primarily within the
media, we posit that neutrophils infiltrate the intima at the
initiation of dissection. Despite the importance of neutrophils,
we cannot rule out the contribution of other immune effector
cells that might be recrited subsequent to the inflammatory
responses initiated by infiltrating neutrophils, as depleting
neuntrophils attenuated AAD, but not to the degree observed
with MMP9 targeting. Indeed, the upregulated MMP9 mRNA
levels detected in AAD aortic samples 24 hours after Angll
infusion counld result from nonneutrophil effector cells, be-
cause neutrophil MMP9 synthesis is mostly completed at
earlier stages of differentiation, with mature neutrophils
primarily storing MMP9 in granule compartments.> Never-
theless, the rapid induction of aortic dissection in our model
as early as 6 hours after Angll infusion, in tandem with the
accumulation of MMP9-positive neutrophils, supports the con-
clusion that infiltrating neutrophils trigger the initiation of
dissection directly or indirectly.

MMP9 is a multifunctional proteinase endowed with the
ability to degrade multiple extracellular matrix macromole-
cules, including types I, IV, and V collagens; denatured
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collagens (ic, gelatin): and elastin.'*35 Furthermore, MMP9
can modulate inflammatory responses by hydrolyzing a
varicty of cytokines and chemokines.® For example, MMP9
can activate prointerleukin-1,37 increase the biouctivity of
interleukin 8, and promote interlenkin 3-induced pulmo-
nary inflammation,® while inactivating neutrophil chemo-
kines such as growth-regulated oncogene and mature inter-
leukin 1373 A yrecent clinical trial has shown that the
treatment of aortic abdominal aneurysms with doxycycline, a
nonspecific MMP inhibitor, reduced neutrophil and eytotoxic
T-cell infiltration into the ancurysmal wall in association with
decreased production of MMP9 and inflammatory cyto-
kines. " MMP9 has also been reported to aflect neutrophil
chemotactic activity in lung injury models " In the current
study, however, we detected no differences in neutrophil
infiltration within the aortic tissucs of OND-4817-treated
mice or belween WT and MMP9™'™ mice in our AAD model.
Furthermore, in contrast to malignant cells, with MMP-
dependent invasive activity that is affected by collagen
cross-links,* our study showed that neutrophils infiltrate
aortic tissues similarly in both BAPN-treated and -untreated
mice. Together, these data suggest that neutrophil infiltration
proceeds independently of MMPY activity or collagen cross-
links in this model system.

A detailed mechanism regarding how MMPY contributes to
the initiation of AAD remains to be defined. In recent studics
using Fibrillini ™" mice, which develop AAD spontancously
secondary to connective tissue defect, the elevation ol trans-
forming growth factor levels and its downstream signaling
cascade contribute to the pathogenesis of aortic ancurysm and
dissection* In this model, MMP2 and MMP9 were both
upregulated, and doxycycline attenuated discase progres-
sion. 132 Because MMPO is a potent activator of latent trans-
forming growth factor 5 it is interesting to speculate that
upregulated MMP9 activity may trigger AAD by in situ activa-
tion of transforming growth factor in the affected aortic media of
the mice.

Last, our study has validated Angll as a potent inducer of
mouse AAD, a result that complements the higher levels of
Angll detected in our AAD patient population. Long-term
Angll infusion is known to lead to spontancous aortic
dissection in atherosclerosis models using apoE™"" mice.
Recent studies have also demonstrated that Losartan, an
antagonist of the Angll receptor, ATI, prevents aortic aneu-
rysm development and aortic root dilation in Marfanoid mice
and humans. 17 [t is clear that the role of Angll in the
induction of AAD is not a result of vasopressor effects alone,
because NE failed to trigger AAD in our model despite
similar levels of hypertension. One of the significant differ-
ences between the aortic lesions observed in BAPN/Angil-
treated versus BAPN/NE-treated WT mice was the presence
of neutrophil infiltrates in the BAPN/Angli-treated mice,
suggesting that Angll acts as a potent stimulus for neutrophil
infiltration into the aorta intima. Indeed, recent studies
indicate that Angll can induce neutrophil infiltration.?>** In
addition, Angll is also able to activate ncutrophils and
stimulate the nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase-dependent production of reactive oxygen
metabolites, which may promote the oxidative autoactivation

of pro-MMP9. 7542 [n the current study, we could show the
gelatinolytic metalloproteinase activity and superoxide pro-
duction in the neutrophil-infiltrated dissecting aortic tissue
from the BAPN/Angll-treated mice. Thus, Angll likely plays
a key role in triggering AAD onset not only by attracting
neutrophils to the affected sites, but also by stimulating the
release and activation of pro-MMPY.

