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the mixed culture. We therefore examined the basal expres-
sion levels of astrocyte L-Glu transporters and the effect of
LPS on their expression levels. To compare the expression
levels of GLAST and GLT1, we first compared the densities
of western blotting bands for the same amount of GLAST
and GLT1 control proteins {full length) (1, 10 pg) obtained
at the same appropriate exposure time (Figure B, upper
photos). Then, we quantified the expression levels of
GLAST and GLT1 in the contrel- and LPS-treated mixed
culture (Figure B, middle photos). The density of each band
obtained at the same appropriate exposure time was nor-
malized to the 10 pg conirol band of the corresponding
subtype. Basally, the GLAST protein level is much higher
than that of GLT1 (Figure 2, graph). The GLAST protein
levels decreased to 65.7 +7.40% of control levels after LPS
treatment (10 ng/mL, 72 h) (Figure 2C), but the GLT-1
protein level did not change. These results suggest that the
LPS-induced increase in the L-Glu remaining was mainly
caused by the downregulation of GLAST,
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Activated microglia caused the decrease in L-Glu uptake
during inflammation without cell death

To confirm that activated microglia are essential for the
decrease in L-Glu uptake during inflammation without
cell death, we examined the effecis of LPS in four differ-
ent types of cultures, including an astrocyte-microglia-
neuron mixed culture (a), an astrocyte culture (b), an
astrocyte-microglia co-culture {(c), and an astrocyte-
neuron co-culture (d) (Figure 3A). In (a), the astrocytes
were confluent, and the cell densities of the microglia
and the neurons were 3.0 x 10° cells/cm? and 6.0 x 10*
cells/cm?, respectively. Therefore, the cell density of the
microglia in {c) and that of neurons in (d) were carefully
adjusted to 3.0 x 10* cells/cm? and 6.0 x 10* cells/cm?, re-
spectively. Furthermore, in (b) to {d), we confirmed that
the density of each cell type that had been presumably
removed was sufficiently low; the number of microglia in
(b) and (d) was <1.2x 10% cells/em®, and the number of
neurons in (b) and (c) was <1.0 x 107 cells/cm™ Astrocytes
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Figure 3 Activated microglia are essential for the decrease in L-Glu uptake in the model of inflammation without cell death. (4)
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were confluent in (a) to (d). When we treated these cul-
tures with LPS {10 ng/ml, 72 h), significant decreases in
L-Glu uptake occurred in {a) and (¢} but not in {(b) nor (d).
As shown in Figure 3B (b), the L-Glu uptake in astrocyte
pure culture was not changed by LPS. We further con-
firmed that in the LPS-treated microglial pure culture, the
concentration of L-Glu remaining did not change during
the assay (30 min) (Figure 3C). These results indicate that
the increase in L-Glu remaining, that is, the inhibition of
L-Glu uptake, observed in Figure 3B (a) and (¢} was caused
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by the interaction between the activated microglia and the
astrocytes during 72 h of LPS treatment.

L-Glu released from activated microglia caused the
downregulation of GLAST expression during
inflammation without cell death

Activated microglia release various soluble factors in
inflammatory processes [16,18-24]. To examine the in-
volvement of these factors in the action of activated
microglia on L-Glu transporters, we applied the
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conditioned medium collected from the inflammation

without cell death model (Figure 4A) to a culture of

astrocytes alone. A 72 h-incubation with the conditioned
medium did not affect the L-Glu uptake in the astrocvte
culture. We then incubated the astrocyte culture with a
transwell on which microglia were cultured in the pres-
ence of LPS (10 ng/mL, 72 h) (Figure 4B). Notably, a sig-
nificant decrease in L-Glu uptake was obtained under
these conditions, Because LPS in this condition did not
directly affect the L-Glu uptake in the astrocyte culture,
as shown in Figure 3B (b), these results suggest that the
secreted factors are released from microglia and are
degraded or taken up after their release, ATP has been
shown to downregulate GLAST through the P2ZX7 re-
ceptor [28] and the ectonucleotidases of astrocytes rap-
idly convert extracellular ATP to ADP, ultimately to
AMP [34], We first examined the contribution of ATP
to the downregulation of GLAST in the inflammation
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model without cell death. Exogenous application of
ATP (Figure 5A) and P2X7 agonist BzATP (Figure 5B)
did not change the L-Glu uptake. We also confirmed
that neither the P2X receptor antagonist TNP-ATP
{(Figure 5C) nor the P2X7-specific antagonist BBG
(Figure 5D) inhibited the decrease in L-Glu uptake in
this inflammation model. We then examined the possi-
bility of L-Glu. L-Glu is released by activated microglia
through hemichannels [21,22] and taken up by L-Glu
transporters after its release. We hypothesized that the
secreted factor may be L-Glu. We first examined
whether L-Glu was indeed released from microglia dur-
ing inflammation without cell death. As shown in
Figure 6A, left, LPS elevated the extracellular L-Glu con-
centrations in the astrocyte-microglia-neuron mixed cul-
tures, and a significant elevation was observed even at a
concentration of 1 ng/mL (Figure 6A left). An elevation
of the extracellular L-Glu concentration was observed in
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the microglia culture (Figure 6A center) but not in the
astrocyte culture (Figure 6A right). These results indi-
cate that L-Glu was released from activated microglia
during inflammation without cell death. To confirm our
hypothesis, we tested the effect of the sustained eleve-
tion of extracellular L-Glu on L-Glu uptake in the mixed
cudture. To vield a sustained elevation of extracellular
L-Gly, the culture medium of the astrocyte culture was
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freshly supplemented with 100 pM L-Glu every 2 h for
24 h, as preliminary studies showed that a concentration
of 100 uM extracellular L-Glu was reduced to almost
zero after 4 h in confluent astrocyte cultures (not
shown). As shown in Figure 6B, the sustained elevation
of extracellular L-Glu resulted in a significant decrease
in L-Glu uptake in the astrocyte culture. GLAST expres-
sion was significantly decreased at the mRNA level
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(Figure 6C) and the protein level (Figure 6D) by the
same treatment, These results suggest that L-Glu was re-
sponsible for the decrease in L-Glu uptake during in-
flammation without cell death. When the microgha
cultures were treated with LPS (10 ng/mL, 24 h) in the
absence or presence of the hemichannel inhibitor, CBX
{10 to 100 pM), the L-Glu release from the activated
microglia was suppressed in a concentration-dependent
manner (Figure 7A). CBX (100 puM) almost completely
prevented the LPS-induced (10 ng/mL, 72 h) decrease in
L-Glu uptake in the mixed culture (Figure 7B, left) but
had no effect in the astrocyte culture (Figure 7B, right).
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Furthermore, CBX reversed the LPS-induced down-
regulation of GLAST expression at the mRNA
{Figure 7C) and protein levels (Figure 7D).

