stain collagen® fibroblasts, we stained tissue sections with anilin blue orange G
solution (Muto Pure Chemicals) for 1 hr and counterstained with toluidine blue
(Wako) for 20 min. For the staining with anti-mouse cathelicidin antibody
(Abcam), tissue sections were retrieved with Retrievagen A (BD Biosciences).

Inflammation severity was scored as follows: 0, no; 1, minimal; 2, mild; 3,
moderate; and 4, marked. The slides were blinded, randomized, and reread
to determine score. The total score was calculated as the sum of scores for
inflammation, neutrophil number, mononuclear cell number, edema, and
epithelial hyperplasia (Otsuka et al . 2077).

Whole-Mount FISH

Skin was fixed in 4% paraformaldehyde at 4°C overnight and washed with
PBS for 7 hr. Tissues were hybridized with 10 pg/mL of Alexa 488-conjugated
DNA probe (EUB338, Invitrogen) in a hybridization buffer (0.9 M NaCl, 20 mM
Tris-HCI, 0.1% SDS, and 10 ug/mL) at 42°C overnight. After washing twice in a
washing buffer (0.45 M NaCl, 20 mM Tris-HCI, 0.01% SDS) at 42°C for 10 min,
tissues were flushed with PBS and observed by confocal microscopy (DM
IRE2/TCS SP2, Leica) (Obata et al.. 2010).

Microarray Analysis

Total RNA was prepared with RNeasy kit (QIAGEN). cRNA was hybridized with
DNA probes on a GeneChip Mouse Genome 430 2.0 array (Affymetrix) (<un
2073). Data were analyzed with GeneSpring 7.3.1 software (Silicon

SaWe
Genetics).

Quantitative RT-PCR

Total RNA was prepared with TRIzol (Invitrogen) and reverse transcribed by
Superscript VILO (Invitrogen). Quantitative RT-PCR was performed with the
LightCycler 480 Il (Roche) and the Universal Probe Library (Roche). Primer
sequence is available in Table S,

Statistical Analysis

Statistical analysis was performed with the unpaired two-tailed Student’s t test
and Welch’s t test. In some experiments, one-way ANOVA and Tukey's
method were employed as indicated in figure legends.
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Stress Response Protein Cirp Links Inflammation and
Tumorigenesis in Colitis-Associated Cancer

Toshiharu Sakurai', Hiroshi Kashida', Tomohiro Watanabe?, Satoru Hagiwara®, Tsunekazu Mizushima®
Hideki lijima®, Naoshi Nishida', Hiroaki Higashitsuiji®, Jun Fuijita®, and Masatoshi Kudo'
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Colitis-associated cancer (CAC) is caused by chronic intestinal inflammation and is reported to be associated
with refractory inflammatory bowel disease (IBD). Defective apoptosis of inflammatory cell populations seems to
be a relevant pathogenetic mechanism in refractory IBD. We assessed the involvement of stress response protein
cold-inducible RNA-binding protein (Cirp) in the development of intestinal inflammation and CAC. In the colonic
mucosa of patients with ulcerative colitis, expression of Cirp correlated significantly with the expression of TNFa,
IL23/IL17, antiapoptotic proteins Bcl-2 and Bcl-xL, and stem cell markers such as Sox2, Bmil, and Lgr5. The
expression of Cirp and Sox2 was enhanced in the colonic mucosae of refractory ulcerative colitis, suggesting that
Cirp expression might be related to increased cancer risk. In human CAC specimens, inflammatory cells expressed
Cirp protein. Cirp™’~ mice given dextran sodium sulfate exhibited decreased susceptibility to colonic inflam-
mation through decreased expression of TNFo, IL23, Bcl-2, and Bcl-xL in colonic lamina propria cells compared
with similarly treated wild-type (WT) mice. In the murine CAC model, Cirp deficiency decreased the expression of
TNFa, 1L23/IL17, Bel-2, Bel-xL, and Sox2 and the number of Delkl™ cells, leading to attenuated tumorigenic
potential. Transplantation of Cirp™'~ bone marrow into WT mice reduced tumorigenesis, indicating the
importance of Cirp in hematopoietic cells. Cirp promotes the development of intestinal inflammation and
colorectal tumors through regulating apoptosis and production of TNFo. and IL23 in inflammatory cells. Cancer

