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Introduction standard techniques of molecular biology are incompatible with
o . o satisfying clinical requirements, because these methods damage
The a}?phcatlor.l .Of recent advances m cell tcchnol(’)gge.s. m cultured cells. As a result, manual microscopic monitoring, the
regencrative medlc.me holds great promise for revolutionizing  pagic and the most traditional scheme for maintaining cells, is still
conventional medical theraplesA D]- Howe"e‘:’ the lack ) of  the most practical quality-control method for facilities that
assessment technology for quantitatively evaluating cell quality, distribute regenerative cell therapies [4-6].
in particular for revealing both the current properties and the Technological advances in optical systems and image-processing
future potentials of intact cells, is a technical obstacle to the technologies have changed the status of image-based data from an

development of quality-assured cellular products for medical use 41 available only to experts, to a technique that can be used to
[2,3]. Conventional methods for cellular assessment using

PLOS ONE | www.plosone.org April 2014 | Volume 9 | Issue 4 | €93952

— 210 —



generate unbiased data. Many high-content image-analysis meth-
odologies based on imaging and image-processing technologies,
especially those focused on fluorescently labeled images, have
contributed to advances in drug discoveries [7-10]. In the field of
applied cell therapy, several reports have indicated that cellular
morphological information, combined with sophisticated compu-
tational modeling approaches, can serve as a descriptive indicator
in evaluations of stem cells [11-14]. However, to fulfill the clinical
requirements for producing intact cells for therapies, wider use of
cell-morphology analysis methodologies that focus on label-free
images should be encouraged.

In an effort to overcome these limitations of conventional
methods using fluorescently labeled images, we previously
performed a model case study of the label-free morphology-based
prediction of the osteogenic differentiation potential of human
bone marrow—derived stem cells (hBMSCs) [15,16], using a
technique that combines an automatic cell monitoring system with
effective computational modeling [17]. Statistically extracted
features of cellular morphologies clearly indicated that their
information content can satisfactorily train computational models,
not only to quantitatively evaluate current cellular status, but also
to quantitatively forecast their future status, i.e., their potentials.
The greatest advantage of our proposed morphology-based cell
quality assessment is its non-invasiveness. As a result of this
feature, our method has benefits that cannot be achieved by
conventional techniques for producing cells for clinical regener-
ative medicine: (1) elimination of risk factors, e.g., contamination
and mishandling by the operator; (2) synchronic and flexible
scheduling of culture and clinical operations, for the best timing of
cellular activity; and (3) repeated assessment of the same sample,
by multiple criteria and at multiple times, yielding data that better
reflects the complex and dynamic features of the samples. Such
intelligent control of culture processes is also a key technology for
process automation [18].

In this work, we expanded our previous efforts to predict single-
lineage differentiation potentials [17] by pursuing five important
aims: (I) Confirmation of the robustness of our method for
adapting to the practical cellular variation. In our earlier work, it
was not clear whether our original methodology was applicable to
wider ranges of cellular variations. To investigate this issue, our
data were expanded to cover eight continuous passages, ranging
from very recently derived cells to those that had completely lost
their doubling potential. Since a computational modeling solution
for adapting to cellular variations resulting from patient diversity
was already proposed in our previous work [17], our experimental
design in this work was focused on cellular variations affected by
culture processes, because these are the most difficult aspect of
stem cells to evaluate daily. (II) Investigation of the possibility of
shifting the prediction timing to the very early stage. Our previous
prediction required 2 weeks of image acquisition after the
differentiation process began [17]. In this study, however, we
investigated whether much earlier and shorter periods were
possible. In this work, only four images, obtained from the same
sample repeatedly with a 24-hour interval during the first 4 days of
expansion before differentiation culture, were used in the
predictions. (III) Multiplication of the variations of in silico
predictions. Compared to the previous prediction scheme [17],
which could predict osteogenic differentiation potential from the
same image, in this study we attempted to predict four types of
potentials (osteogenic/adipocyte/chondrocyte differentiation, and
population doubling time (PDT)) from the same image. Such
simultaneous prediction of multiple potentials for the same cells
can be achieved by processing the same image data, although the
predictions are performed by four types of differently trained

