A B
100+ 300+
3
g 804 Mock g P=0.49
3 1415 g 2004
5 601 EpETE E
[] =
2 40- 17.18- g
) diHETE & 100
© ©
£ 204 17.18- =
Cx 5 EpETE
01 2 3 4 5 6 Mock 17,18-
Times of oral inoculation EpETE

OVA-IgE (ng/mL)

D
800 - P=0.4398 150 1 P=0.2831
P=0.7394 P=0.8591 P=0.0035 P=0.0073
6004 — o . 2 e
. o E 100 % L
4004 S e o = 2o°
[+ 0. E 800- . o g
88 ) 4 o O 509 400 oo 069'0
200 A LY = [} o
3 & o % °
o® g0 ©
0
Mock 17,18- 17,18 Mock 17,18- 17,18
EpETE diHETE EpETE diHETE

Figure 6 | 17,18-EpETE prevents the development of allergic diarrhea by impairing MC degranulation. (A) Mice were injected i.p. without (mock) or
with 100 ng 17,18-EpETE, 14,15-EpETE, or 17,18-diHETE 30 min before systemic priming and oral challenge with OVA, after which the incidence of
allergic diarrhea was measured (n = 16 per each group). (B) Mice were injected i.p. without (mock) or with 100 ng 17,18-EpETE at24 and 1 hr before oral
inoculation of 25 g cholera toxin. Fifteen hours after oral administration of cholera toxin, water volume in the intestinal lumen was measured. The data
represent the mean * 1 SD (n = 4). (C, D) One day after the eighth oral challenge with OVA, serum was collected for the measurement of OVA-specific
IgE (C) and mMCP-1 (D) levels. Graphs show data from individual mice from 2 individual experiments, and bars indicate median values.

St. Louis, MO) in complete Freund’s adjuvant (Difco Laboratories, Detroit, MI). One
week after systemic priming, mice were challenged orally with 50 mg OVA and
continued to be challenged 3 times each week. We assessed allergic diarrhea 30 to
60 min after oral inoculation with OVA.

Cholera diarrhea was induced by oral administration of 25 pg cholera toxin (List
Biological Laboratories, Campbell, CA)*. Fifteen hours later, we examined the water
volume in the intestinal lumen.

Cell isolation. Cells were isolated from the large intestine as previously described*5.
Briefly, intestines were opened longitudinally, washed with RPMI-1640, cut into 2-cm
pieces, and stirred for 20 min at 37°C in RPMI-1640 containing 0.5 mM EDTA and
2% FCS to remove epithelial cells and intraepithelial lymphocytes. The tissues were
then stirred three times (20 min each) in 1.6 mg/ml collagenase (Wako, Osaka,
Japan).

Flow cytometry. Cells were pre-incubated with 10 pg/mL anti-CD16/32 antibody
(Biolegend, San Diego, CA) and then stained with an antibody specific to c-kit (BD
Biosciences, San Diego, CA) and FceR1a (eBioscience, San Diego, CA) for 30 min at
4°C. We used FSC-H and FSC-A discrimination to exclude doublet cells and
Viaprobe Cell-viability Solution (BD Biosciences) to discriminate dead and living
cells. Flow-cytometric analysis was performed by using a FACSCantoll (BD
Biosciences).

Measurement of mMCP-1, OVA-specific IgE, and IgG by ELISA. OV A-specific IgE
and mMCP-1 production in serum was measured by using DS Mouse IgE (OVA)
ELISA kit (DS Pharma Biomedical Co., Osaka, Japan) and Mouse MCP-1 ELISA kit
(eBioscience), according to the manufacturers’ protocols. OV A-specific IgG1 and
IgG2a were measured as previously reported*. Briefly, plates were coated with 1 mg/
mL OVA in PBS; this was followed by blocking for 1 hr at room temperature with
200 pL PBS containing 1% (w/v) BSA per well. After extensive washing of the plates
with PBS containing 0.05% Tween 20, serial serum dilutions were added for
incubation overnight at 4°C. Samples were then incubated for 1 hr at room
temperature with optimally diluted HRP-conjugated goat anti-mouse IgG1 or IgG2a
(SouthernBiotech, Birmingham, AL). After sample washing, the color reaction was
developed at room temperature by using 3,3',5,5'-tetramethylbenzidine (KPL,
Baltimore, MD) and terminated by adding 0.5 M HCl. We measured the color
reaction as the absorbance at 450 nm.