This study has a few limitations. First, we used a mouse
model to demonstrate the role of neutrophil-derived MMP9
activity in AAD formation. Because mouse models do not
recapitulate human discase progression stringently, the results
of our AAD model may be different in humans. In the mouse
model, AAD was induced in the descending thoracic aorta by
Angll infusion to the young mice treated with BAPN.
Preconditioning for the AAD induetion (ie, ancurisin forma-
tion) by BAPN treatment is antificial and may be applicable
for AAD in patients with connective tissue disorders but not
for commonly observed AAD in humans, such as our patients
in the current study. Another limitation of this study is that
the activation mechanism of pro-MMP9 within aortic tissues
has not been examined in mouse or human AAD. Although
our study on the mouse model has suggested possible
involvement of reactive oxygen species in the activation,
detailed studies regarding whether pro-MMP9 activation and
AAD incidence are suppressed by antioxidant therapy, and
which reactive oxygen species are required for pro-MMP9
activation in coculture system of neutrophils and smooth
muscle cells, will be necessary. Moreover, reactive oxygen
species-mediated pro-MMP9 activation in human aortic tis-
sues from AAD patients needs to be investigated by future
work.

AAD is a potentially fatal discase, the prompt diagnosis and
treatment of which are required for successful intervention.
Although the fibrin product, D-dimer, is the only established
biomarker for AAD, the differential diagnosis of AMI versus
pulmonary embolism, which displays similar symptoms to that
ol AAD, can be difficult.®*5" In this context, MMP9 could serve
as a potential biomarker for the diagnosis of AAD. Furthermore,
although the dominant treatment for AAD relics on surgical
reinforcement of the affected aorta, our data raise the possibility
that the preventive administration of Angll receptor blockers or
MMP9-specific inhibitors to patients at risk with nonruptured
atherosclerotic aneurysm could prove useful as effective thera-
peutics to reduce AAD incidence.
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CLINICAL PERSPECTIVE

Acute aortic dissection (AAD) is a potentially fatal vascular discase, and prompt diagnosis and treatment by timely surgery
are required for survival of the patients. No efficient biomarkers arc available for diagnosis ol AAD prior to determination
of the disease by computed tomography. Medial degeneration is known as an important risk factor for the development of
AAD; however, the emergent nature of the discase and the paucity ol animal models prevent us from studying the
molecular mechanisms for triggering the discase. We found that matrix metalloproteinase 9 (MMP9) and angiotensin I
were increased significantly in blood samples from AAD patients compared with those from normal subjeets and the
patients with nonruptured sortic ancurysm. This was accompanicd by enhanced infiltrations of MMP9-producing
neutrophils in the dissected aortas. Based on the data, we established 4 mouse model of AAD, which was induced by
infusion of angiotensin II to mice pretreated with S-aminopropionitrile monofumarate (a lysyl oxidase inhibitor). All mice
exhibited AAD within 24 hours after angiotensin II infusion. Aortic tissue from the AAD mice showed enhanced
expression and activity of MMP9, and MMP9-immunorcactive neutrophils were infiltrated in both dissected media and
intima of nondissected lesions. Genetic depletion or pharmaceutical inhibition of MMP9 and neutrophil ablation attennated
the AAD incidence. These data demonstrate that neutrophil-derived MMP9 is responsible for triggering AAD in this
model. Tuken together, MMP9 could serve as a potential biomarker for diagnostic sereening of AAD, and administration
of angiotensin II receptor blockers or MMP9 inhibitors could be effective therapeutic approaches o AAD.
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Abstract Trifurcated arch grafts (3-branch grafts) are
now being used to repair the thoracic aorta in addition to
conventional arch grafts (4-branch grafts). The anatomical
shape of the 3-branch graft is different from the original
vessel, so it is necessary for clinical application to evaluate
blood flow distribution in the graft to assess whether there
is adequate blood flow to the target organs. To achieve this,
we developed a computational fluid dynamics (CFD)
method to evaluate blood flow distribution in the grafts.
Aortic blood flow was measured by phase-contrast mag-
netic resonance imaging (PC-MRI), and flow distribution
into the branched vessels was obtained. The MRI image
was used to create a patient-specific image model that
represents the geometry of the aortic arch. The CFD
analysis method was employed to determine a boundary
condition of the blood flow analysis in the aorta using a
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patient-specific image model. We also created simplified
models of 4-branch and 3-branch grafts and used our CFD
analysis method to compare blood flow distribution among
simplified models. It was found that blood flow distribution
in the descending aorta was 71.3 % for the 4-branch graft
and 67.7 % for the 3-branch graft, indicating that a sum of
branching flow in the 3-branch graft was almost the same
as the one in the 4-branch graft. Therefore, there is no
major concern about implanting a new 3-branch graft. Our
CFD analysis method may be applied to estimate blood
flow distribution of a newly developed vascular graft prior
to its clinical use and provide useful information for safe
use of the graft.
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Introduction

