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LTo-deficient or -sufficient mice and mixed with
BM cells from RORyt-deficient mice into lethally
irradiated recipients. F-ECs and Fut2 expression
were diminished in recipient mice reconstituted
with BM cells containing LTo-deficient RORyt"
ILC3, whereas substantial numbers of F-ECs, and
Fut2 expression, were induced in recipient mice
reconstituted with BM cells containing LTo-
sufficient RORyt" ILC3, indicating the importance
of LTa expressed by ILC3 in the induction of
F-ECs (Fig. 5, F to H). When the microbiota of
LTo-deficient mice or of mixed BM chimeras con-
taining LTo-deficient ILC3 were examined, sub-
stantial numbers of SFB were observed (fig. S6,
A and B). From these results, we concluded that
induction and maintenance of F-ECs were also
regulated by ILC3-derived LT in a commensal
flora-independent manner.

Epithelial fucosylation protects against
infection by Salmonella typhimurium

We next investigated the physiological role of
epithelial fucosylation. With exception of Paneth
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cells, the Fut2 expression and ileal epithelial
fucosylation observed in wild-type mice were
abolished in Fut2™~ mice (fig. S11, A to E). We
did not detect any overt changes in mucosal
leukocyte populations or in IL-22 or LT expres-
sion in ILC3 in these mice (fig. SIIF and table
S1). Epithelial fucosylation provides an environ-
mental platform for colonization by Bacteroides
species (6-9); however, it is unknown whether
epithelial fucosylation affects colonization and
subsequent infection by pathogenic bacteria. To
assess the effects of intestinal fucosylation on
pathogenic bacterial infection, we first infected
GF mice with the enteropathogenic bacterium Sal-
monella typhimurium, which has the potential to
attach to fucose-containing carbohydrate mol-
ecules (42). After infection with S. typhimurium,
ECs from both part 1 (duodenum) and part 4
(ileum) of the mouse intestine were fucosylated,
and this was correlated with Fut2 expression
(Fig. 6, A and B). Previous reports have shown
that expression of IL-22 in ILCs is much higher
in mice infected with S. typhimurium (43, 44).
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Therefore, S. typhimurium-induced epithelial
fucosylation may be mediated by ILC3. Indeed,
epithelial fucosylation was not induced in RORyt-
deficient mice after S. typhimurium infection
(Fig. 6C). To investigate whether epithelial fu-
cosylation has a role in regulating pathogenic
bacterial infection, we infected wild-type or
Fut2”~ mice with S. typhimurium and examined
disease progression. Compared with wild-type
mice, Fut2”~ mice were more susceptible to
Salmonella infection accompanied with the
observation of severe inflamed cecum (Fig. 6D).
Consistent with the inflammatory status of dis-
eased mice, the numbers of infiltrating leukocytes
in cecum were higher in Fut2™~ mice than in
wild-type mice (Fig. 6E). Although S. typhimu-
rium titers in cecal contents were comparable
between wild-type and Fut2~~ mice, increased
numbers of S. typhimurium infiltrated the cecal
tissue of Fut2”~ mice (Fig. 6F). These results
suggest that epithelial fucosylation is dispens-
able for luminal colonization by S. typhimu-
rium but inhibits bacterial invasion of intestinal
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Fig. 6. Epithelial fucosylation protects against infection by S. typhimurium.
(A) Whole-mount tissues from part 1 (duodenum) and part 4 (ileum) of the
small intestines of germ-free (GF) or S. typhimurium—infected GF mice were
stained with UEA-1 (red) and WGA (green) (n = 3 to 4 mice per group). Scale
bars, 100 um. (B) Epithelial Fut2 expression in part 1 and part 4 of the small
intestines of GF and S. typhimurium—-infected GF mice was analyzed by
using quantitative PCR (n = 3 to 4 mice per group). Error bars indicate SD.
**P < 0.01 by using Student's t test. (C) Whole-mount tissues from ileum of
S. typhimurium~infected Rorc*/* or Rorc&™/&% mice were isolated and stained
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with UEA-1 (red) and WGA (green) (n = 3 to 4 mice per group). Scale bars,
100 um. (D and E) Fut2*/* or Fut2™'~ mice were infected with S. typhimurium.
Red arrow shows inflammation of the cecum. Representative macroscopic
images (D) and hematoxylin and eosin-stained cecal sections (E) of infected
or uninfected mice (n = 5 mice per group). Scale bars, 100 um. (F) Numbers of
bacteria in the luminal contents, and within the tissues, of the ceca of Fut2*/*
or Fut2™~ mice were counted 24 hours after infection (n = 5 mice per group).
*P < 0.05 by using Student's t test. NS, not significant. Three independent
experiments were performed with similar resulits.
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Fig. 7. Scheme for the induction and regulation of epithelial fucosylation by ILC3. IL-22- and LTa-producing ILC3 are critical cells for the induction
and regulation of F-ECs. ILC3-mediated fucosylation of ECs is operated by commensal microbiota-dependent and —independent manners. Commensal
bacteria, including SFB, stimulate CD90™ ILC3 to produce IL-22 for the induction of Fut2 in ECs. On the other hand, LT production by ILC3 are operated
by a commensal bacteria-independent manner. ILC3-derived IL-22 and LTe induce Fut2 and subsequent epithelial fucosylation, which inhibits infection by