We next tried to clarify the mechanisms through
which the sustained elevation of extracellular L-Glu
downregulates GLAST. Recent reports have suggested
that the expression of L-Glu transporters is regulated
by L-Glu through metabotropic glutamate receptors
{(mGluRs). We therefore first examined the involvement
of metabotropic glutamate receptors (mGluRs). Neither
the group I mGluR agonist DHPG nor the group II
mGluR agonist DCG-4 affected either L-Glu uptake
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(Figure 8A and B) or the expression level of GLAST
(not shown). Sustained elevation of extracellular L-Glu
caused by activated microglia is expected to cause the
elevation of intracellular L-Glu in astrocytes. We there-
fore examined whether the elevation of intracellular
L-Glu itself is important for the downregulation of
GLAST. To do this, we first measured the amount of
astrocytic intracellular L-Glu after LPS-treatment in the
absence or presence of TBOA in astrocyte-microglia co-
cultures (Figure 8C). LPS significantly increased the
amount of intracellular L-Glu, and TBOA completely
suppressed this increase. Western blotting showed that
TBOA suppressed the downregulation GLAST caused
by LPS (Figure 8D), TBOA itself did not have effects on
either the amount of intracellular L-Glu or the GLAST
protein level. These results indicate that the elevation of
astrocytic intracellular L-Gly, but not the signaling cas-
cade from the cell surface, is important for the downre-
gulation of GLAST.

Our findings suggest that activated microglia trigger
the elevation of extracellular L-Glu through their own
release of L-Glu, astrocyte L-Glu transporters are down-
regulated by the elevation of astrocytic intracellular
L-Gly, and further elevation of extracellular L-Glu occurs
early in neuroinflammation. A schematic model of this
‘collusion’ hypothesis is shown in Figure 9.

Discussion

To quantify L-Glu transporter function, we measured
the extracellular concentrations of L-Glu 30 min after a
single exogenous application of L-Glu to the medium
(the starting concentration was 100 pM). To limit any
contributions of extra L-Glu from dying cells, and to
verify a substantial contribution of the decrease in L-Glu
transport potency to an elevated concentration of extra-
cellular L-Glu in inflammation, we first determined the
optimal conditions for inflammation without cell death.
We used a lower concentration of LPS (10 ng/mlL) than
is generally used [35,36]. LPS application at a concentra-
tion of 10 ng/mL for 72 h activated the microglia but
did not cause either LDH leakage or decreases in MTT
reduction in the mixed culture, astrocyte pure culture,
or microglia pure culture. LPS induces an inflammatory
response in microglia via Toll-like receptor 4 (TLR4)
[37]. TLR4 is also expressed by astrocytes, and astrocytes
themselves have shown inflammatory responses in re-
sponse to LPS in some reports [38]. In the present study,
however, microglia were essential for the decreased
L-Glu by astrocytes, and LPS did not affect L-Glu uptake
in astrocyte cultures. Because the expression of TLR4 by
astrocytes is less than that of microglia [37], the LPS
stimulation in our model of inflammation without cell
death may be insufficient to induce phenotypic changes
in astrocytes. These mild inflammatory conditions may
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Figure 8 Schematic model of the ‘collusion’ hypothesis for the
elevation of extraceliular L-Glu in the early stages of
inflammation.]. Activated microglia release L-Glu. 2. The

resultant elevation of extracellular L-Glu causes the elevation of
astrocytic intraceliular L-Glu. 3. The elevation of astrocytic
intracellufar L-Glu downregulates GLAST expression. 4. The
decrease in GLAST expression further exacerbates the elevation of
extracellular L-Glu.

reflect the early stages of neurcinflammation in vivo, in
which early microglial activation has been observed to
precede the phenotypic changes in astrocytes [39].

In the present study, we pharmacologically con-
firmed that GLAST, and not GLT-1, was the predom-
inant functional L-Glu transporter, We also confirmed
that the expression level of GLT-1 is much lower than
that of GLAST. GLT-1 has been reported to be func-
tional in neuron-astrocyte co-cultures at 32 to 44 DIV
[40]. This discrepancy most likely arises from the
maturation stages of neurons, as the functional devel-
opment of GLT-1 correlates with neuronal maturation
[41]. The expression of GLAST was significantly
decreased in the ‘non-cell death inflammation model]
which indicates that the decrease in L-Glu uptake in
this inflammation model was mainly caused by the
downregulation of GLAST.
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Activated microglia release various soluble factors, in-
cluding inflammatory cytokines [18,19], reactive oxygen
species [20], NO [16], L-Glu [21,22], and ATP [23,24].
We demonstrated that L-Glu is the factor that downre-
gulates GLAST in astrocytes during inflammation with-
out cell death. Although activated microglia are known
to release L-Glu through hemichannels [21,22], the
neurclogical importance of this phenomenon remains
unclear. We showed that the hemichannel inhibitor
CBX completely suppressed the release of L-Glu from
microglia, the decrease in L-Glu uptake, and the down-
regulation of GLAST expression during inflammation
without cell death. These data provide strong evidence
that L-Glu is the microglial releasing factor that downre-
gulates GLAST. High concentrations of ATP have also
been shown to downregulate GLAST through the P2X7
receptor [28]. However, we believe that ATP did not
contribute to the down-regulation of GLAST in the in-
flammation model without cell death here because
L-Glu uptake did not change when the astrocyte culture
was treated with ATP (Figure 5A) or the P2X7 agonist
BzATP (Figure 5B). We also confirmed that neither the
P2X receptor antagonist TNP-ATP (Figure 5C) nor the
P2X7-specific antagonist BBG (Figure 5D) inhibited the
decrease in L-Glu uptake in this inflammation model.
Cther microglial releasing factors, such as TNF-a, 1L-18,
and arachidonic acid, are also known to decrease the
L-Glu transport in astrocyte cuitures [25-27]. However,
the conditioned media collected from our model of in-
flammation without cell death had no effect in the astro-
cyte culture. Because the LPS stimulation here was lower
than that of other studies [35,36] (to prevent cell death),
the amount of these factors in the conditioned media
may have been insufficient to affect L-Glu transporters.

Recent reports have suggested that the expression of

L-Glu transporters is regulated by L-Glu through meta-
botropic glutamate receptors (mGluRs), that is, the
group I mGluR agonist downregulates GLAST, whereas
the group II mGluR agonist has the opposite effect
[42,43]. However, neither the group I mGluR agonist nor

the group II mGIuR agonist affected the expression of

GLAST in the present study. Instead, we clarified that
the elevation of intracellular L-Glu in astrocytes is im-
portant for the downregulation of GLAST as shown in
Figure 8. It has been clarified that translation initiation
is regulated by intracellular L-Glu transported by
GLAST in Bergmann glial cells [44,45]. They also
showed that mammalian target of rapamvcin (mTOR),
increase in intracellular Ca®* levels, and p60(Src)/PI3K/
PKB pathway are involved in this regulation. Further in-
vestigation is necessary to confirm whether the same
pathways are involved in the downregulation of GLAST
observed in our study. Of interest, a sustained elevation
of extracellular L-Glu induced by the same protocol as

47
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Figure 6 did not cause the downregulation of glutamine
synthetase {GS) in our preliminary experiment (data not
shown), suggesting that this regulation is GLAST or
L-Glu transporter-specific. The comparison of the up-
stream DNA sequences of GLAST and GS might provide
useful information. Besides, in Saccharomyces cerevisiae,
the activator (Nillp) of the amino acid transporter is
inactivated by increases in intracellular glutamate [46]. It
is possible that a conserved mechanism similar to this
also exist in astrocytes. Our findings strongly suggest
that L-Glu is the microglial releasing factor which results
in downregulation of GLAST in the early stage of inflam-
mation. However, whether or not the quantity of L-Glu
released from microglia is enough to induce a range of
reaction still needs to be elucidated. Based on the discus-
sion above, the co-factors to enhance the signaling path-
way in the astrocytes leading to the downregulation of
GLAST might be also released from microglia.

