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This proliferative response was associated with Uhrfl upreg-
ulation in Treg cells. In addition, ablation of Uhrfl affects the
development of functional Treg cells in the colonic lamina
propria of young mice, but not the thymus and spleen,
resulting in the spontaneous development of colitis. T cell-
specific Dnmtl-deficient mice exhibited a similar phenotype
(Obata et al., unpublished observation). These observations
indicate that the DNA methylation machinery may be essen-
tial for the maintenance of Treg homeostasis after colonization
by commensal microbiota. One of the principal targets of
Uhrfl is cyclin-dependent kinase inhibitor 1a (Cdknla), also
known as p21%*"/?"P! (Fig_ 4). Cdknla is a negative regulator
of GI1 phase progression and harbors two CpG islands at
proximal and distal regions of the 1000 bp preceding the
transcription start site [67, 68]. Uhrfl deficiency results in
DNA hypomethylation of the Cdknla distal promoter region
in embryonic stem and Treg cells [27, 69]. This results in a
release of Cdknla transcriptional repression and leads to cell
cycle arrest at the G1-S transition. Therefore, Uhrfl-
dependent DNA methylation may ensure the highly
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Fig. 4 A model of the Uhrfl-dependent mechanism of colonic Treg
expansion in response to colonization by gut microbiota. (1) Early in life,
colonizing bacteria are initially recognized by antigen-presenting cells
(APC), such as DCs; (2) antigen-loaded APC evoke an IL-2 response by
stimulating T effector cells through antigen presentation; (3) IL-2 pro-
vides a proliferative cue and simultaneously upregulates Uhrfl expres-
sion in Tregs; (4) Uhrfl represses the expression of cell cycle-dependent

proliferative nature of colonic Treg cells by epigenetically
silencing Cdknla expression (Fig. 4). Given that Treg cells
are under the influence of TGF-f signaling, which has the
capacity to induce Cdknla expression [70], proliferating Treg
cells might need to inhibit the recruitment of Smad3 (a down-
stream molecule for TGF-$ signaling) to the Cdknla
promoter via DNA methylation. In support of this no-
tion, the GpG island proximal Smad3-binding element
on the distal promoter of is highly methylated in wild-type
Treg cells.

Commensals upregulate Uhrfl expression most likely by
the early production of IL-2 from conventional T cells in
response to bacterial colonization [27]. A previous study on
global gene expression analysis identified UhrfI as an IL-2-
responsive gene in T cells [71]. Furthermore, the promoter
region of Uhrfl gene harbors two gamma-activated site
(GAS)-like motifs (STAT5 tetramer motifs) in the promoter
region that are directly bound by STATS5 in response to IL-2
[72] (ChIP data set number GSE26552) (Furusawa, unpub-
lished observation).
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kinase inhibitor, Cdknla, via DNA methylation to safeguard the active
proliferation of Tregs; and (5) actively proliferating Tregs become func-
tionally mature and, in turn, prevent excessive immune responses to the
colonizing microbiota. This model illustrates the establishment of gut
immune homeostasis based on the reciprocal interaction between Tregs
and T effector cells. Note that commensal bacteria-derived butyrate
facilitates peripheral generation, but not proliferation, of Tregs [34]
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Conclusion

Colonization by commensal microbiota influences the cell
fate decisions of intestinal CD4" T cells through multiple
mechanisms. Commensals are of prime importance as anti-
gens, whereas their components also stimulate TLR signaling.
Furthermore, commensal microbiota-derived SCFAs serve as
ligands for Gpr41, 43, and 109a on myeloid cells and potential
epithelial cells. In addition, butyrate and propionate are suffi-
cient to modify the epigenetic status of several genes in CD4"
T cells. Currently, several lines of new “omics” technologies
utilizing next generation sequencing, NMR, and mass spec-
trometry are increasing in popularity. In particular, a
metagenomic investigation enabled us to understand the com-
plexity of microbial community. Moreover, the integrated
analysis of omics-style data should provide significant in-
sights into the mechanisms by which microbes and their
metabolites influence host metabolism and immunity. Further-
more, we consider commensal microbiota as one of the most
important environmental factors modulating the epigenetic
status of host cells. These epigenetic modifications can be
further defined by genomewide epigenetic analysis, namely,
chromatin immunoprecipitation sequencing (ChIP-seq) and
methylated DNA precipitation sequencing (MeDP-seq). Im-
portantly, these frans-omic studies have the potential to un-
cover the elaborate interactions that exist between intestinal
microbiota and host immune cells.
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The epigenetic regulator Uhrf1 facilitates the
proliferation and maturation of colonic regulatory T cells