S. typhimurium. |IEC, intestinal epithelial cell.

tissues. Collectively, these results indicate that
epithelial fucosylation, regulated by Fut2, has
a protective role against infection by pathogenic
bacteria.

Discussion

The results of recent genome-wide association
studies imply that FUT2 nonsense polymor-
phisms affect the incidence of various metabolic
and inflammatory diseases, including chronic
intestinal inflammation such as Crohn’s disease
and infections with pathogenic microorganisms,
especially Norwalk virus and rotavirus in hu-
mans (I3-19). Understanding the mechanisms
of regulation of Fut2 gene expression and fu-
cosylation, one of the major glycosylation events
in intestinal ECs, is therefore of great interest.
Previously, it was thought that epithelial fucosyl-
ation is initiated by direct interaction between
commensals and ECs (7). Indeed, several reports
have shown that epithelial fucosylation is actively
induced and used by Bacteroides (8, 9). Here, we
unexpectedly found that microbiota-epithelia
cross-talk is insufficient to induce epithelial fu-
cosylation, and rather, CD90™ RORyt" ILC3 are
necessary for induction of epithelial Fut2 ex-
pression and consequent fucosylation. ILC3 lo-
cated in the intestinal lamina propria express
high levels of IL-22 in a commensal bacteria-
dependent manner (Fig. 41 and fig. S7, A and
D). This IL-22 then presumably binds to IL-22R
expressed by intestinal ECs, leading to the
induction of Fut2 and initiation of the EC fu-
cosylation process (Fig. 7). In contrast to the ex-
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pression of IL-22, ILC3 express LT in a commensal
bacteria-independent manner. Spontaneous ex-
pression of LT on ILC3 also contributes to the
induction of epithelial fucosylation. To explain
the mechanism underlying induction of epithe-
lial fucosylation, we propose that epithelial fu-
cosylation is regulated by a two-phase system
orchestrated by ILC3 through the microbiota-
independent production of LT and the induc-
tion of IL-22 by commensal bacteria (Fig. 7).
Although other types of stimulation may also af-
fect epithelial fucosylation, our findings reveal a
critical role for ILC3.

Our results demonstrated that I1-22 produced
by ILC3 is necessary and sufficient for induction
of epithelial fucosylation when ILC3 are appro-
priately stimulated by commensal microbiota
(Fig. 4, A to E). In addition to IL-22-mediated
epithelial fucosylation, our results also show that
the level of epithelial fucosylation is markedly
reduced under LTo-deficient conditions (Fig. 5, A
to C). Our findings suggest two possibilities for
the IL-22/LT-mediated regulation of epithelial
fucosylation. The first is that Fut2 expression and
subsequent epithelial fucosylation are induced
when the intensity of synergistic or additive sig-
nals from IL-22 and LT is above the threshold
for activation of Fut2. For example, LT produced
by ILC3 provides the baseline signal for the mini-
mum expression of Fut2, whereas commensal-
mediated IL-22 produced by ILC3 drives the
maximum expression of Fut2 for the induction
of epithelial fucosylation. The second possibility is
that LT directly or indirectly regulates the expres-
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sion of IL-22R by ECs, and vice versa, and/or the
expression of IL-22. Indeed, a previous report has
shown that LT produced by ILC3 regulates the
expression of IL-23 by intestinal dendritic cells,
as well as the subsequent production of IL-22
by ILC3 after infection with C. rodentium (45).
How ILC3-derived IL-22 and LT regulate epi-
thelial Fut2 expression remains to be further
elucidated.