Conclusions

Our findings suggest that activated microglia trigger the
elevation of extracellular L-Glu through their own re-
lease of L-Glu, astrocyte L-Glu transporters are downre-
gulated by the elevation of astrocytic intracellular L-Glu,
and further elevation of extracellular L-Glu is caused as
an early event of neuroinflammation {(Figure 9).
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Rapid enantiomeric separation and
simultaneous determination of
phenethylamines by ultra high performance
liquid chromatography with fluorescence and
mass spectrometric detection: application to
the analysis of illicit drugs distributed in the
Japanese market and biological samples

Shinsuke Inagaki,” Haruo Hirashima,® Sayuri Taniguchi,® Tatsuya Higashi,®
Jun Zhe Min,® Ruri Kikura-Hanajiri,® Yukihiro Goda® and
Toshimasa Toyo’oka®*

A rapid enantiomeric separation and simultaneous determination method based on ultra high performance liguid chromatogra-
phy (UHPLC) was developed for phenethylamine-type abused drugs using (R)-(—)-4-(N,N-dimethylaminosulfonyl)-7-(3-isothiocyana-
topyrrolidin-1-yl)-2,1,3-benzoxadiazole ((R)-(—)-DBD-Py-NCS) as the chiral fluorescent derivatization reagent. The deriva-
tives were rapidly enantiomerically separated by reversed-phase UHPLC using a column of 2.3-pum octadecylsilica (ODS})
particles by isocratic elution with water-methanol or water-acetonitrile systems as the mobile phase. The proposed
method was applied to the analysis of products containing illicit drugs distributed in the Japanese market. Among the
products, 1-(3,4-methylenedioxyphenyl)butan-2-amine (BDB) and 1-(2-methoxy4,5-methylenedioxyphenyl)propan-2-amine
{MMDA-2) were detected in racemic form. Furthermore, the method was successfully applied to the analysis of hair specimens
from rats that were continuously dosed with diphenyl({pyrrolidin-2-yl)methanol (D2PM). Using UHPLC-fluorescence (FL) detection,
{R)- and (S)-D2PM from hair specimens were enantiomerically separated and detected with high sensitivity. The detection limits of
{R)- and (S)-D2PM were 0.12 and 0.21 ng/mg hair, respectively (signal-to-noise ratio (5/N)=3). Copyright © 2012 John Wiley &
Sons, Lid.

Keywords: phenethylamines; diphenyl(pyrrolidin-2-ylymethanol (D2PM); (R)-(—)-DBD-Py-NCS; chiral derivatization method; ultra high
performance liquid chromatography (UHPLQ)

Introduction

Health hazards caused by the abuse of illicit drugs occur fre-
quently among young people and have become a serious con-
cern. Such drugs are easily obtainable via the Internet, adult
shops, street markets, and so on. The use of illicit drugs is also
the gateway to narcotic and psychostimulant drugs abuse. In
Japan, the Pharmaceutical Affairs Law was revised, and the regu-
lation was tightened by introducing a system of controlled
substances, designated as Shitei-Yakubutsu, in April 2007 (31
compounds and 1 plant)"? Under this Act, compounds that
have potential harmful health effects are designated Shitei-
Yakubutsu, and rapid response to such compounds is facilitated.
This system temporarily decreased the distribution of designated
substances in Japan. However, due to synthetic modification,
structural analogs of designated compounds may slip past regu-
lations. As of August 2011, 60 substances (classified as 26 phe-
nethylamines, 12 tryptamines, 6 alkyl nitrites, 4 piperazines, 10

Drug Test. Analysis 2012, 4, 1001-1008

cannabinoids, 1 diterpene, and 1 plant) are listed as designated
substances; the list is continually revised and improved as neces-
sary. Diphenyl(pyrrolidin-2-ylymethanol (D2PM), and 1-(2-fluoro-
phenyl)-N-methylpropan-2-amine (N-methyl-2FMP), were recently
added to the designated substances list; there is concern that ana-
logs of these substances may be distributed as new illicit drugs. In
particular, D2PM and its analogs are organocatalysts used for vari-
ous asymmetric syntheses; however, such chemical reagents are
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likely abused.> To prevent distribution of these substances, it is
crucial to establish an analytical method of detection before they
enter the Japanese market. Therefore, development of simple and
rapid screening methods of illicit drugs and their structurally related
compounds is required.

Most phenethylamine compounds are chiral, and their enan-
tiomers can possess different pharmacological activities and
pharmacokinetic/pharmacodynamic properties. For example, it
is well known that the enantiomers of methamphetamine and
amphetamine differ in their biological and metabolic activities.
The d-isomer has the greatest biological activity, whereas the
Fisomer is far less active.B! Therefore, it is important to ensure
enantiomeric purity by chiral separation. Furthermore, relevant
information can be gathered by indentifying the manufacturing
method, the producer countries, and their sources by analyzing
impurities and determining of the ratio of optical isomers in the
distributed illicit drugs.

Numerous strategies for enantiomeric separation of chiral
compounds are available using various separation techniques
such as gas chromatography (GC), high performance liquid chro-
matography (HPLQ), supercritical fluid chromatography (SFQC),
capillary electrophoresis (CE), and capillary electrochromatogra-
phy (CEC). "% Among these methods, HPLC is one of the most
effective tools for chiral separation. The methods are divided into
three broad classes: chiral stationary phase (CSP) methods, chiral
mobile phase methods, and chiral derivatization methods, ['*~"7
CSP methods use packing materials combined with chiral mole-
cules at the carrier surface as the stationary phase. A number of
CSP methods have already been developed and are widely used.
However, to perform chiral separations of target enantiomers by
HPLC, the CSP must be selected through a trial-and-error process
based solely on prior experience. Chiral mobile phase methods
form a diastereomer complex by passing the sampile through a
column using a mobile phase containing chiral molecules. This
method does not require the column to be packed with chiral
molecules or complicated handling; however, the kinds of enan-
fiomers that can be separated using this method are limited.
Indeed, direct chromatographic separation using hydroxypro-
pyl-B-cyclodextrin (HP-B-CD) as a chiral mobile phase additive
has been investigated for the chiral separation of amphetamine
and its derivatives; baseline separations could not be achieved
because of the peak broadening.’® These basic compounds tend
10 broaden peaks in consequence of residual silanol in the col-
umn. On the other hand, the chiral derivatization method does
not require the comparatively expensive analytical column
containing a CSP, and analysis can be performed using a
conventional HPLC column such as an ODS column. Guillame
et al. reported that N-o-(2,4-dinitro-5-fluorophenyl)-L-alaninamide
(Marfey's reagent) and 2,34-tri-O-acetyl-a-p-arabinopyranosyl
isothiocyanate (AITC) would be effective for enantiomeric separa-
tion of amphetamine, its derivatives, and several B-blockers (ate-
norol, propranorol, and so on) using HPLC-UV.I'? Furthermore,
using a fluorescence derivatization method such as HPLC-fluores-
cence (HPLC-FL) detection has the advantage of highly sensitive
detection.