PLOS ONE | www.plosone.org
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prediction models running in parallel. Thus, this is a trial of
“overlapping” computational evaluation that can compensate for
multiple immunohistochemical staining. (IV) Establishment of new
conversion schemes of morphological feature usage that can
achieve high predictive performance. Morphological features are
the essential information generated from imaging data, and use of
this information is critical in imaging-based applications. To date,
however, there have been few comprehensive studies that compare
the effects of different conversions of morphological features,
especially in the context of label-free time-course imaging data. To
reveal differences resulting from the use of various morphological
features, we proposed six types of novel morphological feature
conversion methods, and then compared their prediction perfor-
mances in detail. To interpret the patterns of morphological
features engaged in high-performance models in each differenti-
ation lineage, we selected LASSO regression as a modeling
method. (V) Quantitative comparison of morphology and gene
expression in prior prediction of differentiation potential. Al-
though morphological information has long been used as an
mdicator for cellular evaluation, it has remained unclear how
descriptive such information really is. To quantitatively compare
the performance of morphological and biological information, we
directly compared the performances of predictive models using
morphological features, gene expression, or both in predicting
differentiation potentials from the undifferentiated state. This
comparison provides a performance benchmark for our proposed
morphology-based cellular potential prediction methodology,
enabling complete, non-invasive, daily cellular evaluations that
could support or complement evaluations that rely on conven-
tional biomarkers.

Results

Construction of a dataset that relates hBMSC
morphological information with differentiation potential,
for the purpose of developing a model for early
prediction using undifferentiated status images

To construct the morphology-based cell-quality prediction
model, we first designed to prepare the dataset of hBMSCs
images and their experimentally determined differentiation
potential data. To assemble this dataset, three lots of hBMSCs
were continuously cultured (8 passages) until their growth
terminated. The range of cells was intended to mimic the wide
variations in cell qualities of clinical hBMSCs. At each passage,
each sample was divided into three groups: passage sample (SEED
group), pre-differentiation sample (PRE group), and differentiation
sample (DIFF group) (Fig. 1). Because the diversity of our cell
samples was intended to mimic the clinical situation, in which a
minimum cell yield is often required to meet the production
criteria, the passage timing was controlled by confluency.
Specifically, passage was performed when confluency exceeded
80%. Continuous passage was maintained using the SEED group.
Meanwhile, the PRE group was subjected to phase-contrast
microscopic image acquisition (4 days, 24-h intervals), and the
DIFF samples were differentiated into three mesenchymal lineages
(osteogenic, adipogenic, and chondrogenic). After long-term
differentiation into the three lineages, cells were evaluated for
their differentiation rate and PDT; these data were taken to
represent the biological differentiation potentials. In the dataset,
these potentials were linked to the morphological features
measured from images in the PRE groups by machine learning
using the LASSO model. Because we sought to investigate the
possibility of extremely early prediction of stem cell differentiation
potentials for clinical applications, we acquired our image data,
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which we expected to contain predictive information, before the
differentiation process began. Ultimately, the full hBMSC dataset
contained 24 samples of cell variants (3 lots X8 passages [P2-P9]);
80 images (5 fields of view x4 wells x4 time points) from each PRE
group; and 296 experimentally determined differentiation values
(=2x[18 images x8 passages|+[1 image x8 passages]) (Table S1).

By monitoring morphological changes in response to continuous
passage, we observed a clear morphological transition from a
spindle shape into a flat and polygonal shape, a typical indication
of decay of differentiation potential (Fig. 2A). The morphological
information was quantitatively extracted as morphological fea-
tures, as described in the Materials and Methods section.