Our findings provide further evidence of the
critical roles of commensal microbiota, epithelial
cells, and innate immune cells (such as ILC3) in
the creation of a protective platform against in-
fection by pathogenic bacteria (Fig. 7). Ablation
of epithelial fucose allowed severe infection by
the pathogenic bacteria S. typhimurium (Fig. 6,
D to F). Although the detailed mechanisms of
why Fut2™~ mice are susceptible to Salmonella
infection remain unknown, one possibility is
that fucosylated mucin produced by goblet
cells blocks the attachment of S. typhimurium
to the epithelinm. Commensal microbes contin-
uously stimulated goblet cells to release fucosyl-
ated mucin into the intestinal lumen (Fig. 2C).
Indeed, in a previous in vitro study, H-type 2 anti-
gens, which are synthesized by Fut2 in intestinal
ECs, prevented the binding of S. typhimurium to
fucosylated epithelia; this supports our present
findings (42). Our findings suggest a protective
role for ILC3-mediated mucus-associated fucosyl-
ated glycan against infection by pathogenic
bacteria.

ILC3 play critical roles in regulation of immune
responses during mucosal infection, especially
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by producing IL-22, which promotes subsequent
expression of the antimicrobial molecule RegIIly
by ECs (4, 36, 45). In addition to this, our results
describe a previously unknown biological role
for ILC3 in the induction and maintenance of
intestinal epithelial glycosylation, which leads
to the creation of an antipathogenic bacterial
platform in the intestine (Fig. 7). Furthermore,
epithelial fucosylation contributes to the cre-
ation of a cohabitation niche for the establish-
ment of normal commensal microbiota (20, 21).
Thus, ILC3-mediated control of epithelial-surface
glycosylation might represent a general strategy
for regulating the gut microenvironment. Tar-
geted modification of these mechanisms has the
potential to provide novel approaches for the
control of intestinal infection and inflammation.

Materials and Methods

Mice

C57BL/6 and BALB/c mice were purchased from
CLEA Japan (Tokyo, Japan). Fut27~ and 11227~
mice (C57BL/6 background) were generated as
described previously, and Jd2~~ mice were kindly
provided by Y. Yokota (33, 46, 47). Fut2”~ mice
were crossed onto the BALB/c background for
six generations. Rag2™~ mice were kindly pro-
vided by F. Alt. Ragl™~; Rorc™/®®, 1167, Lta™",
TerB”~67", and Igh6™~ mice were purchased from
The Jackson Laboratory. Antibiotic-treated mice
were fed a cocktail of broad-spectrum antibiotics—
namely, ampicillin (1 g/L; Sigma, Bandai, Japan),
vancomycin (500 mg/L; Shionogi, Osaka, Japan),
neomycin (1 g/L; Sigma), and metronidazole
(1 g/L; Sigma)—or were given these antibiotics
in their drinking water, for 4 weeks as previous-
ly described (48). These mice were maintained
in the experimental animal facility at the Uni-
versity of Tokyo. GF and SFB or L. murinus
gnotobiotic mice (BALB/c) were maintained
in the GF animal facility at the Yakult Central
Institute and at the University of Tokyo. In all ex-
periments, littermates were used at 6 to 10 weeks
of age.