In our previous study, we reported an HPLC-FL method for the
enantiomeric separation of D2PM and psychotropic methylphe-
nidate (MPH) using a chiral fluorescent derivatization reagent,
(R)-(—)-4-(N,N-dimethylaminosulfonyl)-7 -(3-isothiocyanatopyrrolidin-
1-y)-2,1,3-benzoxadiazole ((R)-(—)-DBD-Py-NCS).2” However, to the
best of our knowledge, the method and the reagent have not been
applied for the analysis of other drugs.

wileyonlinIibrary.com/jounal/da
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In this study, we conducted to develop a method for rapid
enantiomeric separation and simultaneous determination of
phenethylamine-type abused drugs and established a detection
method using UHPLC-FL and electrospray ionization time-of-
flight mass spectrometry (ESI-TOF-MS). UHPLC is an analytical
technique developed in the last half decade that is an extension
of conventional HPLC techniques; it uses small particles in the
separation column and pumping of the mobile phase under
ultra-high pressure conditions.”'* Application to the analysis
of phenethylamine drugs distributed on the Japanese market
and the analysis of rat-hair specimens after oral dose of racemic,
(R)-, and (S5)-D2PM are also discussed.

Experimental

Materials and reagents

The hydrochloric acid salts of racemic phenethylamines, ie.
1-(3,4-methylenedioxyphenyl)butan-2-amine  (BDB), 1-(4-iodo-2,5-
dimethoxyphenyl)propan-2-amine (DOI), 2-ethylamino-1-phenylpro-
pan-1-one (N-ethylcatinone), 1-(4-fluorophenyl)propan-2-amine
(4-FMP), 2-methylamino-1-(3,4-methylenedioxyphenyl)butan-1-one
(bk-MBDB), 2-ethylamino-1-(3,4-methylenedioxyphenyl)propan-
1-one (bk-MDEA), 1-(2-fluorophenyl)-N-methylpropan-2-amine (N-
methyl-2FMP), 2-(methylamino)-1-(4-methylphenyl)propan-1-one
(4-methylmethocatinone), 1-(2-methoxy4, 5-methylenedioxy-
phenyl)propan-2-amine (MMDA-2), and 1-(4-methoxyphenyi)-N-
methylpropan-2-amine (PMMA) were obtained from the National
Institutes of Health Sciences (NIHS, Tokyo, Japan). Products sold in
the past as legal substances on the Japanese market were used
for the determination of the phenethylamine-type abused drugs.
Racemic methylphenidate hydrochloride (MPH), (2R,2'R)-(+)-threo-
methyl a-phenyl-o-(2-piperidyl)acetate hydrochloride (o-MPH),
(25,2°S)-(—)-threo-methyl  a-phenyl-a-(2-piperidyl)acetate hydro-
chloride (.-MPH), and leucine enkephalin were purchased from
Sigma-Aldrich Chemical Co. (St Louis, MO, USA). (R)-Diphenyl(pyrro-
lidin-2-yl)methanol ((R)-(+)-o,a-diphenyl-2-pyrrolidinemethanol,
(R)-D2PM), (S)-diphenyl(pyrrolidin-2-yl)methanol  ((S)-(—)-o,0-
diphenyi-2-pyrrolidinemethanol, (S)-D2PM), a-(4-piperidyl)benzhydrol
(PBH as internal standard), (R)-(—)-4-(N,N-dimethylaminosulfonyi)-
7-(3-isothiocyanatopyrrolidin-1-yl)-2,1,3-benzoxadiazole ((R)-(—)-DBD-
Py-NCS), (R)-(+)-4-nitro-7-(2-chloroformylpyrrolidin-1-yl) -2,1,
3-benzoxadiazole ((R)-(+)-NBD-Pro-COCl), 2,3,4,6-tetra-O-ace-
tyl-B-p-glucopyranosyl isothiocyanate (GITC), and triethylamine
were obtained from Tokyo Kasei Co. (Tokyo, Japan). Diethyl
ether, dimethyl sulfoxide (DMSO), and trifluoroacetic acid (TFA)
were obtained from Kanto Kagaku Co. (Tokyo, Japan). Sodium
dodecy! sulfate (SDS) and hydrochloric acid (HCl) were purchased
from Wako Pure Chemicals (Osaka, Japan). Acetonitrile (CHsCN),
methanol (CH3;OH), and formic acid (FA) were of LC-MS grade
(Wako Pure Chemicals, Osaka, Japan). Saline was purchased from
Otsuka Pharmaceutical Factory, Inc. (Naruto, Japan). All other
reagents were of analytical-reagent grade and were used without
further purification.

UHPLC-FL and ESI-TOF-MS conditions

A Shimadzu (Kyoto, Japan) ultra-fast liquid chromatograph
system consisting of two LC-20AD pumps, a degasser (DGU-20A3)
and an auto-injector (SIL-20ACy7) was used. Reversed-phase liquid
chromatography was performed using TSK-gel ODS-140HTP
column (2.1 mm id. x 100 mm, 2.3 um, Tosoh, Tokyo). The column

Drug Test. Analysis 2012, 4, 1001-1008



Rapid enantiomeric separation of phenethylamines by UHPLC

|
H,CO NH %
., - ey : H
o SN 3 R T N2 q

{0 s ,§ N Fﬁ%(/&&/ )

O NH;, 17" TOCH; > o
BDB Dot D2PM
g g

i \‘:,»'N\/CHB r/ﬁ\}\(/\/ NH; /Ou_f/*}:_h/ ‘\r«N\CH,{
! : i : L i
k,; CHy o A on o Sen,

N-ethyicatinone 4FMP bk-MBDB
O O
¢ H H ; H
- H . — . ]

(0“»(,” \j/‘l\:"NVCHJ t/\\»{ ‘T’N‘C:H3 %/\‘YL\’N\GHs
| i - i i
O,-‘\_::f CHg Lf/’\ £ CH4 ch/ = CH;y

bk-MDEA N-methyl-2FMP 4-methyimethocatinone
COOCH;
0. % /NHZ H
0 odh L~
MMDA-2 MPH
N
H )
o N ~
q o 7T CHy OHH
g. > CH. . \"-\/'L\ N
HyCO™ : 5\; I8
b . \/
PMMA PBH (IS)

Figure 1. Chemical structures of phenethylamines used in this study.