Values related to differentiation into the three mesenchymal
lineages revealed that continuous passage severely reduced the
differentiation potential of hBMSCs (Fig. 2B-D, Fig. 3A-C).
However, the transition patterns of differentiation potentials for
the three lineages varied in a complex manner. Potentials to
differentiate into adipogenic (Fig. 3B) and chondrogenic (Fig. 3C)
lineages dropped rapidly, but these potentials were not correlated
with the osteogenic differentiation potential (Fig. 3A). There were
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also variations in the changes in differentiation potentials that
could be attributed primarily to differences among patients. Lot A
retained its chondrogenic differentiation potential for a relatively
long period, but suddenly lost it after P7 (Fig. 3C). In Lots B and
C, osteogenic differentiation potential changed dramatically
during continuous passage (Fig. 3A). In Lot C, adipogenic
differentiation potential was sustained in any passages (Fig. 3B).
Therefore, as a summary of Fig. 3B, it was realized that the
tendency of differentiation potentials between patient cells can be
drastically disturbed by the effect of culture process. This result
indicates that simple categorization of cells by “patient informa-
tion” is not effective in the clinical cell production processes, and
their daily evaluation is essential.

PDT changed relatively slowly between P2 and P8 in Lots B
and C (Fig. 3D). By contrast, in the case of Lot A, a rapid increase
in PDT (i.e., reduction in growth rate) was observed starting at P6,
indicating that this lot was sensitive to passage-related stresses
(known as culture process—derived stress) triggered by both
manipulations and & zitro culture conditions [19]. The irregular
PDT increase in Lot A could be an indication of loss of

Quantification of
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(3-4 weeks)
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Raw morphological 1 morphological
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Prediction ,
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Figure 1. Schematic illustration of experimental setup for dataset construction for morphology-based prediction model
construction. Figure S1 shows the illustration of usage of the objective morphology-based prediction model, and its major technological
achievements using this dataset. The initial sample (P1) was divided into three separate culture samples (SEED, PRE, and DIFF) at each passage. SEED
samples were mainly used for the continuous-passage culture until termination of growth (P9). From the cell yield at each passage of the SEED
samples, population doubling time (PDT) was calculated, and taken as the experimentally determined potential. DIFF samples derived from each
passage were divided into three differentiation cultures (samples O, A, and C for osteogenic, adipogenic, and chondrogenic differentiation,
respectively) and grown under the indicated conditions for 3-4 weeks. The differentiation values of samples O, A, and C were experimentally
quantified by individual staining protocols. The staining results were then converted by image-processing analysis to obtain the experimentally
determined differentiation potentials. The three types of differentiation potentials together with the population doubling potential (population
doubling time: PDT) were designated as “multiple differentiation potentials” of the hBMSCs. PRE samples consisted of sample | (for imaging) and
sample R (for RNA extraction). From sample | in each passages, phase-contrast image were acquired at 24 h intervals over 4 days. Acquired images
were then converted by image processing to obtain morphological features from every cell in all images (see also Fig. S2 and S3 for the details of
image processing). Morphological features were statistically processed to yield transformed morphological features through data cleansing and
statistical calculations, and the results were used as the input features. Sample R were subjected to total RNA extraction for gene-expression analysis.
Either or both morphological features or/and gene-expression data were combined (input parameters), and arranged with the experimentally
determined potentials of the hBMSCs (output parameters) to constitute training data for construction of prediction models.
doi:10.1371/journal.pone.0093952.g001
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Figure 2. Representative morphological images of continuously passaged hBMSCs. Columns indicate passage numbers, indicated as P-
number. Rows indicate hBMSC lot names. {A) Phase-contrast microscopic images (10x) prior to differentiation culture (sample ). Scale bar, 50 pm.
(low-resolution cellular images shown in Figure S4) (B) Alizarin red staining after 2 weeks of osteogenic differentiation culture (sample O). Scale bar,
200 pm. (C) Oil red staining after 3 weeks of adipogenic differentiation culture (sample A). Scale bar, 200 um. (D) Alcian blue staining after 4 weeks of
chondrogenic differentiation culture (sample C). Scale bar, 200 pm. From P7-P9, near the termination of growth, differentiation samples could not be
prepared for (B) and (C) because of the lack of cell numbers. In (D), when the pellet sizes were smaller than 200 pm, we declined to produce
specimens from the sample on the grounds that the differentiation culture had not been successful.

doi:10.1371/journal.pone.0093952.g002

differentiation potential; however, such an indication does not
explain the early change in adipogenic and chondrogenic
differentiation potentials in Lots B and C. These results reveal
that there are no simple correlations between passage number and
transition patterns. If passage numbers or PDT do not reflect
changes in differentiation potential, then this information would
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never be sufficient to avoid a sudden quality collapse or
nsufficiency of cellular potential.