Isolation of bacterial DNA

The isolation protocol for bacterial DNA was
adapted from a previously described method (49),
with some modifications. Bacterial samples in
the duodenum and ileum were obtained from mice
aged 8 weeks. After removal of PPs and intestinal
contents, the intestinal tissues were washed three
times with phosphate-buffered saline (PBS) for 10 s
each time so as to collect bacteria embedded
within the intestinal mucus for analysis of micro-
bial composition. These bacteria-containing sol-
utions were centrifuged, and the pellets were
suspended in 500 pL of TE buffer (10 mM Tris-
HCL, 1 mM EDTA; pH 8.0). Glass beads, Tris-
phenol buffer, and 10% sodium dodecyl sulfate
(SDS) were added to the bacterial suspensions,
and the mixtures were vortexed vigorously for
10 s by using a FastPrep FP100 A (BIO 101). After
incubation at 65°C for 10 min, the solutions were
vortexed and incubated again at 65°C for 10 min.
Bacterial DNA was then precipitated in isopro-
panol, pelleted by centrifugation, washed in 70%
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ethanol, and resuspended in TE buffer. Extracted
bacterial DNA was subjected to 16S rRNA gene
clone library (50).

16S rRNA gene clone library analyses

For 16S rRNA gene clone library analyses, bacte-
rial 16S TRNA gene sequences were amplified by
means of polymerase chain reaction (PCR) with
the 27F (5'-AGAGTTTGATCCTGGCTCAG-3') and
1492R (5-GGTTACCTTGTTACGACTT-3') primers.
Amplified 16S rDNA was ligated into the pCR4.0
TOPO vector (Invitrogen, Carlsbad, CA), and the
products of these ligation reactions were then
transformed into DH-50-competent cells (TOYOBO,
Osaka, Japan). Inserts were amplified and se-
quenced on an ABI PRISM 3100 Genetic Ana-
lyzer (Applied Biosystems, Foster City, CA). The
27F and 520R (5-ACCGCGGCTGCTGGC-3") pri-
mers and a BigDye Terminator cycle sequencing
kit (Applied Biosystems) were used for sequenc-
ing. Bacterial sequences were identified by means
of Basic Local Alignment Search Tool (BLAST)
and Ribosomal Database Project searches (50).

Immunohistochemistry

Immunohistochemical analyses were performed
as previously described, with some modifica-
tions (57). For whole-mount immunofluorescence
staining, the mucus layer was removed by flush-
ing the small intestine with PBS; then, the ap-
propriate parts of the small intestine were fixed
with 4% paraformaldehyde for 3 hours. After
being washing with PBS, whole-mount tissues
were stained for at least 3 hours at 4°C with
20 pg/mL UEA-1 conjugated to tetramethylrhod-
amine B isothiocyanate (UEA-1-TRITC; Vector
Laboratories, Burlingame, CA) and 10 pg/mL
wheat germ agglutinin (WGA) conjugated to
Alexa Fluor 633 (Invitrogen). For whole-mount
fluorescence in situ hybridization analysis, we
modified the protocol previously described (52).
After fixation with 4% paraformaldehyde, intes-
tinal tissues were washed with 1 mL PBS and
100 uL hybridization buffer (0.9 M NaCl, 20 mM
Tris-HC], 0.1% SDS) containing 2 ng EUB338
probe (5-GCTGCCTCCCGTAGGAGT-3) conjugated
to Alexa Fluor 488 (Invitrogen). After overnight
incubation at 42°C, the tissues were washed with
1 mL PBS and stained for 3 hours with 10 pg/mL
WGA conjugated to Alexa Fluor 633 in PBS. After
being washed with PBS, all tissues were analyzed
under a confocal laser-scanning microscope (TCS
SP2; Leica Microsystems, Wetzlar, Germany).