Res; 74(21); 6119-28. ©2014 AACR

The inflammatory bowel diseases (IBD)—ulcerative colitis
and Crohn disease—are thought to result from aberrant acti-
vation of the intestinal mucosal immune system (1). Although
the pathogenesis of IBD remains unclear, a number of studies
have suggested the involvement of abnormal apoptosis in
intestinal epithelial cells, resulting from increased production
of cytokines, such as TNF, ILs, and IFNs (2). TNFo. is a key
mediator of inflammation in IBD and has been the primary
target of biologic therapies (3). This cytokine induces inflam-
mation by promoting the production of IL1B and IL6, expres-
sion of adhesion molecules, proliferation of fibroblasts, acti-
vation of procoagulant factors, and cytotoxicity of the acute
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phase response (4). The IL23/T;17 (T-helper IL17-producing
cell) pathway has been identified to play a critical role in IBD.
1123 has been shown to promote the expansion of a distinct
lineage of Tyy17 cells that are characterized by production of a
number of specific cytokines not produced by Ty1 or Ty2 cells,
including IL17A, IL17F, IL21, and 1L22 (5). IL23/IL17 signaling
enhances the immunosuppressive activity of regulatory T cells
and reduces CDS™ cells in tumor, leading to enhanced tumor
initiation and promotion (6, 7). Recently, a study has suggested
that colorectal cancer tissue-derived Foxp3™ IL17" cells have
the capacity to induce cancer-initiating cells in vitro (8). The
most conspicuous link between inflammation and colon can-
cer is seen in patients with IBD (9), and development of
colorectal cancer is one of the most serious complications of
IBD, which is also referred to as colitis-associated cancer (CAC;
ref. 10). Thus, it is of great importance to improve our under-
standing of the molecular link between chronic inflammation
and CAC to identify a target molecule with therapeutic poten-
tial for the treatment of IBD and prevention of CAC.

It is widely accepted that most tumors harbor cancer stem
cells, which are crucial for a tumor's evolutionary capability.
Cancer stem cells resemble normal stem cells in their capacity
to self-renew and continuously replenish tumor progeny
(11, 12). The G-protein-coupled receptor Lgr5 and the poly-
comb group protein Bmil are 2 recently described molecular
markers of the self-renewing multipotent adult stem cell
populations residing in intestinal crypts that mediate regen-
eration of the intestinal epithelium (13, 14). Pluripotency-
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associated transcription factors like Sox2 are known to regu-
late cellular identity in embryonic stem cells. Sox2 expression
specifically increased the numbers of stem cells and repressed
Cdx2, a master regulator of endodermal identity. /r vivo studies
demonstrated that Sox21, another member of the SoxB gene
family, was a specific, immediate, and cell-autonomous target
of Sox2 in intestinal stem cells (15). Sox2 participates in the
reprogramming of adult somatic cells to a pluripotent stem cell
state and is implicated in tumorigenesis in various organs (16).

Cold-inducible RNA-binding protein (Cirp, also called Cirbp
or hnRNP A18) was originally identified in the testis as the first
mammalian cold shock protein (17) and is suggested to
mediate the preservation of neural stem cells (18). Cirp is
induced by cellular stresses such as UV irradiation and hypoxia
(19-21). In response to the stress, Cirp, which migrates from
the nucleus to the cytoplasm, affects posttranscription expres-
sion of its target mRNAs (22-24) and functions as a damage-
associated molecular pattern molecule that promotes inflam-
matory responses when present extracellularly (25). Cirp also
affects cell growth and cell death induced by TNFo. or geno-
toxic stress (26, 27). However, the involvement of Cirp in colitis
and CAC is not well understood.

Here, we examined whether Cirp plays a role in inflamma-
tory immune responses and tumorigenesis in the gut by using a
murine CAC model of Cirp-deficient (Cirp™'~) mice and found
that Cirp promoted colitis and colorectal tumorigenesis by
inhibiting apoptosis and increasing TNFo.and IL23 production
in inflammatory cells. In patients with ulcerative colitis, refrac-
tory inflammation is associated with increased Cirp expression
in the colonic mucosa, which would increase the risk for CAC.
This study represents the first report of the functional link
between Cirp and intestinal tumorigenesis.