From gene-expression profiles of the earliest stage of expansion
culture prior to differentiation, we found that most of the
conventional differentiation markers did not exhibit clear
synchronization with passage number (Fig. 4). Most of the
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Figure 3. Quantified experimentally determined differentiation values and population doubling times of hBMSCs. Green bar, Lot A;
blue bar, Lot B; pink bar, Lot C. Passage numbers are indicated as P2-P9. (A) Bar plots of average stained areas of Alizarin red-stained samples (n=6).
(B) Bar plots of average stained areas of Oil red-stained samples (n=6). (C) Bar plots of stained areas in Alcian blue-stained samples (n=1),
normalized by their pellet size. (D) Line plots of PDT. Green diamonds, Lot A; blue squares, Lot B; pink triangles, Lot C. Error bars indicate standard

deviation (s.d.).
doi:10.1371/journal.pone.0093952.g003

clustered genes indicated the expression transition characteristic to
certain cell lot. Therefore, there were several clusters, which
partially showed synchronization to passage number in certain lot
was considered to be more genes that reflect patient specific
response to passages. However, in clustered genes which indicated
clear synchronization with passage number (correlation coeffi-
cient>>0.673) among all cell lots, either cellular senescence-related
genes (CDANIA [p21], CDEN24 [pl6]) or cytoskeleton-related
genes (PTR2, CD146 [MCAM], and CD49 [ITGAI]) were
included. Since passage number significantly correlated with the
decrease of differentiation potentials (Fig. 3), such passage number
synchronizing gene expressions commonly observed in all cell lots
were considered to be the “genetic signature of potential collapse”.

Comparison of performances of prediction models to
achieve the most balanced performance

In our previous study, we found that time courses of
morphological features of cultured hBMSCs were informative in
the construction of computational models aimed at forecasting
future osteogenic differentiation [17]. To evaluate the multple
potentials of hBMSCs in practice, our concept of prediction had to
be expanded from single-lineage to multi-lineage differentiation
while retaining the ability to adapt to wider cellular variations.
However, we hypothesized that in order to predict multi-lineage
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differentiation potential, informative morphological features and
combinations thereof should be optimized for each type of
differentiation. In addition, in order to increase the clinical
applicability of this approach, our conceptual prediction models
had to balance the accuracy with the effort (time, cost, and
computational memory size) required for model preparation.
Therefore, we have set our goal to define the effective construction
scheme yielding the optimized prediction performance for each
four different types of hBMSC potentials: potential I, osteogenic
differentiation rate after 2 weeks of differentiation; potential II,
adipogenic differentiation rate after 3 weeks of differentiation;
potential III, chondrogenic differentiation rate after 4 weeks of
differentiation; and potential IV, PDT of cells after the passages.
Our objective prediction model with the newly developed
techniques in this work is illustrated in Fig. S1.

To achieve the best prediction models for these objectives, we
examined nine patterns (Models 1-9) of input data usages, which
critically change the users’ efforts for data preparation. Model 1
was designed to be the negative control, and Models 2 and 3 were
designed to compare gene expression-based predictions compared
to morphology-based models. Models 4-9, consisting of five model
patterns (M-patterns), were designed to compare morphological
feature conversion methods by investigating the various conver-
sion concepts and time-course data usage in morphological
features (Fig. 5). The comparison of morphological features was
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Figure 4. Heat map of gene-expression transitions and passage numbers. Genes were clustered by hierarchical clustering for indicating
clusters that correlate to the passage number increases. The red boxed cluster is the cluster of genes that correlate to passage number within all cell
lots, indicating non-patient-specific passage-related genes. The relationship between colors and normalized values of gene expression is illustrated in
the explanatory heat map at lower right.