Cell preparations

A standard protocol was used to prepare intes-
tinal ECs (53). Tissues of the small intestine
were extensively rinsed with PBS after removal
of PPs. After the intestinal contents had been
removed, the samples were opened longitudi-
nally and cut into l-cm pieces. These tissue
pieces were mildly shaken in 1 mM EDTA/PBS
for 10 min at 37°C. After passage through a 40-um
mesh filter, intestinal ECs were resuspended in
minimum essential medium containing 20%
fetal calf serum (FCS). Lamina propria (LP) cells
were collected as previously described (54), with
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some modifications. Briefly, isolated small intes-
tine was shaken for 40 min at 37°C in RPMI
1640 containing 10% FCS and 1 mM EDTA. Cell
suspensions, including intestinal ECs and in-
traepithelial lymphocytes, were discarded, and
the remaining tissues were further digested
with continuous stirring for 60 min at 37°C with
2 mg/mL collagenase (Wako) in RPMI 1640
containing 10% FCS. After passage through a
190-um mesh, the cell suspensions were sub-
jected to Percoll (GE Healthcare) density gra-
dients of 40 and 75%, and the interface between
the layers was collected to retrieve LP cells. Stromal
cells were identified as CD46~ Viaprobe™ cells. For
fluorescence-activated cell-sorting (FACS) analy-
sis of ILCs, isolated LP cells were further puri-
fied by magnetic-activated cell sorting so as to
eliminate CD11b*, CD11c", and CD19" cells. CD11b~
CD11¢™ CD19~ Viaprobe™ CD45" LP cells were used
to detect ILCs.

Antibodies and flow cytometry

For flow cytometric analysis, isolated intestinal
ECs were stained with UEA-I-TRITC, anti-CD45-
Pacific blue (PB; Biolegend, San Diego, CA), and
Viaprobe (BD Biosciences, East Rutherford, NJ).
Viaprobe™ CD45~ UEA-1" cells were identified as
F-ECs. After blocking with anti-CD16/32 (FeyRIl/
1) (BD Biosciences), the following antibodies
were used to stain spleen and LP cells: anti-CD45-
PB (Biolegend), anti-CD11b-phycoerythrin (PE), anti-
Foxp3-fluorescein isothiocyanate (FITC) (eBioscience,
San Diego, CA), anti-CDI1c-allophycocyanin (APC),
anti-CD11b-FITC, anti-Gr-1-Alexa647, anti-CD3-
APC, anti-B220-PE, anti-B220-APC, anti-IgA-FITC,
anti-CD4-eFluor450, anti-CD90.2-FITC, anti-IL-17-
PE, and anti-IFNy-FITC (all from BD Biosciences),
and Viaprobe. CD11b~ CD11¢” CD19™ LP cells were
purified by using anti-CDI11b, anti-CD1lc, and
anti-CD19 MicroBeads (Miltenyi Biotec, Bergisch
Gladbach, Germany). The results were obtained
by using a FACSAria cell sorter (BD Biosciences)
with FlowJo software (TreeStar, Ashland, Oregon).

Intracellular staining of Foxp3
and cytokines

Isolated LP cells were incubated for 4 hours at
37°C with 50 ng/mL phorbol myristate acetate
(Sigma), 500 ng/mL ionomycin (Sigma), and
GolgiPlug (BD Bioscience) in RPMI 1640 con-
taining 10% FCS and penicillin and streptomycin.
After incubation, cells were stained with anti-
bodies against surface antigens for 30 min at
4°C. The cells were fixed and permeabilized with
Cytofix/Cytoperm solution (BD Bioscience), and
cytokines were stained with the fluorescence-
conjugated cytokine antibodies. A Foxp3 staining
buffer set (eBioscience) was used for intracellular
staining of Foxp3.

Depletion of CD90" ILCs

Depletion of CD90* ILCs was performed as pre-
viously described, with some modifications (36).
Two hundred and fifty micrograms of a mAb to
CD90.2 or an isotype control rat IgG2b (BioXCell,
West Lebanon, NH) was given by means of intra-
peritoneal injection a total of three times at
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3-day intervals. Intestinal ECs and LP cells
were collected 2 days after the final injection.

Hydrodynamic IL-22 gene
delivery system

PLIVE control plasmid (Takara Bio, Shiga, Japan)
or IL-22-expressing pLIVE vector (pLIVE-mll22)
was introduced into 8-week-old antibiotic-treated
C57BL/6 or RorcSP/5® mice. Ten micrograms per
mouse of plasmid diluted in ~1.5 mL TransIT-EE
Hydrodynamic Delivery Solution (Mirus Bio, Mad-
ison, WI) was injected via the tail vein within 7 to
10 s. To assess IL-22 expression, serum IL-22 was
quantified by means of an enzyme-linked immu-
nosorbent assay (R&D Systems, Minneapolis, MN).