Table 1. Separation factor (¢) and resolution factor (R.) for enantio-
meric resolution of (R)- and (S)-D2PM using the chiral derivatization
method?®

Chiral derivatization reagents o R

(R)-(—)-DBD-Py-NCS 1.190 3.450
(R)~(+)-NBD-Pro-COCI 0.244 0.888
GITC 1.070 1.420

“Mobile phase: H,0-CHOH-FA (45:55:0.1, v/v/v).

was maintained at 40°C. The eluent was monitored by an RF-10Ay_
fluorescence detector (Shimadzu). The wavelengths of the fluores-
cence detector were set at 450nm (excitation) and 560 nm
(emission). The flow rate of the mobile phase was 0.45 ml/min.
lsocratic separations were achieved using H,0-CH;OH-FA
(40:60:0.1 or 45:55:0.1, w/v/v) as the mobile phase unless otherwise
mentioned. The injection volume was fixed at 2 pl.

ESI-TOF-MS detection was performed using a Waters LCT
Premier XE mass spectrometer (Waters, Milford, MA, USA). The
profile data for positive ions of m/z 100-1000 were recorded
(W-mode, mass resolution: 1.0x10%. The capillary voltage was
set at 3000V, while the cone voltage was 10 V. Nitrogen was used
as the drying gas. The desolvation gas flow rate was 650 L/h, and
the cone gas flow rate was maintained at 50 L/h. The desolvation
temperature was 350°C, and the source temperature was 120°C,
A lock-mass of leucine enkephalin at a concentration of 2 ng/ml

Drug Test. Analysis 2012, 4, 1001-1008
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Figure 2. Derivatization reaction of (R)-D2PM with (R)-(—)-DBD-Py-NCS.

in HyO-CH3CN-FA (50:50:0.1, v/v/v) for the positive ion mode
(IM+H]"=556.2771) was used at a flow rate of 5pl/min via a
lock-spray ionization source. Data were collected in the centroid
mode, the lock spray frequency was set at 55, and the lock-mass
data were averaged over 10 scans for correction.

Derivatization of phenethylamines by (R)-(—)-DBD-Py-NCS

One hundred microlitres of 2 mM (R)-(—)-DBD-Py-NCS in CHsCN
and 5pl of triethylamine were added to 100l of the sample
solution containing phenethylamines (0-10 uM) in H,O-CH;CN
(50:50, v/). The mixture was heated at 55°C for 15 min2% The
solution was cooled at 5°C, and an aliquot (2 pl) was injected into
the UHPLC-FL and ESI-TOF-MS systems.
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Analysis of phenethylamines from the products distributed
in the Japanese market

The products distributed in the past as legal substances on the
Japanese market were enantiomerically separated and analyzed
for determination of phenethylamines. Product 1 (labelled as
BDB, yellow powder, 1 mg) was dissolved in 1 ml of H,0-CHsOH
(1:1, v/v), and product 2 (labelled as Honey Flash 2, colourless
liquid) was diluted 10 times with H,O-CH;OH (1:1, v/v). The solu-
tion was sonicated for 10 min and then centrifuged at 500x g for
10 min. After centrifugation, 100 pl of the supernatant was deriva-
tized by (R)~(~)-DBD-Py-NCS using the same procedure described
above, and the supernatant was filtered through a Millex-LG filter
(0.20 um, 4 mm i.d.; Nihon Millipore, Tokyo, Japan). The solution
was cooled at 5°C, and an aliquot (2 pl) was injected into the
UHPLC-ESI-TOF-MS systems.

S. Inagaki et al.

Experimental animals

Healthy male Dark-Agouti (DA) rats (5 weeks old) were purchased
from Japan SLC, Inc. (Hamamatsu, Japan). Animal care and experi-
ments were conducted according to the guidelines for the care
and use of laboratory animals of the University of Shizuoka. The
rats were housed at a constant temperature (24 &+ 1°C) with an
alternating 12-h light/dark cycle with free access to food and
water. Racemic (R/S ratio =1/1), (R)-, and (S)-D2PM dissolved in
saline containing 5% (vw/v) DMSO and 0.1M HCl were orally
administered to the rats for three weeks (40 mg/kg day). The con-
trol rats were orally administered saline instead of D2PM. One
week after cessation of D2PM administration, hair specimens
were collected from the rats. The collected hairs were washed
with 1ml of 0.1% SDS for 1 min by vortex mixing. After three
rinses with distilled water in the same manner, the hair

Table 2. Retention time (tg), separation factor (o), and resolution factor (R,) for enantiomeric resolution of phenethylamines using (R)-(—)-DBD-Py-
NCS as chiral derivatization reagent
Samples m/z (M +HI™) Mobile phase® tg (min) o R
BDB 547.1797 A 448,487 1.10 1.53
DOI 675.0920 B 17.92, 1844 1.03 0.70
D2PM 607.2161 A 12.15, 14.52 1.19 345
N-Ethylcatinone 531.1848 B 13.28, 16.53 1.25 5.69
4FMP 507.1648 A 449,479 1.07 1.24
bk-MBDB 575.1746 A 555, 6.83 1.16 3.84
bk-MDEA 575.1746 A 6.13,7.58 1.25 4.43
N-Methyl-2FMP 521.1805 B 12.46, 13.15 1.06 1.40
4-Methylmethocatinone 531.1848 A 7.91,10.02 1.28 5.28
MMDA-2 563.1746 B 641, 6.69 1.05 1.02
MPH 587.2110 A 8.38,9.38 1.13 2.50
PMMA 533.2005 A 4.26,4.52 1.07 113
#A: HyO-CH3OH-FA (45:55:0.1, v//v); B: H,0-CH3CN-FA (62:38:0.1, v/Av/V).
(A) LTt J— (B) 1006 P —— .
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Figure 3. Typical chromatograms obtained from real products containing phenethylamines by UHPLC~ESI-TOF-MS, Analyte: (A) product 1 (yellow
powder); (B) product 2 (colourless liquid). Mobile phase: (A) H,0-CH3OH-FA (45:55:0.1, v/v/v); (B) HO-CH3CN-FA (62:38:0.1, v/v/v). Other conditions

are described in Experimental section.
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Rapid enantiomeric separation of phenethylamines by UHPLC

specimens were dried in air. The dried hairs were then cut into
small pieces (approximately 2-3 mm) with scissors.