Arch grafts (4-branch grafts) with the same shape as the
aortic arch are conventionally used to repair the large
thoracic vessel. Trifurcated arch grafts (3-branch grafts) are
now also being used to detain a stent in the aortic arch
where the brachiocephalic artery (BA), left common car-
otid artery (LCCA), and left subclavian artery (LSCA)
branch off. Stent detention possibly causes abnormal blood
flow distribution into these vessels [1-7]. Clinicians need
to know whether adequate blood flow is delivered into each
branched vessel because the 3-branch graft replacement
makes the shape of the aortic arch geometrically different
from the shape when using a 4-branch graft replacement
(Fig. 1).

Evaluating blood flow distribution in 3-branch grafts by
computational fluid dynamics (CFD) has not been per-
formed at preclinical trial. Because measurements of
pressure and blood flow are not easy tasks in clinical
practice, and hemodynamic pressure difference and blood
flow within the branch are not known quantitatively, it is
difficult to estimate blood flow distribution after an artifi-
cial blood vessel is implanted, particularly when the arti-
ficial blood vessel has a different geometry from the natural
one. The purpose of this study was to investigate blood
flow distribution of each aortic-branch blood vessel and
establish a method using CFD to compare that distribution.
Furthermore, a comparison of blood flow distribution
between the 4- and 3-branch grafts was performed to
provide useful information for safe surgery.

Methods

Blood flow measurement by PC-MRI

Blood flow in the aorta of three healthy individuals was
measured by phase-contrast magnetic resonance imaging
(PC-MRI, HDMR Signa EXCITE HD1.5T, GE Healthcare,

Waukesha, WI, USA) to estimate blood flow distribution.
All individuals enrolled in this research gave their

(b)

Fig. 1 Shape of the aortic arch after a graft transplant (gray). a Four-
branch graft, b 3-branch graft

@_ Springer

informed consent, and the study protocol was approved by
our institutional committee on human research. PC-MRI
was acquired with electrocardiographic (ECG) synchroni-
zation under the following conditions: 2.9-ms repetition
time (TR), 250 cm/s velocity encoding, 20° flip angle (FA),
10-mm thickness, 256 x 256 matrix, and 32 x 24-cm field
of view (FOV). We measured blood flow in five arteries:
ascending aorta (AAo), descending aorta (DAo), BA,
LCCA, and LSCA. Blood flow was measured cross-sec-
tionally three to five times for the AAo and DAo and three
times for the BA, LCCA, and LSCA. Intensity-image data
were processed through an edge filter (Matlab R2012a Ver.
7.14.0.739, MathWorks, Natick, MA, USA) and digitized.
This enabled us to measure blood flow and calculate blood
flow distribution (Fig. 2). Total volume of blood flow in
each branch over one cardiac cycle was calculated by
summing the blood flow measured at each instance multi-
plied by a time interval between measurements. Total
outlet blood flow (sum of the flows of DAo, BA, LCCA,
and LSCA) was 10 % higher than the inlet flow (AAo)
[8, 9]. We considered that the difference was caused
by slightly incorrect detection of the vessel wall, so we
calculated blood flow distributions with their values nor-
malized by the ratio of the outlet flow to the inlet flow [8].