Gas chromatography. We extracted lipids from serum and large intestine by using
chloroform-methanol and chloroform solutions. The specimens were dried in
nitrogen gas and dissolved in 0.4 M potassium methoxide in methanol and 14%
boron trifluoride in methanol. The FA concentrations in the solutions were measured
by using gas chromatography (model GF 17A; Shimazu, Kyoto, Japan) at SRL Inc.
(Tokyo, Japan).

MALDI-IMS. Large intestines within 2 cm from the ileal end were isolated. After the
intestinal lumen was washed with PBS, the mesenteries were removed, and the
intestines were cut into 2-cm lengths. The intestines were frozen in 2%
carboxymethylcellulose (Wako, Osaka, Japan) dissolved in ultra-pure water. Before
sectioning, the frozen samples were kept for 30 min at —20°C. The 10-um sections
were thaw-mounted onto an indium-tin-oxide-coated glass slide (Bruker Daltonics,
Bremen, Germany) and dried at room temperature. The sections were placed in a
polycarbonate tube and stored at —20°C until IMS analysis.

We performed the matrix deposition of 9-aminoacridine (Merck Schuchardt,
Hohenbrunn, Germany) onto a slide in a sublimation apparatus (Shimadzu, Kyoto,
Japan). IMS was performed with a MALDI TOF/TOF-type instrument, the Ultraflex
IT (Bruker Daltonics Bremen, Germany), which was equipped with a 355-nm Nd/

YAG laser with a repetition rate of 200 Hz. All pixel sizes of imaging were 100 pum.
The MS parameters were set in the range of m/z (200-400) in negative-ion mode.
Automatic acquisition of the mass spectra and reconstruction of the ion images were
performed by using FlexImaging software (Bruker Daltonics), which normalized all
mass spectra based on total ion current.

Detection of FAs and their metabolites in the large intestine. LC-MS/MS-based
lipidomics was performed to measure the amounts of lipid mediators as previously
reported". Briefly, lipids were collected by solid-phase extraction using Sep-Pak C18
cartridge (Waters) with a deuterium-labeled internal standard (AA-d8, 15-HETE-d8,
LTB4-d4, and PGE2-d4). We used a triple quadrupole linear ion trap mass
spectrometer (QTRAP5500; AB SCIEX) equipped with a 1.7 pm, 1.0 X 150 mm
Acquity UPLC™ BEH C18 column (Waters). The MS/MS analyses were performed
in negative ion mode, and FA metabolites were identified and quantified by multiple
reaction monitoring.

Statistics. Results were compared by non-parametric Mann-Whitney’s U, two-tailed
unpaired t, and One-way ANOVA tests (GraphPad Software, San Diego, CA).
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INTRODUCTION: The combination of food
intake and the resident gut microbiota ex-
poses the gastrointestinal (GI) tract to nu-
merous antigens. Intestinal epithelial cells
(ECs) compose a physical barrier separating
the internal organs from the gut microbiota
and other pathogenic microorganisms en-
tering the GI tract. Although anatomically
contained, the gut microbiota is essential
for developing appropriate host immunity.
Thus, the mucosal immune system must
simultaneously maintain homeostasis with
the gut microbiota and protect against
infection by pathogens. Maintenance of
the gut microbiota requires epithelial cell-
surface glycosylation, with fucose residues
in particular. Epithelial fucosylation is me-
diated by the enzyme fucosyltransferase 2
(Fut2). Polymorphisms in the FUT2 gene
are associated with the onset of multiple
infectious and inflammatory diseases and
metabolic syndrome in humans.