Acidic methanol extraction

A washed hair specimen (10mg) was precisely weighed into a
polypropylene tube, and 1.5 ml of CH30H-TFA (50:1, v/v) contain-
ing 5 uM of PBH as the internal standard was added for extrac-
tion. After sonication for 1 h, the solutions were aliowed to stand
overnight at room temperature. One millilitre of the supernatant
was transferred into another tube and evaporated to dryness
under a gentle stream of nitrogen at 40°C. Next, 50ul of
H,O-CH3CN (50:50, v/v) and 3pl of triethylamine were serially
added to the tube and reacted with 50 pl of (R)-(—)-DBD-Py-NCS
in CH3CN. The reaction mixture was heated at 55°C for 15 min.

(A)

Eluorescence mtensity

& 2 4 & 8
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Y 2 4 6 8
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@
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Fluorescence infansity

o

4 [ 8
Retenyan time {mmn)
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The supernatant was then filtered using a Millex-LG filter, and
an aliquot of the filtrate (2 ul) was injected into the UHPLC-FL
system.

Calibration curves and method validation by UHPLC-FL

Calibration curves were obtained by spiking a series of extraction
solvents containing blank rat hair with (R)- and (S)-D2PM to
give concentrations of 1.8-880ng/mg hair. The curves were
constructed by plotting the peak area ratios of (R)-D2PM and
(S)-D2PM relative to the internal standard against the injected
amounts. The curves were plotted for five different concentra-
tions. Positive control hair specimens (QCL and QCH: quality
control for low and high concentration, respectively) were
prepared from the drug-free hair specimens according t a
reported protocol with some modifications of drug concentrations,
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Figure 4. Typical chromatograms obtained from blank rat hair extract without addition of internal standard (A); rat hair extract spiked with 5 umol/L
(R)-D2PM and (S5)-D2PM (B); rat hair extract following saline dose (C); (R)-D2PM (D); (5)-D2PM (E); and (R,S)-D2PM (F) by UHPLC-FL. Mobile phase:
H,O-CH3OH-FA (40:60:0.1, v/v/v). Conditions of FL are described in Experimental section, and other conditions are the same as those in Figure 3.
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Table 3. Intra- and inter-day validations of UHPLC-FL analysis of (R)- and (5)-D2PM from rat hair specimens

Samples (R)-D2PM (S)-D2PM
Amount (ng/mg hair, mean =% SD) CV (%) Amount {(ng/mg hair, mean & SD) CV (%)

Intra-day assay (n=5)

QCL 051.6+£1.93 3.74 053.9+3.52 6.53
QCH 408.1+£11.1 273 43234282 6.52
Inter-day assay (n=5)

QCL 0523+3.16 6.05 052.042.13 411
QCH 39574263 6.64 400.9+20.3 5.05

SD: standard deviation; CV: coefficient of variation.

Table 4. Amounts of (R)- and (5)-D2PM detected from rat hair by
UHPLC-FL
Rat Drug dose Amounts of D2PM detected from
rat hair
(ng/mg hair, mean =+ SD, n=5)

(R)-D2PM (S)-D2PM
1 {R)-D2PM 195.52+9.69 Not detected
2 (R)-D2PM 073.89+4.51 Not detected
3 (5)-D2PM Not detected 133.61+£8.370
4 (S)-D2PM Not detected 052.67 +=2.010
5 racemic-D2PM 125.39:+£753 187.91 £12.63
6 racemic-D2PM 052.06 -+ 6.40 080.26 = 10.98
7 -2 Not detected Not detected
8 -2 Not detected Not detected
®The rats were administered saline instead of D2PM.

soaking period, and rinse procedures.**2% Analyses were repeated
five times a day and between days, and the precision (CVs, %) of
intra- and inter-day assays was evaluated.

Results and discussion

Enantiomeric separation of phenethylamines using a chiral
derivatization method

Figure 1 shows the chemical structures of phenethylamine-type
abused drugs used in this study. We attempted to achieve
rapid and simultaneous enantiomeric separation using a chiral
fluorescent derivatization reagent, (R)-(—)-DBD-Py-NCS. In previ-
ous studies, (R)-(—)- and (S)-(+)-DBD-Py-NCS have proven to be
very effective for total resolution of racemic mixtures of amino
acids and thiol compounds by HPLC-FL. ®7~2% The derivatization
scheme for (R)-D2PM with (R)-(—)-DBD-Py-NCS is shown in
Figure 2. Table 1 lists the separation factor (o) and resolution
factor (R;) for enantiomeric resolution of (R)- and (S)-D2PM using
(R)-(—)-DBD-Py-NCS, (R)-(+)-NBD-Pro-COCl, and GITC as chiral
derivatization reagents. The best resolution between the
enantiomers was obtained using (R)-(—)-DBD-Py-NCS (R, =3.45).
In addition, compared with using conventional HPLC, about 2
times faster enantioseparations of D2PM and MPH could be
possible using UHPLC. Therefore, in this study, (R)-(—)-DBD-
Py-NCS was used as the chiral derivatization reagent.

wileyonlinelirary.omjounalta
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Rapid enantiomeric separation and determination of
phenethylamines from the products distributed in the
Japanese market by UHPLC-ESI-TOF-MS

Table 2 lists the retention time (tg), m/z, &, and R, for enantiomeric
resolution of phenethylamines using (R)-(—)-DBD-Py-NCS as a
chiral derivatization reagent. Enantiomeric separations of eight
phenethylamines (BDB, D2PM, 4FMP, bk-MBDB, bk-MDEA,
4-methylmethocatinone, MPH, and PMMA) was achieved using
H,O-CH3OH-FA (45:55:0.1, v/v/v) as the mobile phase. Also, DO,
N-ethylcatinone, N-methyl-FMP, and MMDA-2 were enantiomerically
separated using H,O-CH3CN-FA (62:38:0.1, wv/V) as the mobile
phase.

The proposed method was applied to the determination of
phenethylamine products obtained from an adult shop and via
the Internet. The products were extracted with H,O-CH;0H,
centrifuged, filtered, derivatized by (R)-(—)-DBD-Py-NCS, and
then analyzed by UHPLC-ESI-TOF-MS. Typical chromatograms
obtained from these products are shown in Figure 3. BDB and
MMDA-2 were detected from products 1 and 2, respectively,
and they were identified as racemic. High-resolution mass
analysis by ESI-TOF-MS provided excellent accuracy in the deter-
mination of the m/z of the derivatives (less than 1.8 ppm). Since
the products analyzed in this study contained simple racemic
forms, it would be difficult to trace the manufacturing method
or sources. However, in combination with impurity analysis of
the products, the proposed method is expected to be applicable
for such purposes.

Analysis of D2PM in rat hair by UHPLC-FL

Hair specimens are suitable for retrospective analyses when
blood and urine are no longer expected to contain the illicit
drugs. 934 Hair is typically suitable for this kind of analysis for
several months up to one year after ingestion. In addition, once
incorporated into hair, drugs are protected by a cuticle layer
and are almost independent of daily cleaning. The deveioped
method was also applied to the analysis of illicit drugs in hair
specimens in which rats were administered oral doses (40 mg/kg day)
of D2PM continuously for three weeks. The hair specimens were
analyzed by FL, which has a wide dynamic rage and superior
quantitative performance compared with ESI-TOF-MS.