Yuuki Obatal-418, Yukihiro Furusawal3:17:18 Takaho A Endo3, Jafar Sharif®, Daisuke Takahashi’, Koji Atarashi®?,
Manabu Nakayama!?, Satoshi Onawa’, Yumiko Fujimura!-3, Masumi Takahashi’, Tomokatsu Ikawa%11,
Takeshi Otsubo!?, Yuki I Kawamura!?, Taeko Dohi!2, Shoji Tajima!3, Hiroshi Masumoto!4, Osamu Ohara3,
Kenya Honda%13, Shohei Horil%, Hiroshi Ohno?%7, Haruhiko Koseki® & Koji Hasel»349,17

Intestinal regulatory T cells (T, cells) are necessary for the suppression of excessive immune responses to commensal bacteria.
However, the molecular machinery that controls the homeostasis of intestinal Treg cells has remained largely unknown. Here we
report that colonization of germ-free mice with gut microbiota upregulated expression of the DNA-methylation adaptor Uhrf1 in
Treg cells. Mice with T cell-specific deficiency in Uhrf1 (Uhrf1flCd4-Cre mice) showed defective proliferation and functional
maturation of colonic Ty, cells. Uhrfl deficiency resulted in derepression of the gene (Cdkn 1a) that encodes the cyclin-
dependent kinase inhibitor p21 due to hypomethylation of its promoter region, which resulted in cell-cycle arrest of Tyeg cells.
As a consequence, UhrfIf/fiCd4-Cre mice spontaneously developed severe colitis. Thus, Uhrf1-dependent epigenetic silencing
of Cdknla was required for the maintenance of gut immunological homeostasis. This mechanism enforces symbiotic

host-microbe interactions without an inflammatory response.

The mammalian fetus is maintained under sterile conditions in the
uterus. However, immediately after birth, it is exposed to a multi-
tude of environmental microbes, some of which colonize the skin
and mucosal surfaces. In particular, the lumen of the human distal
intestine harbors trillions of microorganisms. Notably, despite such a
tremendous microbial burden in close proximity to the intestinal epi-
thelial cells, the colonizing microbiota seldom causes inflammatory
diseases. This is mainly due to the establishment of an immunoregu-
latory system characterized by the accumulation of mucosal Foxp3+*
regulatory T cells (Tyeq cells)!~%, which serve a pivotal role in the
containment of potentially pathogenic inflammatory responses’-5:,
Treg cells arise both in the thymus and in the periphery as a con-
sequence of exposure to microbial antigens (for example, antigens
from clusters IV and XIVa of the bacterial class Clostridia, altered
Schaedler flora and Bacteroides fragilis)!=%7-10, Although much has
been learned about the development, migration!! and function of
intestinal Treq cells, the molecular mechanisms by which these cells
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establish symbiotic host-microbe relationships without inflammation
still remains to be elucidated.

Epigenetic regulation serves important roles in controlling gene
expression in a heritable manner!2. Compelling evidence has revealed
active contribution of epigenetic regulation to cell-fate ‘decisions’ as
well as to the stabilization of cell lineages during the development of
various cells of the immune system, including Ty, cells!3-15, Butyrate
derived from Clostridia bacteria upregulates acetylation of histone
H3 at the promoter and conserved-noncoding-sequence regions of
the locus encoding the transcription factor Foxp3 and eventually
facilitates Foxp3 expression in naive T cells’. That finding supports
the idea that the epigenetic status of Ty cells and potentially other
T cell subsets may be influenced by environmental factors, such as the
cytokine milieu and microbial factors. The spatiotemporal control of
the epigenetic status of Ty, cells should be clarified for full under-
standing of local development of these cells and their homeostasis
in the intestine.
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Uhrfl (‘ubiquitin-like, with pleckstrin-homology and RING-finger
domains 1’; also known as Np95 in mice and ICBP90 in humans)
is an epigenetic regulator that forms gene-repression complexes
through its interaction with the DNA methyltransferase Dnmt1 and
the histone deacetylase HDACI (refs. 16-19). Uhrfl ‘preferentially’
binds hemimethylated DNA via the SET- and RING finger-associated
domain and contributes substantially to the accurate maintenance of
DNA methylation by recruiting Dnmt1 to the hemimethylation sites.
Therefore, ablation of Uhrfl results in the hypomethylation of
retrotransposons and ‘imprinted” genes in embryonic stem cells!”.