CFD analysis based on blood flow distribution
into descending aorta

CFD models

1. Individual-specific model

Individual-specific model was created from MRI images of
the aorta. The aortic arch image was extracted as a semi-
circular arc (Fig. 3a). BA, LCCA, and LSCA lengths were
assumed to be approximately 40 mm.

( <pPcMRI> ) [

< Matlab > )

> EEieeeE

Intensity image [ acquisition and reconstruction

Extracted

Y

Binary signal 1: Inside of a blood vessel
0: Outside of a blood vessel
| Blood flow calculation |
\__ Phase image \_ Y,

Fig. 2 Blood flow measurement by phase-contrast magnetic reso-
nance imaging (PC-MRI). The image of the target blood vessel (DAo)
is extracted from the intensity image. The phase image (DAo) is from
processing software Matlab. Blood flow is calculated from the
intravascular phase signal
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Fig. 3 Individual-specific and
simplified computational fluid
dynamics (CFD) models.

a Individual-specific, b 4-
branch benchmark, ¢ 4-branch
aslope, d 3-branch model, and
e 3-branch deformation. AAO
ascending aorta, DAO
descending aorta, BA
brachiocephalic artery, LCCA
left common carotid artery,
LSCA left subclavian artery,
MG main graft, SG side graft (d)

2. Simplified models

We created four simplified models (Fig. 3b-e), based on
an individual-specific model (Fig. 3a):

(a) Four-branch benchmark model
(b) Four-branch aslope model

(¢) Three-branch model

(d) Three-branch deformation model.

Deformation is generally called “kink” status. The
4-branch benchmark model has three branches that stem
from the top of the arch, and the 4-branch aslope model has
three branches placed at a 45° angle inclination to the AAo.
The aslope model was considered to represent the expected
geometry of the graft after the replacement operation. The
3-branch model has a main graft (MG) at right angles to the
inlet of an AAo. The 3-branch deformation model has a
MG, which is kinked at the BA site. In addition, because
the geometry of the artery of the patient with an aortic
aneurysm after an operation became normal, we assumed
the form of the normal blood vessel. Diameters of these
vessels were assumed to be the same as commercialized
grafts. Diameters of arteries of the 4-branch graft model are
AAo and DAo, 24 mm; BA, 10 mm; LCCA, 8 mm; and
LSCA, 8 mm. The 3-branch graft model has a 12-mm-
diameter MG and two 8-mm-diameter side grafts. In the
3-branch deformation model, a kink was made in the
vicinity of anastomosis between BA and MG by narrowing
a diameter from 12 to 3 mm. The diameter of the arc of the
aortic arch is 80 mm for both the 4- and 3-branch grafts.
CFD analysis was performed using ANSYS (Ver. 13.0,
ANSYS, Inc., Canonsburg, PA, USA).

LCCA 8mm (c)

CFED analysis conditions

Cardiac output, the inlet boundary condition, was set as a
normal 5.0 I/min [10]. Although analysis usually assumes
that all outlet boundary conditions are the same, this
assumption cannot apply to our method because it does not
match the blood flow distribution obtained from PC-MRI.
An outlet pressure difference means the difference in
peripheral resistance. Blood flow distribution was calcu-
lated under the condition of 0 mmHg at the outlet pressure
of the three branches (BA, LCCA, LSCA). On the other
hand, DAo pressure was adjusted by a procedure in order to
match the blood flow distribution obtained from CFD with
that obtained from PC-MRI. The same method was applied
to determine outlet boundary conditions of the 4-branch
model. Blood flow distribution in 3-branch models was
obtained with the same boundary conditions as for
4-branch models.

Intravascular mesh generation was achieved with prism/
tetra mesh with 5-grid layers placed near the wall to assure
a boundary layer [11]. Although it was known that the
accuracy of CFD results relies on mesh quality and
boundary conditions, our mesh generation method has
already been verified and mesh quality secured [11]. The
number of elements in the 4-branch aslope model was
983,117. The error of the 4-branch aslope model was
0.9 %. Mesh independence was confirmed in the 4-branch
aslope model by using finer meshes. We performed anal-
ysis assuming a blood density of 1,060 kg/m>, viscosity
coefficient of 0.004 Pa s, rigid wall model, and steady and
laminar flow [10-12].