Acidic methanol extraction was used for the analysis of D2PM-
dosed rat hair specimens. CH;OH-TFA (50:1, v/v) was used as an
extraction solvent since D2PM was extracted efficiently, and
TFA is volatile, When CH;0H-5M HCl (9:1, v/v) was used for
extraction, HCl remained after removal of the solvent by nitrogen

Drug Test. Analysis 2012, 4, 1001-1008
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gas. Therefore, the ratio of derivatization reaction decreased
dramatically, and sufficient peak intensity of (R)-D2PM, (5)-D2PM,
and PBH (internal standard) was not obtained (data not shown).

Figure 4A shows that no endogenous constituents of blank
hair extracts eluted at the retention times of the peaks of
(R)-D2PM, (5)-D2PM, or PBH. Adequate separation and detection
were achieved within 7 min using H,O-CH3;OH-FA (40:60: 0.1,
v/v/v) as the mobile phase (Figures 4B-4F). Therefore, the
developed method was found to be selective for (R)- and
(5)-D2PM in hair specimens without interferences from normal
endogenous hair constituents.

Calibration curves were obtained using blank hair spiked with
(R)- and (5)-D2PM. The curves obtained by plotting the peak area
ratios of (R)- and (5)-D2PM relative to the internal standard
exhibited good linearity (> 0.999). The precisions of different
concentrations (QCL and QCH) were also evaluated by intra- and
inter-day assays. As shown in Table 3, the precision of the intra-
and inter-day assays were 2.73-6.53% and 4.11-6.64%, respectively;
thus, reasonable precisions were obtained. The detection limits of
(R)- and (5)-D2PM were 0.12ng/mg hair and 0.21ng/mg hair,
respectively (signal-to-noise ratio (S/N)=3). Table 4 lists the
amounts of (R)- and (S5)-D2PM detected from rat hair. Although
variability among individual rats was observed, (R)}-form was
detected from the rat dosed with (R)-form, (S)-form was detected
from the rat dosed with (5)-form, and both (R)- and (5)-form were
detected from the rat dosed with the racemic form, as expected.

Although conventional acidic methanol extraction requires long
preparation times for hair specimens, by applying macropulverized
extraction, >3 rapid enantiomeric separation and quantification of
D2PM in hair was achieved. The proposed method should be useful
for preventing widespread distribution of D2PM as a new illegal drug
and is also expected to be appropriate for the analysis of human hair
specimens from drug abusers.

Conclusion

In this study, rapid enantiomeric separation of phenethylamine-
type abused drugs was accomplished using (R)-(—)-DBD-Py-NCS
as the chiral fluorescent derivatization reagent based on UHPLC,
Enantiomeric separation of 12 phenethylamines was achieved.
The proposed method was successfully applied to the analysis
of products containing illicit drugs distributed in the Japanese
market. Among the products, BDB and MMDA-2 were detected
in racemic form. The method was also applied to the analysis of
rat hair specimens in which the rats were administered oral doses
of D2PM. The proposed method should be useful for preventing
widespread distribution of D2PM as a new illicit drug and is also
expected to be applicable to the analysis of human hair
specimens from drug abusers.
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Simultaneous determination of
N-benzylpiperazine and
1-(3-trifluoromethylphenyl)piperazine in rat
plasma by HPLC-fluorescence detection and its
application to monitoring of these drugs

Mitsuhiro Wada® Kozue Yamahara?, Rie lkeda® Ruri Kikura-Hanajiri®,

Naotaka Kuroda® and Kenichiro Nakashima®*

ABSTRACT: An HPLC-fluorescence detection method for simultaneous determination of N-benzylpiperazine (BZP) and
1-{3-trifluoromethylphenyl)piperazine (TFMPP) labeled with 4-(4,5-diphenyl-1 H-imidazol-2-yl)benzoyl chloride (DIB-Cl) was
described. DIB-BZP and -TFMPP were well separated within 13 min without interference of peaks from plasma components. The
lower detection limits of BZP and TFMPP at a signal-to-noise ratio of 3 were 0.9 and 4.6 ng/mL, respectively. Precisions of the
proposed method for intra- and inter-day assays were less than 4.8 and 9.1% as %RSD (n = 5). Furthermore, the method could
be successfully applied to monitor both compounds in plasma after their sole or co-administration to rats (each dose, 2 mg/kg).
Clearance of TFMPP was significantly different under the conditions (P=0.047). Copyright © 2011 John Wiley & Sons, Ltd.

Introduction

The drugs of abuse ‘piperazines’ comprise two classes:
benzylpiperazines such as N-benzylpiperazine (BZP) and
phenylpiperazines, 1-(3-trifluoromethylphenyl)piperazine (TFMPP).
Drug abusers have reportedly ingested BZP and/or TFMPP in an
attempt to mimic the 3,4-methylenedioxymethamphetamine
(MDMA) subjective experience (de Boer et al, 2001; Butler and
Sheridan 2007; Fantagrossi et al, 2005). Evidence of the effects of
piperazines from neurochemical (Baumann et al,, 2004, 2005) and
behavioral pharmacological (Yarosh et al, 2007) viewpoints has
been reported. Adverse reactions such as dissociative, sympatho-
mimetic symptoms associated with recreational use of BZP and/or
TFMPP have also been reported (Wood et al, 2008; Austin and
Monasterio 2004).

‘Party pills’ containing both BZP and TFMPP have been seized
worldwide (Wood et al., 2007; Cuddy, 2004; Wilkins and Sweetsur
2010), and have caused serious social problems. In particular, a
big market for party pills containing piperazines existed in New
Zealand from the early 2000s until their prohibition in 2008
(Wilkins and Sweetsur, 2010). To date, the pharmacokinetics of
piperazines and their drug interactions have been extensively
studied, although they have not been completely clarified
(Antia et al, 2009a, 2009b). A simultaneous determination
method for BZP and TFMPP might be useful to clarify the
interactions in detail and will help in the prediction of and the
protection of human health against the risks of piperazines.

Several analytical methods have been reported for the
determination of BZP and/or TFMPP. Among these, gas
chromatography-mass spectrometry (GC-MS; Staack et al., 2002;
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Staack and Maurer, 2003; Vorce et al, 2008; Peters et al, 2003;
Tsutsumi et al., 2005a, 2005b, 2006), HPLC-UV (Elliott and Smith,
2008), liquid chromatography (LC)-MS (Antia et al., 2009a; Vorce
et al., 2008; Tsutsumi et al., 2005b, 2006; Elliott and Smith, 2008)
and capillary electrophoresis—UV (Bishop et al,, 2005) methods
were examined. However, UV detection was not sensitive enough
to determine these compounds in biological matrices. MS
detection, having high sensitivity and selectivity, could achieve
low-level quantification of piperazines in biological samples
within a short analytical time, although a MS detector is an
expensive piece of equipment with tedious maintenance and is
not in ordinary, widespread use.