Here we sought to elucidate the molecular entity responsible for
the population expansion of Tr, cells on the basis of host-microbe
interactions and found upregulation of Uhrfl expression in colonic
Tyeg cells in response to bacterial colonization. The upregulation of
Uhrfl expression was essential for vigorous proliferation of colonic
Treg cells in response to bacterial colonization through its epigenetic
silencing of the gene that encodes the cyclin-dependent kinase
inhibitor p21 (Cdkn1a). Accordingly, mice with T cell-specific deletion
of Uhrfl spontaneously developed colitis due to defects in the
proliferation and suppressive function of Ty cells. We therefore
reason that Uhrfl-dependent regulation of the proliferation of
Treg cells via this epigenetic mechanism is essential for containment
of the inflammatory response to gut microbiota.

RESULT

Gut bacteria induce proliferation of colonic T cells

To gain mechanistic insight into the maintenance of gut immuno-
logical homeostasis during the establishment of symbiotic host-
microbe interactions, we orally inoculated germ-free (GF) mice of
the IQI strain with commensal microbiota and monitored changes

in interleukin 2 (IL-2)-expressing CD4* T cells and Foxp3* T cell
populations in the colonic lamina propria (cLP) of these formerly
germ-free (‘ex-germ-free’ (exGF)) mice. The frequency of IL-2*CD4*
T cells peaked within 3 d of bacterial colonization and then gradually
decreased to the basal frequency by day 7 (Fig. 1a). The kinetics of
the T, cell population expansion paralleled that of the IL-2*CD4*
T cells up until day 3, but then the Ty, cell populations continued
to expand (Fig. 1a) and became the dominant CD4* T cell popula-
tion in the colon. The rapid population expansion of Ty, cells after
bacterial colonization raised the possibility that the commensals
may induce not just the differentiation”” and migration® but also
the local proliferation of Tyeg cells in the cLP. Indeed, there was con-
siderable population expansion of Ki67* proliferative Ty, cells after
bacterial colonization (Fig. 1a). Proliferating (EAU*) Tyeq cells were
much more abundant in the cLP of exGF mice than in that of GF
mice (Fig. 1b). Differences in the expression of neuropilin-1 (Nrp1)
has been proposed as a marker for distinguishing natural Treg cell
subsets from peripherally induced Tyg cell subsets20-21. We observed
that both the Nrp1-Foxp3* subset (Tyg cells that arose in the periph-
ery) and Nrp1*Foxp3* subset (T, cells that arose in the thymus)
displayed the proliferative response, although it was more prominent
in the Nrp1- population (Fig. 1c). This proliferative response was
confined to colonic Ty cells and was minimal in CD4*Foxp3~ con-
ventional T cells (T.opy cells) and splenic CD4*Foxp3* T cells (Fig. 1b
and Supplementary Fig. 1a). Similarly, we observed the rapid Tyeg
cell population expansion in the cLP but not the spleen of specific
pathogen—free (SPF) mice before weaning, a time during which the
intestinal microflora is established (Supplementary Fig. 1b,d). To
gain further evidence showing that the proliferation of Tpeg cells was
occurring locally in the colon, we blocked the influx of extraintestinal
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T cells subcategorized into two subpopulations on the basis of Nrpl expression (frequency, right), assessed as in b.
(d) Proliferation of Foxp3*CD4+ T cells in the cLP of exGF mice inoculated as in a and given a control antibody (IgG)

d 604 NS
< iy
9_‘; 40 mIgG
3 0 o,B;
5 20
b=l
w
0

or neutralizing antibodies to integrin o7 subunits, followed by the administration of EAU and analysis (as in b) at day 5
after bacterial colonization. NS, not significant; *P < 0.05 and **P < 0.01 (Student’s t-test). Data are representative of at least two or three

independent experiments (error bars, s.d. of five (b,c) or three (d) mice).
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