Generation of PP-null mice

mADb to IL-7R (A7R34) was kindly provided by
S. Nishikawa. PP-null mice were generated by in-
jecting 600 pg of mAb to IL-7R into pregnant
mice on embryonic day 14 (55).

In vivo treatment with LTpR-Ig and
antibody to IL-22

Neutralization antibody to I1-22 was purchased
from eBioscience. Eight-week-old Rag-deficient
mice were injected intraperitoneally with antibody
to IL-22 a total of five times at 3-day intervals (on
days 0, 3, 6, 9, and 12). Plasmid pMKIT-expressing
LTBR-Ig and LTPR-Ig treatment was performed as
described previously (56). Four-week-old C57BL/6
mice were injected intraperitoneally once a week
for 3 weeks (on days 0, 7, 14, and 21) with LTBR-Ig
fusion protein or control human IgG1 at a dose
of 50 ng per mouse. Intestinal ECs were analyzed
3 days after the indicated injection time points.

Adoptive transfer of mixed BM

For mixed BM transfer experiments, Rorcs/s®
mice were irradiated with two doses of 550 rad
each, 3 hours apart. BM cells (1 x 107) from
RorcE®/5® mice was mixed with BM cells (I x 10%)
from C57BL/6 or Ltz mice and intravenously
injected into irradiated recipient mice. BM chi-
meric mice were used for experiments 8 weeks
after the BM transfer.

Isolation of RNA and real-time reverse
transcriptase PCR analysis

Intestinal ECs and subsets of LP cells were sorted
with a FACSAria cell sorter (BD Biosciences).
The sorted cells were lysed in TRIzol reagent
(Invitrogen), and total RNA was extracted in
accordance with the manufacturer’s instruc-
tions. RNA was reverse-transcribed by using a
SuperScript VILO cDNA Synthesis Kit (Invitrogen).
The ¢cDNA was subjected to real-time reverse
transcriptase-PCR (rRT-PCR) by using Roche
(Basel, Switzerland) universal probe/primer sets spe-
cific for Zte: (primer F: 5'-tccctcagaageacttgace-3', R:
5-gagtictgettgetggggta-3', probe No. 62), Li3 (primer
F: 5'cctgetgaccetgtigtie-3', R: 5-tgctectgagocaatgatet-3),
probe No. 76), /122 (primer F: 5-tttectgaccaaacteagea-3,
R: 5'-tctggatgttctggtegtca-3', probe No. 17), 112211
(primer F: 5';-tgctctgttatctgggetacaa-3’, R: 5'-
tcaggacacgttggacgtt-3', probe No. 9), 711013 (primer
F: 5-attcgepgiegetcaatgtc3, R: 5-geatctcaggaggtecaatg-
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3, probe No. 29), Fuz2 (primer F: 5-tgtgacttecaccat-
catee-3,, R: 54tctgacagegtttggagett-3', probe No. 67), and
Gapdh (primer F: 5'-tgtccgtegtggatetgac-3', R: 5'-
cctgetteaccaccttettg-3', probe No. 80). RT-PCR
analysis was performed with a Lightcycler II in-
strument (Roche Diagnostics) to measure the ex-
pression levels of specific genes.

Infection with S. typhimurium

Streptomycin-resistant wild-type S. typhimurium
was isolated from S. typhimurium strain ATCC
14028. Fut2™”~ (BALB/c background) and con-
trol littermate mice pretreated with 20 mg of
streptomycin 24 hours before infection were
given 1 x 10° colony-forming units of the isolated
S. typhimurium via oral gavage. After 24 hours,
the mice were dissected, and the cecal contents
were collected. Isolated cecum was treated with
PBS containing 0.1 mg mL™ gentamicin at 4°C for
30 min so as to Kill bacteria on the tissue surface.
The cecum was then homogenized and serial
dilutions plated in order to determine the number
of S. typhimurium. Sections of proximal colon
were prepared 48 hours after infection. Infiltra-
tion of inflammatory cells was confirmed with
hematoxylin and eosin staining.

Statistical analysis

Statistical analysis was performed with an un-
paired, two-tailed Student’s #test. P values <0.05
were considered statistically significant.
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