@ Springer
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Examination of blood flow distributions
in the 4- and 3-branch models

Outlet boundary conditions were determined from the
4-branch benchmark model. We applied these conditions to
the 4-branch aslope model and the 3-branch model and
compared blood flow distribution of each model.

Examination of blood flow distributions in the 3-branch
model and 3-branch deformation model

The outlet boundary condition determined from the
4-branch benchmark model was applied to the 3-branch
deformation (kink) model. The effect of deformation on
blood flow distribution was examined by comparing the
3-branch model with the 3-branch deformation model.

Results
Blood flow measurement by PC-MRI

Table 1 shows the blood flow distribution of healthy
individuals. Cases 1-3 represent our measurements, and
cases 4-6 are from a previously published article [8].

Blood flow distributions were 66.0-76.9 % for the DAo,
10.8-14.6 % for the right-side artery (BA) and
11.3-19.3 % for the left-side arteries (ILCCA and LSCA).
Distribution ratio of right to left was from 1:1 to 1:1.4.
Welch’s ¢ test indicated that there was no statistically
significant difference in blood flow data between right and
left side.

Examination of outlet boundary conditions
Individual-specific model

A individual-specific model was created based on case 1 in
Table 1. The result is shown in Fig. 4. Blood flow

Table 1 Blood flow distribution of healthy individuals (%)

distribution in the DAo was 86.4 % when there was no
pressure difference between the outlet of DAo and the
outlet of the three-branch site of the aortic arch. It agreed
with the blood flow distribution in DAo by PC-MRI and
CFD when the outlet pressure difference was set at
0.9 mmHg (Fig. 4). This method enabled us to obtain a
blood flow distribution that corresponded with the distri-
bution in the DAo, which we obtained from PC-MRI, We
used this method to perform CFD analysis to estimate
blood flow distribution in other models.

4-Branch benchmark model

We examined outlet boundary conditions of the 4-branch
benchmark model using the CFD analysis method estab-
lished for the individual-specific model. Blood flow dis-
tribution in the DAo was 80.6 % when the pressure
difference between the DAo outlet the outlet of the three-
branch site of the aortic arch was 0.0 mmHg, and 71.3 %
when the outlet pressure difference was 0.4 mmHg. It
agreed with the blood flow distribution in the DAo by PC-
MRI and CFD (Fig. 5). We set an outlet pressure difference
of 0.4 mmHg as the outlet boundary condition of the
benchmark model.

Blood flow distribution in 4-branch aslope model
and 3-branch model

Outlet boundary conditions that we determined for the
4-branch benchmark model (pressure difference of
0.4 mmHg) were applied to the 4-branch aslope model and
3-branch model to obtain blood flow distribution. Results
are shown in Table 2. Blood flow distribution in the DAo
was 71.1 % for the 4-branch aslope model and 67.7 % for
the 3-branch model. In both cases, the obtained values fell
inside the variance range of blood flow distribution in the
DAo of healthy individuals (Table ). In the 3-branch
model, the distribution ratio of right to left was 1:0.5
(Table 2).

Case no. Sex Age Height (m) Weight (kg)  Descending aorta  Right (BA)  Left (LCCA, LSCA)  References
1 Male 34 1.78 80 69.9 13.7 16.2 -

2 Male 39 1.67 78 76.8 10.8 12.3 -

3 Male 38 1.75 74 76.9 11.7 11.3 -

4 Male 25 1.69 62 68.0 14.6 17.3 [7

5 Male 22 1.75 56 66.0 14.4 19.3 7

6 Male 47 1.67 64 69.1 13.0 17.8 7
Average + SD - 344+£9 1.72+£005 69+10 71.1 + 4.6 13.0 + 1.5 15.7 £ 3.2

SD standard deviation, BA brachiocephalic artery, LCCA left common carotid artery, LSCA left subclavian artery

@ Springer
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BA  LCCA+LSCA

PC-MRI

pressure

Outlet[ 00mmHg | =~
difference

0.9mmHg

Fig. 4 Blood flow distribution by outlet pressure difference in the
individual-specific image model (case 1). BA brachiocephalic artery,
LCCA left common carotid artery, LSCA left subclavian artery