RATIONALE: Despite its importance, the
mechanisms underlying epithelial fucosyl-
ation in the GI tract is not well understood.
In particular, although commensals such as

Wild-typefl

Bacteroides thetaiotaomicron induce epithe-
lial fucosylation, how mucosal immune cells
participate in this process is unknown. We
used a combination of bacteriological, gno-
tobiological, and immunological techniques
to elucidate the cellular and molecular basis
of epithelial fucosylation
by mucosal immune
cells in mice, especially
innate lymphoid cells
(ILCs). To explore the
role of ILCs in the in-
duction and mainte-
nance of epithelial fucosylation, we used
genetically engineered mice lacking genes
associated with the development and func-
tion of ILCs. To investigate the physiological
functions of ILC-induced epithelial fucosyl-
ation, we used a Fut2-deficient mouse model
of S. typhimurium infection.

ON OUR WEB SITE

RESULTS: The induction and maintenance
of Fut2 expression and subsequent epithe-
lial fucosylation in the GI tract required
type 3 ILCs (ILC3s) that express the tran-
scription factor ROR t and the cytokines
interleukin-22 (IL-22) and lymphotoxin (LT).

fILC3Delcidhcyfl

No fucosylation
\ 4

bacteria

Protectionfl

InDammationfl

S. Typhimurium Infection

Commensal

Commensal bacteria, including segmented
filamentous bacteria (SFB), induced fucosyl-
ation of intestinal columnar ECs and goblet
cells. Expression of IL-22 by ILC3 required
commensal bacteria, whereas LT was ex-
pressed in a commensal-independent man-
ner. Ablation of IL-22 or LT in ILC3 resulted
in a marked reduction in epithelial fucosyl-
ation, demonstrating that both cytokines are
critical for the induction and regulation of
epithelial fucosylation. Fucosylation of ECs
in response to the intestinal pathogen S.
typhimurium was also mediated by ILC3.
Compared with control mice, Fut2-deficient
mice were more susceptible to pathogenic
inflammation as a result of S. typhimurium
infection, suggesting that epithelial fucosyl-
ation contributes to host defense against S.
typhimurium infection.

CONCLUSION: We demonstrate the critical
role of the cytokines IL-22- and/or LT-pro-
ducing ILC3 in the induction and regulation
of intestinal epithelial fucosylation. We also
show that ILC3-mediated epithelial fucosyl-
ation protects the host from invasion of S.
typhimurium into the intestine. Our results
provide important details of the glycosyl-
ation system and homeostatic responses
created by the trilateral ILC3-EC-com-
mensal axis in the intestine. Modulation of
mucosal immune cell-mediated epithelial
glycosylation may provide novel targets for
the treatment or prevention of infectious
diseases in humans. 1=
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Fucosylation of intestinal epithelial cells, catalyzed by fucosyltransferase 2 (Fut2), is a
major glycosylation mechanism of host-microbiota symbiosis. Commensal bacteria induce
epithelial fucosylation, and epithelial fucose is used as a dietary carbohydrate by many of
these bacteria. However, the molecular and cellular mechanisms that regulate the
induction of epithelial fucosylation are unknown. Here, we show that type 3innate
lymphoid cells (ILC3) induced intestinal epithelial Fut2 expression and fucosylation in
mice. This induction required the cytokines interleukin-22 and lymphotoxin in a commensal
bacteria—dependent and —independent manner, respectively. Disruption of intestinal
fucosylation led to increased susceptibility to infection by Salmonella typhimurium. Our
data reveal a role for ILC3 in shaping the gut microenvironment through the regulation of

epithelial glycosylation.

n the gastrointestinal tract, bilateral regula-
tion between the gut microbiota and the host
creates a mutually beneficial environment.
The intestinal epithelium is a physical barrier
that separates the environments inside and
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outside the mucosal surface. Intestinal epithelial
cells (ECs) are the first line of defense against
foreign antigens, including those from commen-
sal and pathogenic bacteria. ECs play key roles
in initiating and maintaining an immunologi-
cally appropriate and balanced environment in
reaction to constant foreign stimulation (7). Resi-
dent commensal bacteria support the develop-
ment of this functional mucosal immune system,
and in turn, mucosal immune cells control the
homeostasis of the gut microbiota and protect
against pathogenic bacterial infection through
intestinal ECs. In particular, type 3 innate lym-
phoid cells (ILC3) produce interleukin-22 (IL-22),
which not only regulates the homeostasis of the
commensal microbiota but also protects against
Citrobacter rodentium infection, presumably by
inducing EC-derived antimicrobial molecules such
as Regllly (2-5).