Fluorescence (FL) labeling is a powerful tool to determine
compounds having no desirable properties in their structure for
sensitive spectrophotometric determination, and has been used
to determine trace amounts of biologically active compounds
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such as drugs in biological samples (Nakashima et al, 2009).
4-(4,5-Diphenyl-1 H-imidazol-2-yl)benzoyl chloride (DIB-Cl), a
fluorescence labeling reagent synthesized by us, reacts with
compounds that have amino and hydroxyl groups to produce
intense fluorogenic labels (Nakashima et al., 2009). In our previous
studies, highly sensitive and selective determination of drugs of
abuse such as amphetamine analogs (Nakamura et al,, 2007;
Kaddoumi et al., 2004) and narcotics (Wada et al,, 2007, 2008) has
been achieved. Thus we consider that sensitive determination of
piperazines such as BZP and TFMPP might be achieved by
an HPLC-FL method combined with DIB-labeling, although no
HPLC-FL method with labeling has ever been reported.

in this study an HPLC-FL detection method for simultaneous
determination of BZP and TFMPP labeled with DIB-Cl was
developed. Furthermore, the proposed method was applied
to monitor both compounds in plasma after a single sole or
co-administration to rats.

Materials and methods

Chemicals

BZP was a gift from the Narcotics Control Department,
Kanto-Shin'etsu Bureau of Health and Welfare (Tokyo, Japan).
TFMPP was kindly given by the National Institute of Heaith
Sciences (Tokyo, Japan). DIB-Cl was obtained from Tokyo Kasei
Kogyo Co. (Tokyo, Japan). Other reagents used were of
analytical grade. Water was purified by a Pure Line WL21P
system (Yamato Scientific Co., Tokyo, Japan). Stock standard
solutions (1 mg/mL) of BZP and TFMPP were prepared by
dissolving in CH3CN and stored at —-30°C until analysis.

Instruments

The HPLC system for separation of DIB-BZP and -TFMPP labels
consisted of two chromatographic pumps (LC-10ADyp, Shimadzu,
Kyoto, Japan), a system controller (SCL-10 ADyp, Shimadzu), a
7125 injector with a 20 yL sample loop (Rheodyne, CA, USA), a
Daisopak-SP-ODS-BP column (250 x4.6 mm, id., 5um, Daiso,
Osaka, Japan), a column oven (CTO-6AS, Shimadzu), an RF10Ay,
fluorescence detector (Shimadzu) and a recorder (R-01A,
Rikadenki, Tokyo, Japan). The solutions of 0.1 m acetate buffer
(pH 3.5, MP 1) and CH3CN (MP 2) were used as mobile phases and
the total flow rate was set at 1.0 mL/min. The gradient program
1o separate DIB labels was set as follows: the ratio of MP 2
was initialized at 63% (0-4.0min), linearly ramped to 80%
(4.1-7.0min), kept at 80% (7.1-8.0 min), then linearly ramped
0 70% (8.1-11.0min), kept at 70% (11.1-14.0 min), changed
10 95% (14.1-19.0 min) for washing and then reduced to 63%
(19.1-24.0min) for equilibration of the analytical column.
Column temperature was set at 35°C, and eluates were
monitored at 340nm (As,) and 445nm (Aem).

Pretreatment of plasma sample

To 20 L of plasma, 50 pL each of 0.1 m carbonate buffer (pH 9.0)
and 02mm DIB-Cl in CH3CN suspension were added. The
reaction mixture was stood at room temperature for 30 min, and
then 10 pL of 25% NH3 aqueous solution was added to stop the
labeling reaction.

The resultant mixture was cleaned up by a SPE cartridge to
eliminate excess reagent and interfering materials for detection
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of DIB-BZP and -TFMPP. A 130 ul aliquot of labeled mixture were
applied to Varian Bond Elut® C;5 (Varian Technologies Japan Ltd,
Tokyo, Japan) which was conditioned with H,O and CH;CN
before use. The cartridge was washed triplicate with 1 mL of
CH3CN/H,0 (40:60, v/v). Then the DIB labels were eluted with
500 pL of CH3CN. The eluate was dried up under N, gas and the
residue was reconstituted with 100 pl of CH3;CN for HPLC analysis.

Method validation

For determination of BZP and TFMPP, calibration curves using rat
plasma spiked with known concentration of standards were
prepared. Spiked plasma samples in the ranges of 25-1000 ng/mL
for BZP and of 50-2000ng/mL were prepared. The limits of
detection (LOD) and quantification (LOQ) were defined as the
concentration giving signal-to-noise (S/N) ratios of 3 and 10,
respectively. Recovery of the proposed method was expressed
as the peak height ratio of standards spiked in plasma with
SPE clean-up on standards without clean-up. Accuracy and
precision for inter-day and intra-day assay were evaluated
using plasma samples spiked with 50 and 500 ng/mL of BZP,
and 100 and 1000ng/mL of TFMPP, respectively. Data was
expressed as mean + SD {n=5).

Monitoring of BZP and TFMPP after their sole or
co-administration to rats

Wistar male rats (280-300g, Otsubo Experimental Animals,
Nagasaki, Japan) were used. Rats were anesthetized with ethyl
carbamate (1.5 g/kg, i.p.) before cannulation. From the cannu-
lated femoral artery, blood samples were collected into the test
tube containing EDTA-2Na for preparation of plasma. Blood
sampling was performed at 0, 15, 30, 45, 60, 90, 120, 180, 240, 300
and 360 min after sole or co-administration of the compounds
(2mag/kg, ip.). After centrifugation (1000g) at 4°C for 10 min,
plasma was kept at —30°C until analysis. The pharmacokinetic
parameters such as elimination rate constant (K), elimination
half-life (T,,,), distribution volume (V) and clearance (Cl) of the
compounds were calculated using a one-compartment model
analysis. The area under the curve (AUC,_3¢p) Of the compounds
was calculated by a trapezoidal method. Statistical analysis was
performed using an unpaired Student's t-test. Probability values
less than 0.05 were considered significant. This experiment was
performed with an approval of the Nagasaki University Animal
Care and Use Committee.

Results and discussion

Pretreatment of samples

Labeling conditions such as DIB-Cl concentration, borate buffer
pH, reaction time and temperature were optimized. By using
50ng/mL of BZP and 100 ng/mL of TFMPP standard solutions,
FL intensities (FLI) of their DIB labels were measured for evaluation,
The effects of DIB-Cl concentration (0.01-1.0 mm) on the FLI were
examined, and it was found that DIB labels gave the maximum
and constant FLI with more than 0.05mm. Thus the following
experiments were done using 0.2 mm of DIB-Cl. Borate buffer pH
ranging from 8.5 to 11.0 was examined, and the maximum FLI of
both compounds was achieved at pH 9.0. Effects of reaction time
at room temperature and 60°C on FLI of labels were studied, and
the maximum FLI was obtained with more than 30 min of reaction
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