Descending aorta BA LCCA+LSCA

Outet[00mmHg | soe%  [wxfom]
pressure
difference L0.4mmHg

Fig. 5 Blood flow distribution with upper outlet pressure difference
of the descending aorta of the benchmark model. BA brachiocephalic
artery, LCCA left common carotid artery, LSCA left subclavian artery

Blood flow distribution in 3-branch model and 3-branch
deformation model

Blood flow distribution of the DAo with the 3-branch
deformation model was 77.6 % (Table 2). As shown in
Table 1, the maximum blood flow distribution of the DAo
in healthy individuals was 76.9 %, and the value of the
deformation mode (77.6 %) exhibited slightly higher flow
than the maximum limit of healthy individuals. On the
other hand, blood flow distribution of the BA in the
4-branch benchmark model, 4-branch aslope model, and
3-branch model was 14.7 %, 13.9 %, and 21.2 %, respec-
tively. However, blood flow distribution of the BA with the
3-branch deformation model was only 8.6 %. Although
there was not a large difference in blood flow distribution
of the DAo between normal and deformation models, dis-
tribution in the BA indicated a large difference. Therefore,
in the practical clinical usage, it is important to avoid a
kink status as much as possible.

Discussion
Individual-specific model

If the pressure difference between outlet of the DAo and the
three branches of the aortic arch (BA, LCCA, and LSCA) is
properly, set as previously described, blood flow distribution
of the DAo calculated by CFD and the distribution obtained
from PC-MRI should show good correspondence. Conven-
tional CFD analysis was performed with all outlet boundary
conditions the same. In this study, outlet boundary condi-
tions were determined based on blood flow distribution in

the individual’s DAo. CFD analysis based on individual-
specific information provides more reliable results and
allows us to estimate blood flow distribution of a newly
developed vascular graft that has a nonconventional geom-
etry. PC-MRI results showed that blood flow distribution
into the DAo was approximately 70 % (Table 1). We
examined the relationship between blood flow distribution
into the DAo and energy loss (Fig. 6) (Ejes), Which was
calculated with the following equation:

Eloss = PinQin - Z(Pothout) (1)

where P;, is AAo total pressure, Q;, is AAo flow rate, Py,
is Dao, BA, LCCA, and LSCA total pressure, and Qg is
DAo, BA, LCCA, and LSCA flow rate. Energy loss was the
lowest at the point of 70-80 % blood flow distribution into
the DAo. This suggests that the actual blood flow would
properly reduce the load on the heart.

Blood flow distribution was calculated with k-epsilon
analysis using individual-specific models. One calculation
result, using the k-epsilon model, indicated that the right-
side flow rate was 13.3 % and the left-side 14.9 % when
blood flow distribution into the DAo was fixed at 71.9 %.
On the other hand, results using the laminar flow model
exhibited that only right-side flow was a slightly different
value (13.2 %) and other values were the same as those
with the k-epsilon model. Therefore, there was no signifi-
cant difference in CFD results between laminar flow and
k-epsilon models in our CFD analysis.

Evaluation of 4-branch models

Blood flow distribution in the 4-branch aslope model
showed only 0.2 % difference from the benchmark model
when the outlet boundary condition determined for the
benchmark model was used for the aslope model. We
concluded that the 4-branch model can be effectively used
to analyze blood flow distribution when the three branches
are placed at a 45° angle inclination from the top of the
arch to the DAo.

Comparison of blood flow distribution
between 4-branch and 3-branch graft

We analyzed the 3-branch graft blood flow distribution data
to apply a determination of outlet boundary conditions for
the 4-branch model. Blood flow distribution in the DAo of
the 3-branch model was decreased by 5 %; right and left
blood flow distribution measured by PC-MRI remained
constant (Table 2), whereas it increased by 50 % in the
right-side artery (BA) and decreased by 26 % in the left-side
arteries (LCCA and LSCA). As shown above, the distribu-
tion of blood flow in the 3-branch model differs from that in

@ Springer
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Table 2 Blood flow distribution of a 4-branch model and 3-branch
model (%)

Model Descending Right Left (LCCA,
aorta (BA) LSCA)

4-Branch benchmark 713 14.7 14.0

model
4-Branch aslope model  68.7 15.1 16.2
3-Branch model 67.7 21.2 11.1
3-Branch deformation  77.6 8.6 13.8

model

BA brachiocephalic artery, LCCA left common carotid artery, LSCA
left subclavian artery

1.5

\”/

Energy loss [J/s]
1

0 I 1 1 J
50 60 70 80 90

Blood flow distribution of DA [%]

Fig. 6 Relationship between blood flow distribution into the
descending aorta (DAo) and energy loss

the 4-branch aslope model. Distribution in such blood ves-
sels is supposed to be affected by changes in the flow in the
vessels, diameters of which are different from those in the
natural system. In branch models, changes in these diame-
ters could have an influence on flow distribution.