doi:10.1371/journal.pone.0093952.g004
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deepened by balancing accuracy vs. feasibility of usage in the
clinic. Therefore, M-patterns were numbered in the order of
higher cost performance, considering the time, cost, and
computational memory size involved in the model-construction
process. All model performances were compared by two criteria,
“scaled error rate” and “correlation coeflicient”. The scaled error
rate indicates the median value of prediction errors among all the
samples, normalized by the actual experimental values. Therefore,
low scaled error rate indicates that prediction values are relevant
to the experimental values. However, usage of the scaled error rate
alone is vulnerable to accidental prediction noises. Therefore, we
mtroduced the second criterion, correlation coefficient, which
evaluates the combined correlations of experimentally determined
values and predicted values among all samples. These criteria are
complementary: scaled error reflects differences between plots,
however discards information about overall plot accuracy, whereas
correlation coeflicient reflects the overall similarity of measure-
ments and predictions, however is sensitive to outliers. The
combination of low scaled error rate and high correlation
coeflicient indicates stable performance of a given model.

Figure 6 depicts all prediction results. The data indicate that by
using only the prior morphologies before the differentiation
process, future collapses in all of differentiation potentials
(potential I-1V) under continuous passage stresses can be predicted
in advance. Comparisons of the transition patterns of the
experimentally determined and predicted values (blue line plots
and red line plots, respectively, depicted in Fig. 6) revealed that all
cellular properties were predicted with reasonable accuracy.
Furthermore, in contrast to our previous study that used all
morphological data from 14 days of differentiation culture period
[17], the predictive performance was enhanced in this study using
morphological data collected only from the first 4 days before the
differentiation.

For prediction of potential I (osteogenic differentiation rate), the
best prediction accuracy was achieved by Model 3, which utilizes
both morphological features (M-pattern 1) and gene-expression
profiles. Compared to the scaled error rate of the NULL model
(Model 1), the performance of Model 3 can be expressed as 2.6-
fold more accurate. In the sense of cost-efficiency of model
construction, Model 8, which utilizes only the morphological
features from 24 h, had a reasonably high predictive performance
(scaled error rate = 0.338).

For predicting potential II (adipogenic differentiation rate),
morphology-based models such as Models 4, 6, 7, and 9 yielded
extremely high predictive performance. Model 4 achieved the best
accuracy, and Model 7 was the best model at the lowest cost
(scaled error rate = 0.954).

For predicting potential III (chondrogenic differentiation rate),
most of the models could not significantly outperform the NULL
model. However, Model 9 had fairly accurate predictive
performance.

For predicting potential IV (PDT of cells after repeated
passages), most of the models had very high predictive accuracies
(scaled error rate<<0.09). The best performance was achieved by
Model 4, which utilizes only morphological features.

Although morphology-based prediction models (Models 4-9;
M-Patterns 1-5) had consistently high overall performances in
predicting various potentials, the use of direct biological informa-
tion (ie., gene-expression information including conventional
differentiation markers) did not dramatically improve the predic-
tive performance (Model 2 in Fig. 6). From the interpretation of
parameter usages in LASSO models (Table S4-S7), we found that
cytoskeleton-related genes were more frequently involved than
differentiation markers in the prediction models (Models 2 and 3).
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This result is a biological confirmation that morphological genes
are more informative than our selected subset of differentiation
marker genes for prediction of differentiation potential, and
explains the high performances of models that use only
morphological data (Models 4-9).

Discussion

To replace human estimations of cell quality in the production
of cells for cell-based therapies, we examined the performances of
machine-learning models in predicting the quantitative rates of
multi-lineage differentiation after long-term differentiation, using
data from undifferentiated label-free images of hBMSCs. The
novel advancing technological points achieved in this work are
illustrated in Fig. S1. From images collected during the first 4 days
of expansion culture before differentiation, the morphological
features of each cell in the images were individually measured and
converted into various morphological metrics that represented the
statistical morphological profiles of the group of cells. These
features were then used to train computational models that
forecast the experimental results collected 2-4 weceks after the
differentiation. Advancing from our previous success in predicting
the single-lineage differentiation potentials of hBMSCs [17], here
we showed that the best predictive results for all differentiation
potentials (i.e., the differentiation rates into three lineages and their
PDTs) can be obtained at the same time, even in the early stage
before differentiation, using selected morphological features. In
these comparisons, we addressed three technical questions, with
the aim of identifying the most practical scheme for obtaining such
cell-quality prediction models in clinical facilities. First, can
morphology-based prediction methods be expanded to the
prediction of multiple differentiation potentials? Second, is
morphological information (i.e., indirect phenotypic signals) of
greater use than gene-expression information (i.e., direct biological
signals) in predicting the qualities of hBMSCs? Third, how far can
we optimize model performance by selecting the appropriate
conversion and combination of information from the time-course
morphological features?