Fucosylated carbohydrate moieties expressed
on intestinal ECs are involved in the creation of
an environmental niche for commensal bacteria
in mice and humans (6-10). Fucosylated glycans
are generated by the addition of an 1-fucose residue
via an 01-2 linkage to the terminal B-p-galactose
residues of glycan in a process catalyzed by fucosyl-
transferase. Two fucosyltransferases, Futl and
Fut2, mediate intestinal epithelial fucosylation,
and each enzyme acts on a distinct subset of epi-
thelial cells. Futl regulates fucosylation of Peyer’s
patch (PP) M cells, whereas Fut2 is a key enzyme
regulating intestinal columnar epithelial fucosyla-
tion and the production of secretory fucosylated
ABO(H) histo-blood group antigens (7). Defective
Fut2 has been shown to result in susceptibility

12 SEPTEMBER 2014 « VOL 345 ISSUE 6202

to Candida albicans infection in mice (72). In
addition, inactivating polymorphisms of FUT2
are associated with metabolic abnormalities and
infectious and inflammatory diseases in humans
(13-19).

The importance of epithelial fucose has been
explored through studies of host-microbe inter-
actions. Signals from commensal bacteria are
required for epithelial fucosylation (6). Specific
commensals, in particular Bacteroides, have been
shown to induce epithelial fucosylation and are
able to catabolize fucose for energy or incor-
porate it into bacterial cellular components—
capsular polysaccharides—that give microbes
a survival advantage in competitive environments
(8, 9). Indeed, a lack of Fut2 alters the diversity
and composition of the fecal microbiota in hu-
mans and mice (20, 2I). Therefore, epithelial fu-
cose functions as a mediator between the host
and commensal microbiota. Although a previous
report proposed a model in which Bacteroides-
EC interaction mediates epithelial fucosylation (7),
the precise mechanisms by which Fut2 regulates
fucosylation remain largely unknown.

Microbiota induces epithelial fucosylation

Epithelial fucosylation, a major glycosylation
process, occurs in the small intestine (10, I1).
To assess the inductive mechanism of intestinal
epithelial fucosylation, we first investigated the
localization of fucosylated ECs (F-ECs) along the
length of the small intestine, divided equally into
four parts from the duodenum (part 1) to the ter-
minal ileum (part 4), in naive mice (Fig. 1A). The
frequency of F-ECs, detected with the a(1,2)fucose-
recognizing lectin Ulex europaeus agglutinin-1
(UEA-1), was low in the duodenum and jejunum
(part 1 and a portion of part 2; <15% F-ECs) and
gradually increased toward the ileum (part 4;
40 to 90% F-ECs) (Fig. 1, A to C). Consistent with
epithelial fucosylation, epithelial Fut2 expression
was also higher in the ilenm (Fig. 1D). Because
greater numbers of microorganisms are present
in the distal ileum than in the duodenum (22),
it may be possible that high numbers of ileal
F-ECs are induced and maintained through
microbial stimulation. To test this hypothesis,
we examined the fucosylation status of ileal
ECs (part 4) in mice treated with a mixture of
antibiotics (AB), as well as in germ-free (GF)
mice. The number of F-ECs was dramatically
reduced in AB-treated and GF mice (Fig. 2A and
fig. S1A). Furthermore, expression of epithelial
Fut2 was also reduced in AB-treated mice (Fig.
2B). Epithelial fucosylation was restored after
cessation of AB treatment and in conventional-
ized GF mice (Fig. 2A and fig. S1A). In addition,
fucosylation of goblet cells, but not Paneth cells,
was lost in AB-treated and GF mice (Fig. 2C), in-
dicating that commensal bacteria induce fuco-
sylation of columnar epithelial cells and goblet
cells, but not Paneth cells.

It has been shown that epithelial fucosylation
can be induced by the mouse and human com-
mensal Bacteroides thetaiotaomicron (6). How-
ever, on the basis of bacterial 16S ribosomal RNA
(rRNA) gene clone library data obtained from
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