The distribution ratio of right to left by PC-MRI was
about 1:1-1.4 in actual human individuals (Table 1),
whereas similar results were obtained by 4-branch CFD
with both (benchmark and aslope) models (Table 2).
However, the distribution ratio of right to left was about
1:0.5 in a 3-branch model. The typical and maximum blood
flow rates into brain tissue are 50 and 140 ml/min/100 g,
respectively [13]. It is suggested that the 3-branch graft
delivers more blood flow to the brain and upper limbs than
does the 4-branch graft. Therefore, further study is required
to survey the influence of the branch ratio of left to right on
the brain blood flow. We determined the condition that
coincides with the distribution in the DAo by PC-MRI
using the benchmark model and studied blood flow distri-
bution of total blood flow in the DAo and branches in the
3-branch graft model. The outlet pressure difference was
0.4 mmHg as the outlet boundary condition.

@ Springer

Usefulness of the new CFD method
in the deformation model

We confirmed that a deformation in the graft significantly
influenced blood flow distribution and that the CFD
analysis could be useful before the graft is implanted.
Expected difficulties can be modeled and analyzed before
clinical application. This means that the influence of these
expected difficulties pertaining to blood flow distribution
of the 3-branch graft can be predicted. In this study, the
aortic CFD model with a rigid wall was employed, and all
analyses were done under steady and laminar flow. As
there will be an effect of blood vessel compliance on
blood flow distribution, validation of these assumptions
will be performed by a mock circulatory system in our
next study.

Conclusion

1. Blood flow distribution of the DAo in a healthy indi-
vidual was 66-77 %.

2. Outlet boundary conditions can be determined using an
individual-specific image model to establish a method
to analyze blood flow distribution performance.

3. OQutlet boundary conditions can be determined using a
4-branch benchmark model, and blood flow distribu-
tion of each model can be estimated.

4. Outlet boundary condition is given by a pressure
difference between the DAo and the three branches of
the aortic arch. As values of pressure difference (outlet
boundary condition) in the individual-specific model
and the 4-branch benchmark model are different, it is
necessary to obtain more clinical data of healthy and
diseased individuals in order to determine a reliable
pressure difference.

Our method may be applied to estimate blood flow distri-
bution of a newly developed vascular graft prior to its
clinical use, thus providing useful information for safe use
of the graft.
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Contribution of Central Hospital Laboratory to Critical Bleeding

Yoshie KAWAHARA *1, Yumi WATANABE™*?,
Yutaka TOMODA*3 and Shuichi KINO, MD, PhD*4

It has been reported that fibrinogen products, such as fibrinogen concentrates, cryoprecipitate (CRYO), and
fresh frozen plasma, are beneficial for treating coagulopathy due to massive blood transfusion. For the ap-
propriate use of these products, it is necessary to evaluate the status of coagulopathy and determine the trig-
ger level of the fibrinogen concentration for the administration of fibrinogen products.

In our institution, we established a treatment procedure for coagulopathy due to massive transfusion in
2011. This procedure includes determination of the trigger level for administration of CRYO (150 mg/dL),
timing of sample collection for the evaluation of coagulation parameters (prothrombin time, activated partial
thromboplastin time, and fibrinogen) and concentration status during the operation, and a method for rapid
coagulation testing (turnaround time within 15 minutes) in critical bleeding.

Since 2011, we have performed 56 rapid coagulation tests for patients suffering from critical bleeding.
The average turnover time was 13 minutes. According to the rapid coagulation test results, CRYO was ad-
ministered to 27 patients. These results are satisfactory for treating critical bleeding patients.

We stress the need for the establishment of a rapid coagulation test system in the central hospital laborato-
ry. [Review]

[Rinsho Byori 62 : 1286~1294, 2014]
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