To our great surprise, considering the current lack of
comparable evaluation methods, most of the examined prediction
models using only morphological features showed practically
useful performance in multiple predictions (Fig. 5 and 6). Even
with the Model 9 (M-pattern 6, using morphological features
obtained only from the first day of expansion culture), the multi-
lineage potential prediction was available. Practically, potential II
(adipogenic differentiation rate after 3 weeks) can be predicted
with high accuracy using only morphological data from the first 4
days of culture. Both potentials I and III (osteogenic and
chondrogenic differentiation rates) could also be predicted with
reasonable accuracy from the early morphological data. In
addition to differentiation rates, future PDT following repeated
passages can also be predicted with high accuracy using only
morphological features. These results strongly indicate that it will
be possible to develop practical methods for cell assessment that
are multiple, rapid, cheap, non-invasive, and significantly more
effective than conventional staining-based assessment techniques.
Our models’ performance indicate that such novel predictive
methods will enjoy several advantages: (1) non-invasiveness, i.e.,
avoiding damage to patients’ cells; (2) synchronism, repeated
quality evaluation throughout the culture period for all patients;
and (3) multivalent consideration of the same sample, i.e., multiple
quality assessments can be performed with the same sample, which
is not possible when using data obtained by destructive methods
such as fluorescently labeled imaging analysis.
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Figure 5. Schematic illustration matrix of prediction feature data profile and usage concepts of prediction models. Six types of
morphological feature conversion methods are proposed as M-patterns. Briefly, M-patterns are numbered in order of the amount of efforts required
to prepare for model construction. M-patterns 1-4 require four images at 24-hour intervals; M-pattern 5 requires two images each on days 1 and 4;
and M-pattern 6 requires only one image on the first day. For parameters described as “linked”, each morphological feature is not only used as the
data for each time point, but this information is also converted into the changing ratio between time points. For “non-linked” parameters,
morphological features are used as they are. Averages, quintile points, and groups of distribution representatives were compared to find the best
statistical parameter to represent the morphological features measured in all individual cells in an image. Therefore, M-patterns 1-4 were designed to

increase the amount of information about cellular distribution for incrementing the heterogeneity of cells.

doi:10.1371/journal.pone.0093952.9005

The quantitative predictions made possible by these methods
will permit prior evaluation of cellular fate, which will in turn
facilitate scheduling of cell-therapy operations in the clinic. As
shown in Fig. 3, most of the transition events in hBMSC potentials
were abrupt, and would be nearly impossible to estimate the future
linearly from the present result plots. Therefore, conventional cell-
assessment techniques could never outperform quantitative
prediction methods for hBMSC quality assessment. Our results
thus provide a successful example of the use of machine-learning
models to model biological information and generate output that
can overcome a major practical problem in clinical cell therapy.

Taken together with the non-linear correlation of conventional
marker gene-expression levels with passage numbers (Fig. 4) and
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the predictive performance of models (Models 2 and 3 in Fig. 6),
we concluded that morphological data from the early stage of
culture are more useful than measurements of conventional
markers in forecasting future quality disruptions. In some cases,
gene-expression measurement enhanced morphological predic-
tions, when an early gene marker such as SPPI [osteopontin]
occasionally function as extreme early osteogenesis predictor
(Model 2, Potential I prediction in Fig. 6). However, differentiation
gene markers are not always promising to function as extreme
early predictor in the undifferentiation stage. By introducing
LASSO modeling into this work, the combinational effects of
parameters can be interpreted in our models (Fig. 6). In particular,
by interpreting the parameter usages chosen through automatic
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