316 210
ateria <18

Human tissue samples

In total, 236 colonic mucosa specimens were obtained by
endoscopy or surgery from patients with ulcerative colitis,
including 67 cases of refractory ulcerative colitis, 98 cases of
nonrefractory active ulcerative colitis, and 20 cases in remis-
sion, as well as 21 colonic mucosa of patients with Crohn
disease and 30 normal colonic mucosa specimens from con-
trols without IBD. Refractory ulcerative colitis was defined
according to endoscopic criteria and categorized as being
active for more than 6 months. Active inflammation was
defined as Mayo endoscopic score >2. CAC specimens were
obtained from 10 patients who had undergone colorectal
resection. The clinical study protocol conformed to the ethical
guidelines of the 1975 Declaration of Helsinki and was
approved by the relevant institutional review boards.

Mice and treatment

Cirp~'~ mice showing neither gross abnormality nor colonic
inflammation were used as a murine CAC model. The gener-
ation of Cirp'/ ~ mice has been described previously (28). Sex-
and age-matched C57BL/6 wild-type (WT) and Cirp™'~ mice
(8-12 weeks old) received 2.5% (w/v) dextran sodium sulfate
(DSS; molecular weight, 36,000-50,000 kDa; MP Biomedicals)

in drinking water. Mice were intrapertioneally injected with 20
mg/kg anti- TNFo. antibody (#16-7423, eBioscience) or an IgG
isotype control before DSS treatment.

Isolation of lamina propria cells was performed as described
previously (29). The isolated cells were sorted using immuno-
magnetic beads coated with monoclonal antibodies against
CD11b (MACS Beads, Miltenyi Biotec) with the help of a
separation column and a magnetic separator from the same
company in accordance with the manufacturer's recommen-
dations for isolating murine macrophages.

As the protocol for the murine CAC model, mice were
intraperitoneally injected with 12.5 mg/kg azoxymethane
(AOM; Sigma-Aldrich). After 5 days, 2.0% DSS was included
in the drinking water for 5 days, followed by 16 days of regular
water. This cycle was repeated 3 times. Then, 1.5% DSS was
included in the drinking water for 4 days, followed by 7 days of
regular water. Upon sacrifice, the colon was excised from the
ileocecal junction to the anus, cut open longitudinally, and
prepared for histologic evaluation. Colons were assessed mac-
roscopically for polyps under a dissecting microscope.

Bone marrow transplantation (BMT) experiments were
performed as previously described, with slight modifications
(30). Bone marrow from the tibia and femur was washed twice
in Hank balanced salt solution, and 10’ bone marrow cells were
injected into the tail vein of lethally irradiated (11 Gy) recipient
mice. Eight weeks posttransplantation, the mice were sub-
jected to the murine CAC protocol. Bone marrow cells were
grown in culture dishes in the presence of macrophage colony-
stimulating factor (M-CSF; 10 ng/mL) and then differentiated
to bone marrow-derived macrophages in 10 days. All animal
procedures were performed according to approved protocols
and in accordance with the recommendations for the proper
care and use of laboratory animals. The animal study protocol
was approved by the Medical Ethics Committee of Kinki
University School of Medicine (Osaka-Sayama, Japan).

Colonic injury scoring

Excised colons were rolled up and fixed in 10% formalde-
hyde, embedded in paraffin, and stained with hematoxylin and
eosin (H&E). The degree of colonic injury was assessed by
histologic scoring as described previously (31), with minor
modifications. The protocol is described in detail in Supple-
mentary Materials and Methods.

Bioch ]l and im hemical analyses

Real-time qPCR, immunoblotting, and immunohistochem-
istry were previously described (32). Primer sequences are
given in Supplementary Materials and Methods. The following
antibodies were used: anti-actin and anti-DCAMLK1 (Dclk1)
from Sigma-Aldrich; anti-Bcl-2, anti-phospho-IxkBo., anti-
IkBo, anti-phospho-ERK, anti-ERK, anti-Sox2, anti-E-cad-
herin, anti-PCNA from Cell Signaling; and anti-F4/80 from
eBioscience. Generation of anti-Cirp polyclonal antibody was
previously described (28). Immunohistochemistry was per-
formed using ilnmPRESS reagents (Vector Laboratory) accord-
ing to the manufacturer's recommendations. Immunofluores-
cent terminal deoxynucleotidyl transferase-mediated dUTP
nick end labeling (TUNEL) staining was performed to measure
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